温室效应的特点(6篇)
温室效应的特点篇1
[论文摘要]文章结合目前通信机房空调设备产品存在的问题及空调资源的合理优化和合理配置,对通信机房的空调系统节能潜力进行分析,涵盖空调产品的节能及资源优化设计等内容,从四个方面来阐述空调系统的节能手段,并提出各种手段的可执行方式和具体措施。
在我国目前经济高速发展的同时降低能源消耗是今后必须实现的目标,是经济可持续健康发展的重要保障。对通信行业而言,实现资源节约和环保的战略目标,其中的一个重要着眼点就是要大力推动以节能降耗为重点的设备更新和技术改造,加快淘汰高耗能、高耗水、高耗材的工艺、设备和产品。根据通信部门多年来的统计数据分析,通信行业的运营成本主要是电耗成本,而在电耗成本中,机房空调的电耗约占总电耗50%以上。可以说降低空调机组的运行费用,能有效降低电信行业的运营成本。
本文结合目前通信机房空调设备产品存在的问题及空调资源的合理优化和合理配置对通信机房的空调系统节能潜力进行分析,涵盖空调产品的节能及资源优化设计等内容,从四个方面来分别阐述空调系统的节能手段,并提出各种手段的可执行方式和具体措施。
一、机房空调气流组织的科学化
机房内空调系统气流组织的科学化是合理解决机房环境要求的必要条件,也是实现节能效应的有效途径。机房内的气流组织应包括机房大环境的气流组织和通信机柜内部的气流组织,所以机房空调气流组织的科学化解决方案应立足这两方面予以考虑。
(一)机房送风方式应优先考虑地板下送风
目前通信机房规划大多数采用上走线上送风方式,而专用空调上送风方式主要采用风帽直接吹送和风管送风两种常见方式,但这两种送风方式由于造成机房内空调送风断面过大,且系统调节性能较差,不能实现机房内系统总风量的高效、合理的分配。特别是一些发热量较大的数据、交换机房,由于机房内负荷较大且分布不均匀,易造成局部发热源集中区域的局部分配的送风量不足,热量不能及时散发而造成局部过热现象。且上送风方式由于在整个机房空间内冷、热气流混合交叉现象严重,制冷效率偏低。
为解决目前机房内存在的局部过热问题,并使机房内气流组织的合理高效从而实现较好的节能效果,建议通信机房在层高满足的条件下优先采用地板下送风方式。根据实际工程案例进行经济性分析,下送风方式比上送风方式普遍可节约20%左右的运行费用,节能效应显著。
地板下送风方案在工程应用中,要达到理想的效果,应注意以下环节:(i)地板下只准通风,严禁布放线缆(消防用线缆除外);(2)架空层下有效净空高度一般应控制在350~500mm范围内;(3)送风距离易小于15m。若送风距离超过15m,可以考虑两侧安装空调送风或地板下安装风管进行远距离输送;(4)地板架空层下的水泥楼面应铺设不燃烧材料制造的隔热保温层和保护层,防止楼层水泥面或下层天花板结露。
(二)机柜内气流组织合理化
机柜内部安装的设备产生的热量能否及时散发到周围的环境中,一方面要求机房大环境有良好的气流组织和适宜的环境参数(温度、湿度等),另外一方面要求通信机柜具备良好的散热工艺。
通信机柜的结构形式应充分考虑散热工艺的要求,否则会造成热量在机柜内部堆积而无法及时散发到周围的环境中去,从而影响通信设备的正常运行,严重时会造成通信设备故障率明显增加。目前一些通信机柜的结构形式在散热工艺上存在一些缺陷,可能存在的问题主要包括:(1)机柜前后门开孔率不足,有些在前柜门位置还设置有防尘网,造成冷气进入阻力过大;(2)有些机房通信机柜内部堆放的设备过于密集,气流流道过于狭窄,内部气流循环不通畅;(3)柜内气流组织不合理,冷、热气流混合现象明显;(4)一些散热量大的通信设备机柜缺少风扇强制排风,仅靠机柜内部自然排风散热效果较差。
针对上述目前一些通信机柜内部存在的一系列问题,必须在机柜前期结构研发阶段对一些环节进行优化处理:应增加通信机柜的柜门开孔率,内部结构形式寻求更合理的流道设计,散热量大的机柜应考虑强制排风,进风量应可以根据柜内设备安装情况进行调节。
根据国内外一些工程的经验,对一些设备散热量较大且采用上送风的机房,可以考虑采用开放型货架式机柜。通信设备均搁置在完全敞开式的托架平台上,设备散发的热量可以迅速地释放到周围环境中,散热效果得到极大改善,当然这种开放式机柜也会对设备安装管理带来一些问题。
二、水冷替代风冷或采用双冷源机组
目前通信机房空调大多数采用风冷型专用空调机组,这种风冷型机组均为单元式机组,具有安装灵活、可靠安全的优点,但也存在性能系数较低、运行性能不稳定、受室外环境温度变化波动较大、室内外机组安装管线较短、室外机组占用大量建筑面积的缺点。
从节能角度考虑,由于水冷效率明显高于风冷,水冷机组性能系数高于风冷机组,在通信机房中推广水冷型专用空调机组具有一定程度的节电降耗价值,特别是在一些中、大型项目上不但节能效益显著,而且可以减少空调设备的投资。
在中、大型项目中无论采用冷冻水型或冷却水型机组,均能实现一定程度的节能降耗、减少投资的目的,且由于水冷型机组没有风冷型机组室外机占用大量安装位置的问题,提高了建筑利用率。但由于水冷型系统中安装的设备及阀门等部件较多,系统单点故障点较多,系统在安全可靠性要求上存在隐患。从提高系统的安全可靠性角度出发,在通信机房项目中推荐采用双冷源机组。
双冷源机组常见的主要是风冷+冷冻水型或风冷+冷却水型两种机组。在大多数季节中系统主要启用经济节能的水冷系统,而在不满足水冷型机组运行的季节或系统发生故障及检修维护时才启用风冷系统。采用双冷源机组虽然会增加项目的初投资费用,但系统安全可靠性较高,且运营成本可以大大降低。
三、直接利用室外自然冷源
在冬季及室外焓值低于室内焓值的过渡季节时,从室外引入新风作为冷源对机房环境温度进行降温处理,是降低机房空调设备运行能耗的一种有效措施。
根据各地气象条件特点,在这些季节可以直接利用室外丰富的自然冷源对机房环境降温,从而可以大大缩短专用空调机组的压缩机的全年运行时问。这样不但节约了大量的电能,同时也延长了空调机的使用寿命,减少了空调机组的维护工作量,降低了维护成本。
目前根据这一节能原理开发了不少机房节能空调产品,我们重点推荐两种在技术上较为成熟,并且在实际工程有过应用、产生了较好的经济效益的产品予以介绍。
(一)fcx系列节能空调
原理:把室外新风过滤后直接引入节能空调,在机组内新风同室内回风充分混合后送人湿膜加湿器加湿,然后由送风机将处理后的空气送入室内。引入室外新风会降低室内空气的含湿量,通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。
特点:新风直接引入型节能空调机组没有传热损失,运行效率高。
全年运行时间长,在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。
fcx系列分体节能空调
fcx-a机组:大风量新风混风型节能空调机组,室外新风过滤后直接进入节能空调,控制系统根据室内外温度由变频调速风机控制引入的新风量,保证送风温度在机房温度的露点温度以上,然后由送风机将处理后的空气送入室内。
fcx-b机组:大风量高余压湿膜加湿器,与fcx-a机组配合使用。引入室外新风会降低室内空气的含湿量,室内空气通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。fcx-a机组也在机房内独立使用替代空调加湿器。
特点:新风直接引入型节能空调机组没有传热损失,运行效率高,全年运行时间长。
在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。
(二)fcr系列机房节能空调
原理:采用板式显热换热器为核心部件,室内、外空气在换热芯体内进行能量交换。室外新风引入显热交换器,对室内空气进行冷却降温处理,然后排出室外;被冷却后的室内空气再送回室内,达到为机房降温的目的。
特点:室外空气引入换热芯体,与室内空气热交换后排除室外,可以保证机房的洁净度和湿度不受影响。板式显热换热器的材质为耐腐蚀亲水铝箔,采用特殊工艺加工而成。换热通道面积大风阻小,具有换热效率高、使用寿命长和维护简单的优点。
四、确定合理的机房环境温度
温室效应的特点篇2
关键词:相变;保温材料;建筑;节能;工程
一、前言
在建筑施工过程中随着新工艺和新技术的不断发展,保温材料在建筑中的应用也越加的广泛,在建筑施工过程中相变保温材料作为一种新的保温材料正在被广泛的使用。
二、保温材料特点
1、真空隔热板。在以往建筑工程项目的建设过程中,所用的保温材料,其厚度相对比较大,易减少层和层之间的距离,出现窗洞不断加深等各种问题,为有效地解决这些问题,出现了一种新的保温材料,即真空隔热板,该材料自身较薄,同时所排放的CO量也较小,在其外表面裹有相应的纸质与金属外壳,在壳间形成真空,且填充了纤维、压缩硅酸盐与泡沫塑料等,其中所填充的这种纤维为多孔。真空隔热板作为一种高效且新型的材料,其应用前景非常广泛。
2、复合型硅酸岩保温材料。该材料含有硅酸盐、铝以及镁等物质,是一种非金属的矿物基料,通过添加相应的辅助原料与化学添加剂,借助于新技术以及新工艺的应用制造而成。纵观我国当前建筑材料市场,这种材料是当前最为理想的一种保温材料,其导热系数相对较低、用料厚度也比较少且热损也比较小,具有无毒特性,不会对设备造成腐蚀,也不会对环境造成污染,属于一种高效保温且轻质性的材料。除此之外,相对于其他类型的保温材料而言,该材料还具有无粉尘与无刺激等特点,能够对其进行任意地裁剪,便于施工等。
三、外墙保温特点
不同的建筑在节能上的要求不同,根据节能标准在施工时将保温材料同墙体固定复合,通过该种方式降低建筑墙体的导热系数,达到隔热的目的,使得建筑具有更好的保温能力。保温材料大多为导热系数较低的块材或者松散材料,可以通过直接粘附于墙上的办法进行安装,也可以将材料同外装饰一齐挂在墙面上。外墙保温分为三种:外保温、夹心保温以及内保温,就保温效果而言,外保温效果最佳。以下就外保温特点展开叙述:
1、外保温能够消除热桥效应。
2、建筑采用外保温的形式后,能够使得室内贮存更多热量,这是由于保温材料内部实体墙热容较大,因而可以达到保温的目的。
3、对外保温加强后,以室内热环境保持为前提对室温做适当的降低,不但能够保证室内环境温度的适宜,同时还能够降低能耗,以此节约能源减少采暖负荷。
4、由于墙体外添加了外保温材料,因此建筑内部的主体墙温度会相对较高,从而湿度相对较低。由于保温材料的导热系数较小因此主体墙热应力减小,因而裂缝、变形以及破损等主体墙的病害出现几率就会相对降低。
5、外墙保温优点概述:
(1)外墙保温从技术结构上分析能够减少外界环境(降水、紫外线、温度等)对主体结构造成的不良影响。
(2)扩大使用空间。由于外墙保温材料设置在外部,因此会节约内部空间。
(3)在旧房改造中能够发巨大的优势,且不会干扰人们的正常生活。
四、相变保温材料在建筑工程节能技术中的应用
1、相变保温材料在建筑工程中的应用特点
在建筑工程的施工建设中,采用相变保温材料能够大大提升工程的施工效率、促进工作进度和增加工程效益,这也给我国的可持续发展和建设和谐社会提供了新的途径,同时这也是可持续发展观念和建设和谐社会主义目标的主要途径。变形保温材料在建筑工程中的主要特点有如下几点。
(1)新型保温材料
一些性能良好的节能保温材料对于建筑的保温起到了很好的作用,这也让现代建筑实现了大规模的节能目标。且在国外,一些发达国家已经在建筑节能保温材料方面取得了突破性的成果。
(2)红外热反射技术
红外热反射技术是最近新兴保温技术,它的工作原理是通过在建筑物的内部或者外表以及护结构的空气间层中通过采用高纯度的铝箔或者其他的一些高效热反射材料,将绝大部分的红外线反射回去,从而达到隔绝建筑物内部热量的散失、提高居住环境的舒适程度的目的。
2、配制浆料
保温浆料需要专业人员来配制,这样才不会出现搅拌不匀而出现保温效果失常的情况。
3、抹底层相变节能材料
保温层应当分成三次涂抹,且每一次的厚度应当控制在10~12mm左右。每次涂抹的间隔时间也不能太短,这样才能够保证涂抹层的稳定性。
五、相变材料与隔热材料的具体应用
节能环保意识的逐渐增强,促使人们对房屋建筑质量在节能环保方面的要求有所提高,建筑市场对保温隔热型环保材料的应用也变得更加重视。随着深入探索与实践,隔热保温材料在墙体中的应用理论和技术日益完善和成熟。外墙保温材料的应用主要分为三类:内保温、外保温以及空夹心复合型墙体保温。外墙保温材料的应用使得建筑节能环保效果有了大幅度的提高。由于保温隔热材料自身导热系数低、构成材质强,热稳定性极佳,同时耐火、耐气候性强等特点,因此较之一般材料,具有非常显著的优越性。特别是保温隔热材料具备良好的抗压性、耐火性,极其适合现代建筑的实际需求。目前市场中还有一些玻璃材料,具有非常良好的保温效果,而且种类日益繁多,比如吸热玻璃、调光玻璃、热反射玻璃、低辐射玻璃等,在实现环保节能、降低污染的同时,还能充分满足人们的个性化需求,因此在现代建筑中可以广泛利用。
基于标准房间热过程模拟的非稳态传热模型,并采用专用气象数据对相变材料的两种不同应以北京的建筑为例,就外墙的保温节能工程进行阐述。
对于被动式建筑,可充分利用白天太阳能和夜间冷风自然资源,将相变材料应用于被动式建筑中,在夏天材料可吸收室内多余热温,进而降低室内温度波动幅度,可蓄存夜间冷风量,使室内始终保持较好的舒适度。通过对北京地区建筑有外保温和无外保温、内墙为相变墙体和普通墙体的夏季室内温度变化情况进行分析发现,当内墙采用相变墙体且墙体熔点合适时,被动式建筑房间的温度在整个夏季都会满足舒适度要求,而应用隔热材料则不利于夜间散热,其降低室温的效果不明显,在某种情况下甚至会出现室外温度较低但室内温度却较高的情况。通过对冬季有外保温和无外保温、内墙为相变墙体和普通墙体的室内温度逐时变化情况进行分析发现,当被动式建筑采用的内墙为相变墙体时对室内温度的影响较小,只有在室温接近墙体熔点时才会发生相变,相变材料作用无法得到有效发挥,而隔热材料却具有良好的保温效果。综合考虑冬季、夏季外保温和相变墙体对被动式建筑室内温度的影响时,无法选择较为合适熔点的相变墙体同时满足北京地区建筑对冬夏两季舒适度的要求,虽然外保温在夏季无法发挥作用,但是在冬季具有良好的保温效果,所以采用隔热材料来提高被动式建筑舒适度更为合理。
对于相变材料与隔热材料在主动式建筑中的应用则可通过空调、采暖运行过程中的耗电量来对两者应用效果进行比较分析。主动式建筑在冬季采暖期间,采用相变蓄能式电加热地板采暖系统,白天耗电量较低,只是普通房间的20%左右,这有利于缓解白天供电紧张的情况,同时也可大大节约采暖费,而采用隔热材料时不仅耗电量低,采暖费的节约率也更高。在夏季,主动式建筑北墙采用相变墙体时,其单位面积空调冷耗量最小,相较于普通房间要低约16%,而在墙体内设置保温层或是添加相变材料空调降耗效果并不明显。虽然夏季使用相变墙体能够降低冷耗量,但是针对北京地区气象条件,其冬季采暖比重更高,由此可以推断,若综合考虑全年空调采暖耗量,选择外保温比较合适。
六、结束语
在建筑设计施工过程中我们要不断的提高节能意识,在建筑施工中应用新工艺和新技术来提高节能效果。
参考文献:
温室效应的特点篇3
在农业生产体系中,设施园艺是相对高耗能、高投入、高产出的产业。目前对设施园艺的新材料、新技术和新能源的研究中,主要倾向于发展对太阳能和浅层地热的利用,作为替代能源,通过非晶硅太阳能薄膜电池。复合相变材料、地源热泵等节能技术,实现可持续农业的发展,取得经济、节能、环保三重效益。非晶硅太阳能薄膜技术
在众多的可再生能源中,太阳能受地理环境或气候因素的限制相对较少,而且太阳能光伏电池是一种重要的可再生能源,能够达到零污染排放,实现了对太阳能的环保、节能的利用。太阳能电池的类型
太阳能电池主要分为单晶硅电池、多晶硅电池和非晶硅薄膜电池。其中,单晶硅和多晶硅电池在生产过程中需要消耗大量能源,排放有毒物质,成本和造价比较昂贵,我国自2009年开始已将多晶硅列为产能过剩行业,以避免对环境的进一步污染。而用硅量极少、成本较低、环保、既是高效能源产品,又可作为新型建筑材料的非晶硅薄膜电池成为了太阳能电池行业发展的主流技术。
非晶硅太阳能薄膜电池,是一种以非晶硅化合物为基本组成的太阳能电池。通过将非晶硅薄膜太阳能电池安装在温室的顶部,利用透明薄膜太阳能光伏夹层玻璃替代传统的大棚薄膜,不仅可以滤掉紫外线,让红光穿透进来(还有部分的蓝光透过),让植物在温室内进行正常的光合作用,同时电池板产生的直流电能也可直接用于照明、补光或多层的植物工厂的营养液循环等活动,将光能转化为电能,实现低成本光能发电。
非晶硅薄膜太阳能电池的特性
材料成本低,硅材料用量少。
制造工艺简单,可连续、大面积、自动化批量生产。
制造过程消耗电力少,能量偿还周期短。
温度系数低。太阳能光谱分布比较宽,而晶体硅电池只能吸收能量比自己带隙高的光子,其他光子被吸收转换为热量或将能量传递给材料分子,使材料发热,这些热效应会使晶体硅电池的发电效率下降,非晶硅带隙相较比晶体硅宽,温度系数影响明显低于晶体硅。
弱光性能强。由于非晶硅的价带电子能级低,在弱光条件下非晶硅电池也可具有良好的光电效率。
发电量高。非晶硅太阳能电池存在的问题
转换效率较低。由于Staeller-Wronski效应(光衰现象),商品化的单结非晶硅电池一般大约只有5%的稳定转换效率。而多结电池的理论转换效率比单结电池高出许多,因此为进一步提高效率,生产上常采用多结电池的结构。
稳定性问题。非晶硅太阳能电池在强光辐照下其光电导率和暗电导率下降,经160℃的温度进行热处理,又恢复到原来的数值,即光衰现象,是影响其大规模生产的重要因素。目前主要采用氢稀释和开发多结电池两种方法来提高材料质量、稳定转换效率,通过这些措施,已使大面积生产的稳定效率高于10%。
成本问题。非晶硅太阳能电池投资额是晶体硅太阳能电池的5倍左右,且成本回收周期较长,有一定的资金壁垒。
相变材料
太阳能利用在时间和空间上的不匹配问题成为了限制其利用率的主要障碍。而热能储存是提高太阳能源利用率的一种新技术,将不用或多余的热能通过一定的介质储存起来,需要时再释放利用,有助于提高能效和开发可再生能源。
相变储能材料可以在其本身发生相变的过程中吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的,较好地解决了能量供求在时间和空间上不匹配的矛盾,有效地提高了能量的利用率。同时,相变储能材料在相变过程中温度基本上保持恒定,能够用于调控周围环境的温度,并且能重复使用。
传统日光温室的结构较为简单,保温和蓄热性能较差。夏季,白天常需通过湿帘冷风机降温,以避免棚内温度过高;冬季,晚上又需烧煤供暖以维持棚内温度。不但太阳能没有得到充分利用,而且消耗了大量常规能源,废气的排放还对环境造成了污染。利用相交复台材料不仅能为温室储藏能量,还具备自动调节湿度的功能,降低了温室的运行费用和能耗。因此,利用相变材料改造温室结构是解决温室大棚夏季降温、冬季供暖和有效利用太阳能等问题的有效手段。
相变材料的类型
根据相变前后形态的变化,相变材料主要分为固一固相变材料、固一液相变材料、固一气相变材料及液一气相变材料。其中,固一气相变材料和液一气相变材料在相变过程中有大量气体存在,材料体积变化较大,很难应用于相变墙领域。因此,现有的研究主要集中在固一固相变材料和固一液相变材料。
根据相变材料的物质性质,相变材料可分为无机材料、有机材料和复合材料。无机相变材料主要包括结晶水台盐、熔融盐、金属台金等无机物:有机相变材料主要包括石蜡、羧酸、酯、多元醇等有机物;复合相变材料主要是有机和无机共融相变材料的混合物。
目前,在温室建造上常将各类相变材料按照一定比例复台后,能够克服它们各自由于相变温度过高而失去应用价值的缺点,使复合物的相变温度控制在适宜的温度范围内。所以发,可以将各类相变材料按比例与其他建筑材料通过直接浸泡法、微胶囊法、定形法或多孔材料吸附法等方法复合,构成具有特定相变温度和较高相变焓的相变复合建筑材料,能够扬长避短,充分利用不同材料的优点,克服各自的不足,经过相应的后处理,就可根据实际需求应用到温室的建造中。
温室相变材料的特性
用于温室结构中的理想相变材料,不仅要满足节能建筑的要求,还要满足植物对生长环境的要求,综台归纳为以下几点:①相变温度在温室设计温度要求控制的范围内,并且在植物生长的适宜温度附近:②相变时。体积膨胀或者收缩率小,③相变潜热值大;④相变的可逆性好,稳定性好,过冷或者降解现象少;⑤相变材料的成本较低,制造方便,经济实用;⑥无毒、无腐蚀性、不泄漏、不污染环境。
相变材料存在的问题
农业温室中常用的相变材料为CaCl2・6H2O、Na2SO4・10H2O、石蜡、聚乙二醇、脂肪酸类等。由于这些材料本身特性的限制,在应用中还存在着许多问题。
无机水合盐类
CaCl2・6H2O和NO2SO4・10H2O是温室储热常用的无机水合盐材料,具有潜热大、导热系数高、相变过程稳定、体积变化小等优点,可以达到良好的储热节能和除湿效果,但是在放热过程中存在较严重的过冷现象和相分离,导致放热不稳定和寿命缩短,一般可以通过加八成核剂、增稠剂或改变晶体结构添加剂等办法进行改良。
石蜡:石蜡具有较高的潜热值,价格低廉,物理性能良好,热稳定性较好,无腐蚀性,温度范围宽泛等优点,但同时石蜡也存在导热系数低、体积变化大的缺点。在应用中往往加^金属填充物或采用翅片管等方法以提高其导热性能,以及利用塑料容器来解决熔化和凝固过程中体积变化过大的问题,常常用作复合相变材料的原材料,以提高熔解潜热。
脂肪酸类脂肪酸具有相对其他相变材料更好的熔化和凝固特性,且性质稳定、无毒、体积变化小、相变潜热大,相变温度范围在30℃-40℃之内,适合在被动式太阳能建筑中作为蓄能材料。但有机类材料通常导热系数小、熔点较低、易挥发。可通过加入一定比例的碳纤维来提高它的热导率,同时也可达到耐腐蚀的效果。浅层地热泵
浅层地热能是指地下200m以内土壤和地下水中所蕴藏的地温热能。和其他能源相比,具有分布广泛、可循环再生、储量巨大、可就近利用等优点,是一种非常重要的新型清洁能源。目前,地源热泵技术是最有效的开采浅层地热的方法,该技术利用了地下浅层地温变化较小和蓄能的特点,兼具加温和制冷双重功能。其工作原理是通过消耗部分电能或其他高品位能驱动热泵机组运行。冬季,以大地为低温位热源,通过热泵机组从大地中提取热量,供给室内采暖.夏季,则以太地为高温位热源,将室内的热量输送到大地土壤中,以达到制冷的目的。在高呼节能减排、可持续发展的今天,地源热泵技术使得我们对浅层热能的开发利用成为现实。
在农业温室生产中,传统温室耗能较高,效率较低,而且冬季的加温设施容易对大气造成污染。而地热源温度较为恒定,常年维持在18度左右,在冬夏两季可分别提供相对较低的冷凝温度和较高的蒸发温度。此外,地源热泵系统中的地下?埋管换热系统在地下运行,从而减小了对地面空气的热及噪音污染,而且它不向外界排放任何废气、废水和废渣。因此,将地源热泵技术应用于温室的供热与降温系统,不仅能够充分开发浅层地热,也是一种理想的可再生能源室调技术,符合农业可持续发展的要求,在设施农业领域得到了广泛的应用。
地源热泵的类型
根据对浅层地热的利用形式,地源热泵可以分为:地下埋管式地源热泵(土源热泵)、地下水源地源热泵和地表水源地源热泵3种主要形式。
常用的地下埋管式地源热泵,又根据其地下管线的排布方式,太体上可以分为水平管线地源热泵、垂直管线地源热泵、水源热泵和开放型地源热泵。地源热泵的特性
绿色环保,高效节能,运行费用低。地源热泵能耗仅为传统供热方式的20%-30%,运行费用降低30%以上,节能效果显著。
实现了能源的可持续利用,对环境无污染。利用热泵系统供暖制冷,总体上冬季采出热量可与来自地层下的传导热量以及夏季储存热量实现平衡,不对周围环境产生任何污染,环保效果相当显著。
运行稳定可靠,使用寿命长,自动化程度高,易于管理。
一机多用,节省土地资源,应用范围广泛。
地源热泵系统可供暖、空调,还可供生活热水,资源条件到处具备.从严寒地区至热带地区均可采用浅层热泵的方式对其进行利用。地源热泵在应用中存在的问题
推广、建造成本较高。在设施农业中应用地源热泵的初期投资较大,以中国农业大学上庄实验站温室地源热泵系统为例,于2006年建成的地下水地源热泵空调系统,总投资超过了73万元。如此高的初投资费用对干以生产农副产品为主的温室产业来说,推广及建造还存在着许多困难。但已有一些以政府补贴方式经营的农业生态园区中开始推广使用地源热泵空调系统,运行、维护费用低,使用寿命长以及环保等优点使其具有很大的发展潜力,随着能源危机和环境恶化的不断加剧,热泵技术的不断研究与完善,地源热泵系统的优势将更加明显。
降温效果还有待提高。由于热泵系统制冷是采用显热降温的原理,所以在夏季利用地源热泵空调系统对温室降温,与利用传统的湿帘一风机系统潜热降温的效果还存在一定差距。因此,在实际使用时,可以采用两者联合降温,不仅克服了湿帘一风机系统导致的温室湿度大的缺点,也可以降低运行成本,达到最好的降温效果。
热泵长期运行后稳定性下降、对地质环境有一定影响。埋管式地源热泵系统由于需要较大的换热温差和较高的埋设密度,对局部地温场的干扰比较大。并且地下水热泵系统中的回灌技术目前还不够成熟,易造成回灌井的堵塞以及不同程度的水质污染。如果系统长时间运行,地下水或地埋管周围土壤温度短时间内难以恢复,则会导致系统的性能下降。一方面可以通过添加冷却塔降温系统或开发冰蓄冷削峰填谷技术作为降温的辅助手段,以缓解系统的运行强度,保证制泠效果;另一方面需要对地下水以及土壤层内温度的变化进行长期监测,及时掌握地温变化动态、水土质量和地面变形情况,防止对环境造成污染或产生地质问题。
结论
从2010年开始,非晶硅太阳能薄膜电池技术已经在江苏、山东等地区的农业生态项目中得到应用,实现了棚顶发电、棚内种菜,并通过夜间应用LED灯调节植物的生产周期,使得产量及品质得到了大幅提高,对于农业结构的调整、升级和“三农”问题的解决有重要作用。但对于非晶硅太阳能电池的转换率以及稳定性方面的提高,还有待于进一步的研究。
温室效应的特点篇4
设施农业作为现代农业的重要组成部分,其综合集成了农业生物技术、农业机械与建筑工程技术、环境控制技术、信息技术和管理技术等多领域科学技术,是以此进行集约化种植业生产和养殖业生产的农业生产方式,实现了农业的高产、高效和优质生产。设施农业是在非传统农业生产环境条件下进行的,它突破了自然气候和季节性制约,真正实现了周年生产、全年供应,从而进一步大大提高了种植业的单位面积产量,也使养殖业个体生产量得到大幅度增长[1]。设施农业装备的研发与应用极大地推动了现代农业的发展,但目前我国设施装备的技术含量还不是很高。因此,设施农业装备技术的发展对我国设施农业整体水平的提升尤为重要。
1设施农业装备技术概述
1.1设施农业概念
设施农业的概念分为狭义和广义概念,其中狭义的设施农业是指以最小的资源投入,在可控的条件下,按照动植物生长发育所要求的最佳环境进行的动植物生长。而广义的设施农业从产业链角度出发,是指为农产品商品各阶段提供最适宜环境条件,以摆脱自然环境和传统生产条件的束缚,获得高产、优质和高效农产品的现代农业生产活动。设施农业具有技术装备化、过程科学化、方式集约化和管理现代化的特点。设施农业产业链的特征是,目标商品化途径全程化环境可控化效益全面化。现代设施农业包括设施园艺、设施畜牧和设施水产。
1.2温室大棚装备
温室大棚的分类级别可分为两种,一种是根据其用途可以分为生产性温室、科研教育温室和商业温室。而另一种是按照覆盖材料、温室性能和其他方式进行分类。其中按照覆盖材料可将温室分为玻璃温室、塑料薄膜温室、PC板温室、复合覆盖温室和玻璃钢温室;按温室性能可分为连栋温室、日光温室、塑料大棚、中小拱棚和遮阴棚;按其他方式可分为加温温室、不加温温室、简易温室、智能温室、金属结构温室和其他结构温室等。设施农业机械作为农业机械中的重要份额,在农业机械化发展中起着举足轻重的作用。做好设施农业机械的安全生产,有效预防和减少农机安全生产事故的发生,不仅是农机部门服务于现代农业安全发展的职能体现,也是推进设施农业机械整体水平,提高现代农业综合发展实力的需要,对现代农业的发展都将起着积极促进作用[2-3]。我国“农业设施”发展有其独特的特点,最为广泛使用的是日光温室和塑料大棚。特别是日光温室和简易土温室,是我国独有的一种设施生产方式。尽管有许多不尽如人意之处,但是在现阶段为缓解北方地区周年蔬菜供应起到了重要的作用。据统计数据显示,北京2011年温室大棚建成面积2.17万hm2(32.5万亩),预计到2012年底将建成温室大棚达2.33万hm2(35万亩)。就设施机械化问题来说,受“农业设施”整体结构的限制,一般节能型日光温室面积不足666.7m2(1亩),南北跨度8~10m,长度60m。横向种植,南端空间高度在50~80cm,北端有60~80cm通道。在这个空间里实现省力化种植操作的难度较大,正所谓“螺丝壳里作道场”。蔬菜作物的机械化在露地生产中都还没有得到广泛应用,如果加上空间限制,使用设施机械化设备难度更大。没有国外先进经验可以借鉴,也无适应的设备可供选择,这就是我国设施机械化面临的难题。从农机农艺结合角度看,设施这一农艺是已经确定的,只有设备适应设施环境,别无选择。尽管这样,由于农民需求迫切,因此部分设备将就而生,不是应运而生,这就给使用带来了不便和仍有诸多问题需要研究。
2设施环境调控装备技术
设施栽培是在一定的空间范围内进行的,因此生产者对环境的干预、控制和调节能力与影响,比露地栽培要大得多。目前国内主要的调节手段主要是加温、降温、保温、通风换气、补光、调湿和二氧化碳施肥等方面。环境调控能力是温室性能的重要指标,对产品的品质、产量起着决定性作用。调控设备主要类型包括通风换气设备、保温设备、加温降温设备、补光设备、CO2施肥设备和监测控制设备。
2.1通风换气
设施环境通风的目的在于:①排除设施内的余热,使室内的环境温度保持在适于植物生长的范围内;②排除余湿,使室内环境相对湿度保持在适于植物生长的范围内;③调整空气成分,排去有害气体,提高室内空气中CO2的含量,使作物生长环境良好。设施环境中常见的通风方法:①自然通风。指在温室等设施的适当位置设置窗户,靠热压和风压作用进行通风,并可以通过调节窗户的开度来调节通风量。自然通风开关窗的机械设备:卷膜开窗系统和齿条开窗系统。②机械通风。依靠风机产生的压力强迫空气在设施内流动。
2.2保温设备
保温设备的作用是加强温室保温能力。常用的保温设备有日光温室保温被、草帘、卷被帘机、连栋温室保温幕以及其他形式的内设保温。不同设备具有各自特点,如草帘保温效果好,价格低廉,但自身质量大、防水性差。保温被具有质量小、易卷放、防水性好的特点。而卷被机总体上具有高效、节省劳力、价格高和装配要求高的特点。而不同类型的卷被机之间也存在差异,见表1。目前设施保温设备存在主要问题是新型高精度、高可靠度电机及多用途系统亟待开发。
2.3降温设备
设施内常见降温方式有湿帘降温、遮阳降温、弥雾降温和空调降温。①湿帘降温是农业建筑中最普遍采用的夏季降温方法,采用该方法组成的降温系统称为湿帘-风机降温系统。由湿帘箱、循环水系统、轴流风机和控制系统4部分组成,湿帘由箱体、湿帘、布水管和集水器组成。目前湿帘采用的材料有白杨木细刨花、瓦楞纸和聚氯乙烯等。②遮阳降温是通过在温室内部或温室屋面上方设置遮阳网,减少进入温室内热量,达到降低室内温度目的。③弥雾降温是在温室内部设置雾化喷头,在高温低湿状态时喷雾,进行短暂的蒸发降温。是直接将水以雾状喷在温室的空中,因为雾粒的直径非常小,只有10μm,所以可在空气中直接汽化。雾粒汽化时吸收热量,降低温室内空气温度,其降温速度快,蒸发效率高,温度分布均匀,是蒸发降温的最好形式。喷雾降温系统由水过滤装置、高压水泵、高压管道和旋芯式喷头组成。④空调降温常见于观光温室、花卉市场等商业温室中,多采用空调机组与风机盘管组合应用的方式。
2.4加温设备
设施加温方式常见的为热水蒸气加温,即通过散热器、锅炉和管路等设备产生的热水蒸汽对设施环境进行加温。热风加温是利用热风炉和送风管等对循环空气进行加温以达到整体加温的目的。其他加温方式还有电热线加温、红外热源加温等。图1为几种加温设备在实际中的应用。
2.5其他环境调控设备
随着物理农业装备等新兴技术的不断研制与开发,一系列环境调控设备在设施环境内也得到了广泛应用,其中常见的有CO2施肥设备、金属卤灯、荧光灯、低压钠灯、LED补光灯、环境监测与控制设备和物理调控装备技术等。温室是密闭或半密闭系统,空气流动性小,与外界交换少,常造成温室内作物正常生长发育所需要的CO2匮乏,尤其在早春、秋末以及冬季由于温室通风少,温室内CO2浓度可能下降到220mLm3,甚至更低。目前CO2的施肥源主要有CO2燃烧发生器、化学反应生成法、利用微生物分解有机物产生CO2、高压瓶装CO2以及固体颗粒气肥等。
3设施生产配套装备技术
3.1生产配套装备概览
生产配套装置主要包括耕作装置、植保装置、工厂化育苗装置、无土栽培系统和灌溉装置等。根据设施的具体建造形式、用途等的不同,所采用的配套装置也有所差异。从目前国内总体形势看,设施装备不配套、技术研发不足;设施生产机械化程度低、专用农机具及装备短缺;设施及配套设备的设计、建造与不同作物设施生产的农艺要求结合不够紧密等是目前制约国内设施生产配套技术发展应用的主要问题。3.2耕作设备设施耕作设备主要包括微耕机、铧式犁和旋耕机等。微耕机主要用于进行犁耕、旋耕、开沟、作畦、起垄和喷药等作业,部分机具还具有覆膜、播种等功能。铧式犁主要用于犁耕作业。旋耕机可一次完成耕耙作业,其特点是切土、碎土能力强,耕后地表平整,土壤松碎细软,土肥混合能力好。
3.3植保设备
设施内采用的植保设备可根据防控方式分为物理防控和化学防控。常见的物理防控设备有频振式杀虫灯、紫外灯、高速气流吸虫机、土壤连作障碍电处理机、温室电除雾防病促生系统、食用菌空气电净化促蕾防病系统、声波助长仪和温室病害臭氧防治机等。化学防控中多采用喷雾机、弥雾机、超低量喷雾机、烟雾机和喷粉机等,其类型的选择主要是根据防控的目的而定。同时静电喷雾技术已经开始得到广泛应用,并取得了良好的效果。
3.4工厂化育苗设备
工厂化育苗设备大致由基质加装系统、压穴系统、播种系统、灌溉系统和控制系统5部分组成[4]。播种装置是育苗播种设备的关键部件,目前,应用于工厂化育苗成套设备中播种装置的分类国内并没有统一的标准,根据播种原理不同可分为吸附式(如吸针式、滚筒吸孔式)和磁性播种机两种。国内常用的是吸针式播种器,利用真空负压吸附的原理可实现单粒种子的精确播种。吸针式播种器可通过调节吸针间距及吸针孔径适应不同规格穴盘及不同大小种子的播种,同时可一次播种穴盘一排,也有的可一次播种一个穴盘,该种播种器最适宜播种丸粒化的种子。育苗成套设备通过电、气、液综合控制,可顺序完成基质装填、压穴、播种、二次覆基质、喷淋灌溉等工序,形成完整的流水线作业。
温室效应的特点篇5
温室透光覆盖材料的种类
温室透光覆盖材料主要为玻璃、塑料薄膜(软质和硬质)和硬质塑料板。玻璃一般采用普通平板玻璃或者浮法玻璃;常用的塑料薄膜包括聚乙烯(PE)膜、乙烯-醋酸乙烯(EVA)膜、聚氯乙烯(PVC)膜和聚烯烃(PO)膜;常用的硬质塑料板主要是聚碳酸酯(PC)板,包括中空板和波浪板。
玻璃
玻璃是一种透光、保温、防雾滴、耐久性能均较为理想的覆盖材料,结构系数可靠,使用寿命长达25年。玻璃温室光照条件好、室内作业空间大、使用时间长,适宜规模化种植,在大多数地处寒冷气候的欧美国家,玻璃仍然是常用的温室透光覆盖材料。按加工方法分为普通平板玻璃和浮法玻璃,在温室中经常选用4mm和5mm厚度两种规格。浮法玻璃由于具有表面平滑、光学畸变小、质量好、尺寸可调范围较大等优点,在温室建造上得到了广泛应用。但玻璃密度大,对骨架承重要求较高,建造和维修难度大,在建造时受到加工尺寸和承重能力的限制,玻璃温室较高的造价也限制了其在生产中的应用。在雨雪过后,玻璃表面易沾染粉尘,应及时清洗以增加透光性。此外,玻璃的抗拉性、抗冲击性能差,易碎,对冰雹等恶劣的自然灾害抵抗性较差,破损时容易对操作人员和作物造成较严重的伤害。
软质塑料膜
温室的大面积推广归功于塑料薄膜在农业上的成功应用。软质塑料薄膜是现阶段进行设施园艺生产所选择和使用最为广泛的覆盖材料,具有质地轻柔、性能优良、品种多、用途广泛、透光率高、价格便宜、实用性强、黏合、铺张、装卸及相关配套设备操作简单等优点。将软质塑料薄膜作为温室覆盖材料能够防御或减轻自然灾害对作物的威胁,提高温室大棚运行效率,获取最大的经济效益。生产上应用的塑料薄膜主要有PVC膜、PE膜、EVA膜和PO膜等,目前最好的覆盖材料为乙烯-四氟乙烯共聚物(ETFE)膜、耐高温聚酯(PET)膜和PO膜,与EVA膜相比,PO膜的平均透光率高出15.8%[1-2],作物产量也相应增加。根据常用的几种塑料薄膜的热学特性,温室秋冬茬或冬春茬蔬菜生产中以选用PVC无滴膜、PO膜或EVA膜为最优。软质塑料薄膜因所用树脂和助剂的种类、数量、质量、厚薄、均匀程度及制造工艺的不同,其透光性能、机械性能、耐候性能等有很大差别,对于软质塑料薄膜的强度低、稳定性差等缺点也必须在安装及使用中给予足够的重视,在生产应用中也应做好棚膜的防尘、修补及防火工作。
硬质塑料板和塑料膜
硬质塑料板能改善温室的受力状况,承受更大的雨雪荷载,提高温室的安全性,其抗冲击性能优异,且具有良好的抗弯曲强度,能够适用于各种结构形式的温室。早期用于温室透光的硬质塑料板包括聚氯乙烯(PVC)板、玻璃钢板(GRP)等,由于耐候性能欠佳,近几年来已基本全部改为PC板。PC板具有均衡的机械性能和良好的保温性,外观整齐美观,但PC板透光率衰减较快、易附着灰尘且清除困难,价格也较昂贵,目前在一些高档花卉温室或展示性温室应用较多[4]。市场上开发生产的PC板有平板、波浪板和多层中空板3种类型,平板厚0.7~
1.22mm,波浪板覆盖的温室内光照比较均匀,平均透光率略有提高,双层或三层聚碳酸酯中空板厚3~16mm,具有良好的保温效果,其传热系数可降低至1.6~2.2W/(m2・K),比玻璃节能30%~60%。玻璃纤维增强聚酯板(FRP)以聚酯树脂为主,加入玻璃纤维以提高强度,具有不燃烧、耐腐蚀、拉伸强度高、光学性能好等优点。新的FRP板的透光率与玻璃接近,但使用几年之后,纤维开始脱离,板变黄,透光率下降。聚氟乙烯薄膜(PVF)是一种硬质薄膜,具有强度大、耐老化的性能,是日前使用寿命最长的塑料薄膜,可连续覆盖12~15年。但由于氟具有毒性,在制造过程中需将氟夹在中间层,避免使用时对环境造成污染,使用后需进行专门回收处理。
多功能透光覆盖材料
随着农业生产对资材需求的提升,与普通覆盖材料相比,在光环境调节、遮阳降温、调节生理活动、除湿防雾等方面增加特殊功能的覆盖材料新产品不断被开发。如加入不同颜料制成的有色薄膜对于满足不同作物的特殊光谱需求具有重要的调节作用;降低光线中紫外线的UVC膜,能够起到预防虫害、减少农药使用量的作用;让可见光尽可能的透过而减少红外线部分光量的遮阳隔热膜,能达到提高温室温度的目的,还可通过配合温室的换气等调控方式来控制温室温度。一些散射光材料,能使进入温室的散射光均匀分布,从而提高植株群体底部的光合作用。此外通过调节不同波长的光线,调控作物的光合作用对辣椒、番茄的增产效果也不断被报道,而针对温室高湿的环境条件,利用吸湿性强的材料增强防雾、防流滴性能也是拓展覆盖材料功能的重要方面。在生产应用中,应该依据不同作物的生长特性、生产目的及栽培制度选择合适的多功能透光覆盖材料。
温室透光覆盖材料的特性
温室内所获得的光能主要取决于透光覆盖材料的光学特性,太阳辐射的微小差异对作物生长发育就会产生显著的影响,此外透光覆盖材料对于温室的温度也具有一定的调节作用。根据温室建设地区的气候和种植作物的生长要求,选择温室透光覆盖材料主要应考虑其光学特性、热学特性、机械性能、防雾滴性以及耐候性[7](表1)。
光学特性
光学特性是温室透光覆盖材料最重要的性能,在一定程度上决定着温室内的光照强度和光谱分布,从而显著影响作物光合作用、器官形成。为此,温室透光覆盖材料的光学特性一是要求透光率高;二是要求透过的光谱适合作物的生长。其中透光率主要包括5个方面的含义:①材料对光线垂直入射的透光率;②不同入射角下的透光率;③透光率随时间的衰减特性;④透过光线中散射光与直射光的比率;⑤对不同光质的透光率。透光覆盖材料应对作物光合有效辐射具有最大的透过能力,因此理想的透光覆盖材料应该在波段为400~700nm光合有效辐射(PAR)区域透光率高,其他波段透光率低。太阳辐射透光率与温室透光覆盖材料特性及其污染和老化状况密切相关。新温室棚膜可见光透过率为88%~95%,如果使用有滴膜而不经常清除污染再加上自身老化以及温室结构的遮光,日光温室透光率最低仅有40%左右。研究表明PVC膜透光率最低,PE膜透光率最高,EVA膜透光率介于二者之间,这与PVC膜较PE膜易于被污染有关。一些散光性高的覆盖材料可使部分直射光变为散射光而透射到日光温室内,使辐射分布更均匀,在一定程度上避免了弱光^的出现。近年来开发出的多功能抗老化及防尘无滴膜,使PVC和PE的光学性能得到不断提高和完善[8]。不同覆盖材料对不同光质的透光率有较大差异,PE膜在270~380nm紫外光区的透光率为80%~90%,而PVC膜在350nm以下紫外光区透过率较低,0.1mm厚的PVC膜对5000nm以上的远红光透光率为25%、EVA膜透光率为55%、PE膜透光率为88%。在400~700nm可见光区的蓝光波段,PVC膜透光能力最高,EVA膜透光能力最低;在黄绿光区,PE膜透光能力最高,EVA膜次之,PVC膜最低[9]。此外,同一覆盖材料,由于内部添加剂不同,其透光率也不同,如PE膜的透光率由高到低的顺序为PE耐老化膜>PE无滴膜>PE草莓专用膜>PE无滴耐老化膜。
热学特性
选择保温性能好的透光覆盖材料对降低温室的运行能耗具有重要的作用,覆盖材料的传热途径主要有传导、对流和辐射。温室透光覆盖材料都很薄,其传导热阻很小,而对流换热的强度大小又主要取决于室外风速和室内空气流动状况,所以,辐射性能是衡量透光覆盖材料保温性的重要依据。太阳辐射进入日光温室后,被其内部的土壤、墙壁、骨架、作物等吸收,转化为长波辐射向外放出,这些长波辐射进入和放出的多少,取决于覆盖材料,透光覆盖材料能阻止室内地面、作物等低温物体发射的长波辐射透出温室,从而起到保温作用。红外辐射透过率低的温室覆盖材料有利于温室内热量和温度的保持,在制造过程中常在塑料中添加红外线阻隔剂,以提高材料的长波辐射性能。一般的,PVC膜长波辐射透过率最低,保温性能最好,PE膜不易受污染但长波辐射透过率高,保温性能较差,EVA膜长波辐射透过率最高,保温性能较差,但优于PE膜,PO膜的性能明显优于传统PE膜及EVA膜,其中PO膜覆盖温室的温度比PE膜覆盖温室高1~2℃。
机械性能
透光覆盖材料作为园艺设施的主要围护物,长年暴露在大自然中,因此必须结实耐用,经得起风吹、雨打、日晒、冰雹的冲击、积雪的压力和极端温度的影响,同时还应便于运输、安装和调控,因此必须具备极强的机械性能。机械性能是表示透光覆盖材料在使用过程中承受荷载能力和影响安装施工难易程度的重要指标,主要包括材料的强度、抗冲击性能和热胀冷缩性能等。软质塑料膜常用纵向和横向的拉伸强度以及断裂拉伸率来表示材料的强度指标,而玻璃等刚性材料则使用抗压强度、抗拉强度、弯曲强度和抗冲击强度等指标来衡量。软质塑料膜伸缩性大、抗裂强度小;玻璃具有良好的透光、保温和抗老化性能,但抗冲击力弱、易碎、且不能弯曲;硬质塑料不仅具有很好的抗冲击性、保温性和耐候性,而且弯曲度强、外观整齐美观,适宜于在各种温室中使用。
防雾滴性
由于棚内外存在温度差,尤其是在冬季,棚膜内外温差较大,棚内空气中水蒸气会在棚膜表面液化并凝结成水珠。这些水珠会使射入棚内的光线发生散射和折射,并降低温室棚膜的透光率和温度,从而妨碍作物的生长发育,凝结的水滴如果滴落到作物表面、秧蕊或者苗蕊,则会引起“烧心现象”,还容易诱导作物病害的发生和蔓延。针对这一现象,温室覆盖材料应具有减少内壁水珠的吸附及直接滴落的功能,使薄膜表面亲水性增强,露滴沿着棚膜表面扩展为薄水层,顺表面流下,这种性能被称之为“无滴性”或“流滴性”。使覆盖材料具有“流滴性”的方法主要是在棚膜制备过程中加入或在棚膜表面喷涂高度亲水的流滴剂,使覆盖材料表面高度亲水。棚膜流滴性能除了与棚膜的制膜原料和制膜工艺有关外,还受到使用期间棚内土壤水分、空气湿度、有无覆盖地膜、外界气温、温室结构、棚膜覆盖方法、棚内作物种类等因素的影响[10]。
耐候性
温室透光覆盖材料随着使用时间的延长,外观逐渐发暗,透光率衰减,机械性能减弱,易撕裂,最终无法达到透光覆盖材料透光、保温、保湿、防止水滴滴落、减少雾气等使用要求。因此需要将棚膜光温功能性与长寿性保持同步。设计开发结构更为优异的不易被光氧化或热氧化降解的聚合物分子或选用耐候性较好的材质是延长温室透光覆盖材料耐候性的有效途径,但研发费用大,周期长,价格较高。目前综合性能较佳、寿命可达10年的PET膜和寿命更长时间的PC板、ETFE棚膜已投入使用,但价格相对较高[11]。在现有材料配方的基础上添加光稳定剂、热稳定剂、抗氧化剂和紫外线吸收剂,延长了温室透光覆盖材料的使用寿命,且使棚膜拉伸及抗撕裂强度增大,不易吸附灰尘,达到长久保持高透光率的效果,该方法的配方设计、加工成型、检定测试的周期较短,应用效果显著。
参考文献
[1]张福墁.设施园艺学[M].北京:中国农业大学出版社,2010.
[2]李天来.日光温室蔬菜栽培理论与实践[M].北京:中国农业出版社,2013.
[3]卫向东,须晖,马健,等.农用塑料薄膜光质辐射透过性能[J].农业工程学报,2009(03):164-167.
[4]李胜战.新型薄膜覆盖材料的性能分析及应用其效果的研究[D].杨凌:西北农林科技大学,2009.
[5]吴衍材.新型棚膜在日光温室番茄和甜椒生产中的应用效果评价[D].泰安:山东农业大学,2014.
[6]张瑛,李顺伟.不同农用桥塑料薄膜的性能特点与选择使用[J].硅谷,2014(01):119-120.
[7]日本设施园艺协会.设施园艺植物工厂ハンドブック[M].日本:农文协出版社,2015.
[8]王楠,马承伟,赵淑梅,等.日光温室常用透光覆盖材料辐射透过性能测试研究[J].沈阳农业大学学报,2013(05):531-535.
[9]胡飞虎.几种塑料棚膜性能及其对西瓜初期生长的影响[D].南京:南京农业大学,2009.
[10]陈宇,王朝晖,许国志.园艺透光覆盖材料的功能性c材料寿命同步性研究[J].化工新型材料,2006(S1):1-4.
[11]周长吉.现代温室工程[M].2版.北京:化学工业出版社,2009.
温室效应的特点篇6
关键词:夏热冬冷地区节能住宅新风耗冷量室内相对湿度
1问题的提出
建筑节能以保证室内卫生舒适为前提,通过提高建筑的能源利用效率来满足人们迅速增长的健康和舒适感要求,进而提高室内工作效率和生活质量。建筑热环境质量标准的高低,对建筑、建筑供配电和采暖空调设备的投资、能耗、运行费用都有显著影响,需要相应的能源支撑和个人的经济承受能力。根据重庆地方标准[1],达到小康水平的住宅应执行舒适性热环境质量标准。而影响热感觉的六个因素是:干球温度、空气湿度、风速、周围物体表面的平均辐射温度、人体活动强度和衣服热阻,前四个是热环境因素,后两个是个体人为因素。按热舒适方程将上述六个因素综合为PMV预期平均评价和PPD预期不满意百分率,形成PMV—PPD热环境指标综合评价体系。正由于PMV是由热感觉的六个因素共同决定的,同一个PMV值可由不同的六个因素组合而达到,在不同热环境参数组合下,所需能耗大小不同。
我国夏热冬冷地区,由于特有的地理位置而形成的气候特征,夏季气温高,气温高于35℃的天数有15—25天,最热天气温可达41℃以上,加上湿度大,给人闷热的感觉。全年湿度大是该地区气候的一个显著特征,年平均相对湿度在70%—80%左右,有时高达95%—100%[1]。高湿不仅影响到室内人员的热舒适感,而且影响到室内卫生条件,对人体健康和室内设备、家具的使用寿命带来不利影响。根据这一地区的气候高湿特征,夏季住宅要达到居住环境的热舒适和节能要求,就需要采取多种方法解决高温高湿带来的热环境质量和室内空气质量问题。为使住宅空调除湿的能耗降到合理的水平,住宅降温除湿方式应灵活多样,对新风能耗分析也应考虑气候资源的合理调配等因素[2]。由于夏热冬冷、气候潮湿的建筑室外热环境特征,新风能耗在空调总能耗中占较大比例,例如,重庆节能住宅的各项能耗中,夏季新风冷负荷占总冷负荷的29.61%,夏季新风用电量占夏季总用电量的44.54%,在全年采暖空调除湿用电量中新风占40.24%[1]。
所以,合理地确定该地区新风冷耗的计算方法对探讨新风节能途径有着重要意义。室内设计温度高低对新风能耗的影响作者已另文讨论,本文主要分析室内相对湿度对夏热冬冷地区新风耗冷量的影响。
2夏热冬冷地区空调期、除湿期新风耗冷量分析方法2.1空调期、除湿期的确定方法
实验研究表明[1],节能住宅采用间歇通风,室内日最高温度tn.max与室外日最高温度tw.max,室外日最低温度tw.min之间有如下关系:
这表明,对节能住宅,在采用间歇通风的前提下,当室内最高温度超过室内设定的热舒适温度上限值时,必须采用机械方式进行降温,即空调设备启动,进入空调期。
所以,夏热冬冷地区住宅空调期是指采用间歇通风等无能耗或低能耗的自然或被动冷却方式不能达到室内的舒适性热环境质量要求时空调设备运行的天数。对于住宅建筑,当室内热舒适参数设定值不同时,即使在相同的室外气象条件和通风方式条件下,空调运行时间也不同。因此,对不同住宅空调期长短的比较,为建立相同的比较基础,通常按该地区舒适性热环境质量标准允许的上限温度值为室内设定温度,以此判断是否属于空调期。若设室内热环境干球温度最高允许值为tn.c,设为室外加权日平均温度,用符号tw.jp表示,则属于空调期天数的判断条件是:
对于夏热冬冷地区,室外空气湿度高且持续时间长,当室外空气日平均相对湿度超过室内空气设定相对湿度时,若不对室外空气进行处理而直接进入室内,会导致室内湿度超过热环境质量规定的上限值,影响室内热环境的热舒适性和室内空气质量。若此时室外气温不满足2-1-2,且高于采暖期室内最低温度tn.h,即在不属于空调期和采暖期的天数内,这时为保证室内环境质量需对室外空气进行除湿处理,能耗主要是新风的除湿能耗,因而我们把这样的天数单独作为除湿期天数。设Φw.p为室外空气日平均相对湿度,Φn.max为室内热环境上限相对湿度,其余符号同前定义。所以,除湿期天数的判断条件为:
所以,夏热冬冷地区除湿期是指一年中,除采暖期和空调期以外,需要对进入室内的室外空气进行除湿才能维持建筑室内所要求的热环境质量的天数之和。与空调期相比,除湿期内室外日平均气温较低,室内空气温度随室外气温波动,但从日平均温度来看,室内日平均温度与室外日平均气温比较接近,因而除湿期内室内空气温度不是定值,而是在tn.c和tn.h的范围内随室外空气温度变化的动态参数。采用当地室外逐时气象数据,可以求得室外tw.jp和Φw.p,判断是否属于除湿期,若属于除湿期,则设室内日平均温度等于室外日平均气温tw.p,再结合建筑室内允许的最大相对湿度和当地大气压力,按湿空气状态方程计算得到除湿期室内最大允许含湿量和最大允许焓值的逐日值,作为除湿期新风耗冷量计算的基础。
2.2空调期、除湿期新风耗冷量计算基本公式
新风耗冷量是指在新风的处理过程中,需由制冷机或天然冷源提供的冷量,其大小取决于新风热湿处理过程前后的焓差和新风量。新风耗冷量不同于新风能耗,新风能耗与新风处理设备的能效比有关,在耗冷量相同时,能效比越高的新风处理设备能耗量小于能效比低的新风处理设备。空气处理设备的能效比是一个综合性概念,其大小既与设备自身性能有关,也与设备运行工况和调节方式有关。本文不涉及具体新风处理设备的能量转换效率,主要就新风耗冷量计算方法及其结果进行分析。
2.2.1空调期新风耗冷量计算基本方法
在空调期内,新风被处理到低于室内设定空气状态焓值送入室内,此时处理单位质量的新风需消耗的冷量为室外空气焓值与新风处理后的露点焓值之差,这部分冷量除承当新风自身负荷以外还可承当部分室内显热冷负荷,相应减少了室内冷负荷的耗冷量,新风多承当的这部分室内冷负荷为显热冷负荷,数量上相当于室内空气焓值与露点焓值之差。对空调期整个空调系统或空调房间而言,新风独立处理至露点状态虽多消耗了冷量,但可作为承当室内冷负荷利用,新风降温除湿实际所需耗冷量仍然可由室内外空气焓差计算确定。空调期的新风总耗冷量为空调期每天耗冷量的总和,空调期一天中的新风耗冷量等于该日内空调运行逐时耗冷量之和。当室外空气焓值低于室内设定空气状态焓值时,该时刻新风耗冷量为零。所以,空调期内单位质量流量(kg(干)/h)新风耗冷量qc.1按下式计算:
式中
qc.1——空调期内单位质量流量的新风耗冷量,kW.h/(kg(干)/h);
iw、iN——分别代表室外、室内空气的焓值,kJ/kg(干);
DNAC——为夏季空调期天数,天;
m——对应每个空调期天数中室外空气焓值高于室内空气焓值的小时数,h。
注:单位换算关系,1(kJ/kg(干)).h=1kW.s/(kg(干)/h)=1/3600kW.h/(kg(干)/h)。
2.2.2除湿期新风耗冷量计算基本方法
在除湿期内,若采用常规的冷冻除湿,新风处理后的机器露点为室内空气允许的最大含湿量与相对湿度90%的交点。除湿期内室内冷负荷很小或为零,因而新风露点送风使室内空气温度降低。当室内空气温度已经在热舒适区域内时,这部分使室内空气降温的冷量实际上被浪费掉。从新风节能角度分析,除湿期采用冷冻除湿将新风处理至露点的耗冷量为最大理论耗冷量,简称除湿期冷冻除湿耗冷量。除湿期内采用冷冻除湿单位质量流量的新风总耗冷量为:
式中
qc.2——除湿期内单位质量流量的新风冷冻除湿耗冷量,kW.h/(kg(干)/h);
iw——除湿期室外空气焓值,逐时值,kJ/kg(干);
ik——除湿期机器露点焓值,机器露点含湿量dk=dn.max,相对湿度为90%,kJ/kg(干);
DNDH——为除湿期天数,天;
n——对应除湿期每天中室外空气焓值高于机器露点焓值的小时数,h。
新风除湿方式很多,不同除湿方式的耗冷量大小不同。除湿期内,室内空气温度随室外气温波动,且室外空气日平均温度低于室内热环境质量允许的设定温度,所以,除湿期内可不考虑新风的显热冷负荷。当新风直接处理至室内热环境质量允许的热舒适范围时,新风耗冷量取决于新风湿负荷即潜热冷负荷的大小,此时新风耗冷量最小,称为除湿期最小理论耗冷量,用符号qc.min表示。所以,除湿期最小理论耗冷量按下式计算:
式中
qc.min——除湿期新风最小理论耗冷量,kW.h/(kg(干)/h);
dw——除湿期室外空气含湿量值,逐时值,g/kg(干);
dk——除湿期机器露点含湿量,dk=dn.max,逐日值,g/kg(干);
rq——单位质量水在常温常压下的汽化潜热,取2440kJ/kg(对应饱和温度25℃)。
由上述分析,除湿期采用冷冻方式处理新风多消耗的冷量Δqc.2为:
式中,Δqc.2——采用不同新风除湿方式最大可节省的耗冷量,kW.h/(kg(干)/h)。
这表明,要减少新风除湿期耗冷量,降低新风能耗,应从新风除湿方式上寻求新途径。
2.3单位质量新风冷热耗量的计算程序