如何学好数学论文(6篇)
如何学好数学论文篇1
Abstract:Informationtheoryisacourseforstudentsmajoringininformationengineeringandcommunicationsystem.Withtheadventoftheinformationageandthecontinuousimprovementofartificialintelligence,aimingatthemainproblemsintheteachingofinformationtheory,thispaperpresentssomemethodstooptimizetheteachingplanaccordingtothecurrentpopularlearningmethodsofknowledgegraphtheory,andmakestheteachingcontentmoresystematicPerfect,cangreatlyenhancestudentsinterestinlearninginformationtheoryofthiscourse,whileimprovingstudents'self-learningabilityofknowledge,soastoachievethepurposeofteaching.
Keywords:informationtheory;knowledgeGraphtheory;artificialintelligence;teachingplan
1研究的背景和目??
信息论是研究信息传输和信息处理的一般规律的科学。追溯到1948年和1949年,在《贝尔系统技术杂志》(BellSystemTechnicalShannon)上,美国数学家C.E.香农发表了信息论的奠基性论文《通信的数学原理》(AMathematicalTheoryofCommunication),该论文的发表标志着信息论这一新学科的诞生,并于第二年发表了著名的论文《噪声下的通信》(CommunicationinThePresenceofNoise),这两篇论文是信息论科学的奠基性著作,香农在文章中深刻地阐明了关于通信的一系列基本问题。在无失真或允许一定失真(限失真)的条件下,如何实现噪声信道中信息的有效传输,文章中运用数学概率论的知识,对信息这一抽象概念进行了定量度量的定义,并给出了信息熵的定义。信息熵是对随机事件可变性的度量,其公式如下:
[HX=Elog2X=x∈Xpxlog2(1p(x))]
其中X为有限个事件x的集合,X是定义在X上的随机变量。
信息论虽然只有短短的几十年的发展历程,但随着通信科学的不断进步,它对学术界的研究和通信领域的发展产生了重要的影响力。自2010年以来,人工智能得到了快速发展,交叉学科的应用趋势越来越受科研人员的重视,信息论的研究内容也不再局限于通信单个领域,逐渐的拓展到其他科学领域,如语义学、模式识别、神经生理学、遗传学、金融投资学等与信息技术息息相关的方向。在通信系统中,信息以消息的形式传递,经过系统接收处理,掌握信号传递规律和处理规律,进而做出调整,以提高通信的时效性和平稳性,最终达到系统的最优化。
目前,在全国高等院校的信息工程和通信系统等各类专业中,基本上都开设了信息论这一学科。信息论是信息科学的理论基础,是一门新兴的横断学课,其涉及知识点繁多且复杂,作为通信的数学原理,应用到了线性代数、随机过程、概率论与数理统计等中的大量数学知识。由此可见,真正掌握和学好信息论这一课程,对学生的数学基础和思维能力有着更高的要求。
如何能让学生更好地掌握和应用信息论的知识,正确的教学方案是关键。基本理论的学习是基础,实践与应用是对能力进一步的提升。随着信息论对多学科领域和社会经济发展的推动,更应该重视其产生的影响,并更好地加以学习,信息型人才是将来社会发展所不可缺少的。对传统的教学模式进行适当的创新,根据知识图谱理论,建立思维导图,让学生更好地掌握这一门课程,这是本次教学改革研究的重点。
2教学中存在的主要问题
信息论的主要内容是通信的数学定理,广泛应用了理工科学生本科所修读的大部分数学学科的理论,对一些非数学专业的本科学生来说,课程内容涉及未学的数学知识,面对复杂的公式推导证明和抽象的内容概念,这无疑是教学和学习中的难点。在传统的信息论教学中,课程的大部分时间用来进行公式的推导证明及理论的讲解,没有合理的知识拓展分析及相关应用,造成学生最后不能有效的理解和学习。
教学中缺乏对理论知识的实践与应用,不能将信息论与现代信息技术的相关应用很好地结合起来。随着信息技术和互联网的快速发展,对隐马尔可夫模型、信道容量的迭代算法、无失真信源编码、有噪信道编码、限失真信源编码、图像的离散余弦变换等知识点的应用越来越多,而信息论教科书中继续沿用之前的例子,存在不能做到与时俱进,缺乏与现代应用实例的结合,应用与学习者专业相关性不大的问题,从而不能调动学习者的兴趣和学习积极性。
另外,信息论的教学学时在逐渐削减,从而导致教学过程中,只是介绍经典信息论的内容,没有涉及过多的分支。以“教”为中心的教学,缺乏自主创新意识,由于教学内容比较复杂,教学模式不新颖,未能调动学习者进修的能动性,学习者很难产生学习兴趣,对这一课程很好的学习。
3优化教学方案主要内容
在信息论的教学过程中,如何运用知识图谱的理念呢?教学模式的改革应该顺应形势发展的要求,引入知识图谱理论,构建信息知识体系,将信息论知识点与交叉学科信息融合,同时结合当今的技术应用,建立多个完整系统的图谱,更好地去讲解这一学科。
3.1识图谱理论的相关介绍
3.1.1知识图谱的概念及发展
随着大数据时代的到来和人工智能的迅速发展,人们越来越重视对相关知识点的交叉和系统融合,知识图谱成为当前互联网领域一个重要的研究分支。
知识图谱(KnowledgeGraph)于2012年加入Google搜索,其作为一个知识库,使用语义检索功能从多种途径中网罗信息,进而提升搜索的质量。Google网络中的知识图谱,一方面罗列了重要信息的链接路径,另一方面提供了相关信息的结构化属性及关于主题的详细信息。通过构建系统完整的知识图谱,用户将能够使用相关功能提供的信息以快速地解决查询的问题,大大地提升了查询效率,减少查问者对相关问题的不必要搜索。知识图谱的构建主要是为了获得大量可供计算机处理的数据,包括重要知识点的基本内容及其交叉相关的知识。
知识图谱又称为科学知识图谱,是展示知识发展进程与结构联系的一系列各种差异的图像,是一个有序的、完整的思维导图体系。知识图谱是将应用数学、图形学、信息可视化技术、信息科学等课程的理论与方法与计量学引文分析、共现分析、自然语言理解等方法相结合,并利用可视化的图进行直观地展示学科的层次结构、发展过程、发展方向、最新研究成果及整体知识架构,以此实现多课程融合目的的当代搜索方法。
3.1.2如何构建知识图谱
知识图谱的构建过程就是从各种结构化、半结构化或非结构化数据中,采用自然语言理解等相应技术抽取实体,实体属性及实体之间的联系,将各实体之间的属性有规律地连接起来,组成一张图。构建的知识图谱可以体现真实世界的相关信息,显示实体间的相关性及交叉拓展的信息。获取实体信息,需要实现实体识别、消歧(重名,别名)、实体关系挖掘等,以构建完善的知识图谱。
从图1可以看出,知识图谱涉及的技术非常多,并且每一项技术都值得去深究。
3.2信息论教学中如何运用知识图谱理念
3.2.1信息论中的教学重点难点及解决办法
在信息论学科的教学中,使用到了大量的数学理论,包含高等数学、线性代数、离散数学、概率论与数理统计、随机过程以及数值分析等,而数学本身就存在着许多重难点,再加上众多数学知识点的融合,对学生数学基础能力的要求更进一步加大。使用知识图谱教学理念,构建思维导图体系,建立知识点之间的联系,将信息论与数学理论结合,同时与其他的外延学科相结合,实现一个完整的系统学习。例如,在信源熵的数学特征计算中,对连续性和离散性进行结构化分类,一方面要用到高等数学中的积分运算对连续信源的概率密度进行求解,另一方面使用多元函数的条件极值来求离散信源熵的最值问题
通过多知识点实体的连接,构建端到端之间的联系,将抽象的概念和宽泛的理论,转化成相对应的熟悉的各学科知识点,依靠学科间知识点的贯通,在教学中不断引申,学生能够很好地掌握并进行各知识点的自学。例如,在对哈夫曼编码的学习中,以哈夫曼编码为实体中心,拓展与其相关的交叉学科分支,建立图谱体系。很多专业课程都涉及了对哈夫曼编码的应用,包括在数据结构课程中,如何从算法的角度解决二叉树的生成和遍历的最优化问题;在多媒体技术课程中,如何处理对图像、声音、视频等数字信息的压缩和加解密问题;在计算机体系结构科目中,如何处理计算机指令操作码的优化问题等。
将应用工程实例及实践加入知识图谱之中,强调对知识本质的理解与应用拓展,突出核心内容,加强应用型引申,结合当今信息产业发展现状,引出并讲解相应的应用,以增强学生的学习兴趣。例如将无失真信源编码应用到计算机文件的压缩中,面对庞大的数据存储问题,应用信息论相关压缩算法,当今已经达到的压缩技术能在保证文件不失真的情况下,存储量只占原来的三分之一;将有噪信道编码应用到模拟话路中,使调制解调器的数据传输速率提高到尽可能接近理论极限的水平;将限失真信源编码应用到语音信号的压缩,使编码速率可以远远低于奈奎斯特采样定律和量化噪声理论中的编码速率。
建立信息论教学知识图谱,划分侧重点,构建重要实体之间的框架,减少对次重要和不重要知识点的讲解时间,及对其中知识点进行压缩。例如教学的侧重点应当顺应形势发展的要求,当前的信息处理和编码技术已普遍?底只?,在讲习内容安排方面,应恰当删减连续信源理论、连续信道容量等相关内容,对离散信号知识点的讲解应该比连续性信号更加详细,同时要减少对相关公式的推导与证明过程,侧重离散概念,带动连续信号的分析,建立起二者的系统概念图,建立对比与应用分析。
3.2.2教学方案的改革
信息学科是一个新型的学科,而且是一个逐渐发展和深入的科目。构建合理的课程体系,在课程章节讲解上有条理地分配相应的时间,考虑到学习者自我学习和思考的能力所在,合理的分配课后作业和思考题,以提高学生自我学习能力。鼓励学习者将书本知识转化为解决工程问题的方法,并将实践所获得的知识与经验,有效运用于理解书本知识,鼓励学生提出假设与否定。
在备课过程中,从教学资源数据库及网络中,获取大量课程相关的授课素材,将信息论中的定理证明和推导过程,结合其所包含的物理含义及应用能力反复强调出来。在授课时,对本课程与其他专业相关联的内容,进行总结归纳和拓展,建立课程之间的交叉联系,将不同科目的相关理论综合起来,联系实际应用,多举实例展现,以提升学习者的学习兴趣。
在教学过程中,注意适时提出一些问题,指引学习者更深入和更全面的理解。增加师生互动,转变师生角色,让基础扎实并对信息论知识点熟练的学生,站在老师的位置,给其他同学进行讲解,老师做出总结拓展并纠正错误。鼓励学生进行小组讨论,课堂上进行小组间的自我学习,搭建知识图谱,从而增强课堂的活跃性,激发学生的学习兴趣,加深对信息论课程的理解。
如何学好数学论文篇2
笔者向何鲁的儿子何培炎求证。何培炎听后大笑,称自己很早就听说过这个传闻。“应该是没有这回事的。不过父亲一直负才子之名,所以也一直有很多夸张的传闻。”
何鲁早年入清华留美预备学校,因外籍教师侮辱中国学生人格,仗义执言,率同学严词批评教师,被校长认定为“闹”。在开除他的全校大会上,矮个子何鲁面对校长侃侃而谈:“经此次,清华能改革进步,何鲁一人纵牺牲学籍也无关系。若不改弦更张,而使最高学府萎靡腐败如故,就请我来读,我也不得来的。”说罢,在全场学生的掌声中,扬长而去。
作为最早赴法勤工俭学的中国留学生,何鲁1912年入里昂大学,1919年获得数学硕士学位,成为第一个获得科学硕士学位的中国人。
何鲁的学习能力曾倾倒了他的教授,以至于教授经常在课堂上赞扬这个来自中国的小个子:“你们猜,谁的作业做得最好?连法文也写得最好?还是那个中国娃娃!”
当后来大批中国学生赴法时,他们中许多人在下车伊始就听说,曾经有一个中国天才在这里学习过。据何培炎回忆,1949年后,一些曾经赴法勤工俭学的国家高层领导,见到何鲁时,还会双手抱拳,尊称一声“老前辈”。
从何鲁25岁归国担任教授起,不少著名学者都曾受业于他。如物理学家严济慈、钱三强、吴有训、赵忠尧,数学家吴文俊、余介石,化学家柳大纲等。
华罗庚是数学家熊庆来的学生,但他一直说,何先生虽然没教过我,但也是我的老师。华罗庚在西南联大时期完成数论经典著作《堆垒素数论》,送交中央研究院,竟无人能审。后送教育部,交由何鲁主审。
时值盛夏,何鲁在重庆一幢小楼上挥汗审阅,其间不时击案叫绝,一再对人说:“此天才也!”阅后,他不仅长篇作序,还利用自己是全国仅有的6位部聘教授之一的声誉,坚持给华罗庚授奖。1941年,华罗庚终于成为国民政府唯一一次数学奖的获得者。
在南京高师教授数学时,何鲁有时会趁着兴致高,开讲座讲古典诗词。据说,每逢此时,连窗台上都挤满了学生。在中央大学时,他更与国学大师章太炎门生黄侃等结为忘年交,意气相投,诗酒相和。安徽大学校长期间,他以数学家身份,却被学生视为与郁达夫等著名文人相比肩的“风流名士”,尊其为“酒仙”。
何鲁是现代著名书家。在重庆时,他与沈尹默谈论书法,慕名而来的听者如云。日本前首相田中角荣极为推崇何鲁的书法,曾邀请他率中国书法代表团访日,终因何鲁不久即去世而未能成行。
许多人回忆,何鲁平易近人,对求字的人几乎有求必应。20世纪40年代在重庆大学时,他甚至经常在讲课之前,在休息室为学生们写条幅或对联。
上世纪50年代,何鲁调到北京。荣宝斋极为珍视他的书法作品,曾派人拿着他的字拜访他,问他如何标价。何鲁却扔下一句:“我的字,千金不卖;朋友要,分文不取!”
何鲁敢言,批评犹烈。特务头子康泽曾在重庆著名的沙利文西餐厅“宴请”何鲁。康泽问他:“何先生是否有过对委员长不敬的言论?”何鲁一笑:“是啊,经常骂。不知你说的是哪一次?”
1949年春末,渡江战役后,重庆局势恐慌,何鲁在暗杀黑名单上名列榜首。幸而重庆卫戍司令杨森与他有同乡之谊,见黑名单后说:“这是一个喜喝酒的读书人,不会造反的。”将其名字勾掉,何鲁这才幸免于难。名单上的其他人全部被枪杀。
后来,接见全国政协委员,在与何鲁握手时,专门说:“你的胆子不小!”
自1919年回国后,何鲁西装一脱,一辈子穿长袍。何培炎给记者看了一张老照片,第一次全国高等教育会议合影。前排中间6人,、、马叙伦、郭沫若、何鲁、钱俊瑞。唯何鲁一人,一袭长袍。
你该知道的
何鲁(1894~1973),字奎垣,笔名云查,四川广安人。何鲁早年加入同盟会,参加“辛亥革命”。1912年赴法国留学获数学硕士学位,1919年回国。历任南京高等师范学校(国立东南大学)、重庆大学、北京师范大学等大学教授,后又调中国科学院出版社工作。
何鲁是位数学家,最早将近代数学引入中国的先驱之一,何鲁注重学术研究,提倡“拼命三郎”精神,数十年如一日地沉醉于应用数学领域。著述有《二次方程式评论》《代数》《行列式论》《微分学》《爱因斯坦学说概述》等,因而被誉为“数学大师”。在民国时期的科学界、教育界、文化界具有极高声望。
何鲁还是一位诗人和书法家。早年的勤学奠定了他的功底,家乡的山水哺育了他的灵感,人生的阅历又陶冶了他的情操。在教学生涯之余,何鲁又进入了诗的境界。他用诗词记事、酬和,用笔端讴歌祖国的大好河山,抒发自己的激情。他留下的旧体诗词达数千首。
如何学好数学论文篇3
关键词:统计学;理论与实践;项目组
1研究背景
统计学是应用数学的一个分支,随着计算机技术的发展、海量数据的容易获取,统计学被广泛应用在各门学科之上,从物理学到社会科学再到人文科学,甚至被用到工商业及政府的情报决策等方面.因此,国内大学的众多专业都开设有统计学这一基础课程.统计学课程要求大学生从基本的统计学原理出发,结合各自的学科特点,使用各种统计学方法分析各自专业领域的案例和数据,解决各专业的数据统计问题.从本人的教学实践经验来看,由于统计学涉及到一些高等代数和微积分等数学知识,其原理较为枯燥难学,特别是关于概率及抽样分布的知识,比较抽象,需要大学生们具备较高的形象思维能力,这对于文科大学生来说难度较大.另外,统计学中试验设计的数据要么过于宏观,要么与本专业的联系不大,使得大学生们对相关统计技术的掌握印象不深,这些都在一定程度上影响了大学生学习统计学的热情以及学习效果.因此,为了使枯燥的统计学课变得生动有趣以及能用相关技术解决实际问题,本研究提出使用统计学课程的理论知识,结合大学生的专业或研究兴趣,对大学生进行项目分组,指导大学生们进行实际研究,达到统计学理论与实践合、课程必需与专业方向相结合的目的.
2文献回顾
在如何使枯燥的统计学变得生动有趣起来这一课题的研究上,学者们纷纷从各自的角度出发,提出了一些建议.有的学者建议在统计学课堂上提供案例教学法,由教师选取一些经济生活中的实际问题案例提供给大学生,让大学生使用统计学知识去思考和解决(刘海燕、龚玉荣,2003;赵彤,2008;汤静等,2008).这些研究从教师的角度去拓宽实际数据来源,代替原有教材中过于宏观的数据或与学生专业不大相关的案例.有的教师建议对大学生采取真实情景的任务驱动法去发现问题、解决问题和完成任务(吴宁,2007;马铁成,2015).这部分研究强调从学生的角度去采掘数据,从而调动大学生的学习热情.上述已有文献对于如何上好统计学这门课进行了有益的探讨,也得出了颇具意义的研究结论.但是上述研究要么只强调从教师的角度去选择数据,要么只强调从学生的角度出发去发掘数据,两者都具有一定的不足之处.前者要求统计学教师不仅具有坚实的统计学知识,而且具有丰富的来自各专业的知识背景(统计学往往是几个专业在一起上的大课),这样才能选取到适合所有专业学生的数据;后者会因千人千面、数据来源复杂、专业类型众多等问题使得教师在实践阶段指导起来力不从心.因此,在前人研究的基础上,本研究提出:在讲授统计学理论知识的基础上,结合大学生的专业或研究旨趣,让他们自主选取数据,然后将其分成不同的项目小组进行综合指导,这样,既避免了统计学理论学习的枯燥,又避免了上述研究的不足,从而使学生达到更好地理解统计学原理、学以致用的目的.
3具体课程设计
根据上文提到的研究思路逻辑,本研究具体的课程教学设计如下:第一阶段:统计学理论知识学习.这一阶段主要包括统计学绪论、统计调查步骤、统计学概率基础、统计数据的描述、参数估计和假设检验部分,目的是让大学生了解统计学的基本知识、如何进行统计调查、如何呈现统计结果等.这一阶段将占课程总课时的一半左右.与此同时,根据大学生的具体专业情况或研究旨趣帮助其确立研究题目和研究内容等、督促大学生收集相关数据以备后面的阶段使用.在这一阶段,考虑到统计学一般是大课,同时往往几个专业的学生一起上,并且有的专业人数较多,故采用按照研究内容或研究旨趣进行项目分组的方法,将所有大学生分配到不同的项目小组.另外,为了保证项目的顺利实施以及充分体验调查研究的各个环节,每个项目组的人数参照5-10个进行分配.第二阶段:分析实践数据阶段.在这个阶段,在讲授方差分析、相关与回归分析知识的基础上,结合各种具体的分析技术,采用广泛使用且免费的stata统计软件,让大学生动手实际操作第一阶段收集到的数据.具体的做法是在要求大学生学会图表的制作、三大类统计方法的操作基础上,结合各个项目的研究目的分析数据,得到相应的统计结果,并学会对数据的不同处理、图表的制作及美化、对分析结果进行统计意义及现实意义的解释等,最终撰写调查报告,完成统计调查的所有步骤.这一阶段也将占总课程总课时的一半左右.通过这两个阶段的训练,将有效地将统计学理论与大学生的专业或研究旨趣实践结合起来,从而达到一举两得的目的:大学生们既完成了统计学课程的学习,也学会了如何使用统计学工具解决本专业的问题或者自己感兴趣的问题.
4结论
统计学的本质是一种挖掘数据的工具.如何掌握好这一工具、在各自的专业方向或者个人感兴趣的项目上游刃有余地加以运用,是各位教师绞尽脑汁想要达到的目的.本研究通过将统计学理论知识和大学生的专业特点及他们的研究旨趣联系起来,突破了课堂与实验室的局限,将统计学的教学范围涵盖到课堂以外,将使枯燥的统计学课程变得生动有趣,提高大学生的学习热情,从而对统计学知识掌握的更牢、更扎实.与此同时,通过按照项目组进行的这种教学方式,不仅增强了大学生运用统计学知识解决实际问题的能力,而且也为其日后组建项目团队、进行相关科学研究打下了良好的基础.最后,诚如每项研究都有优缺点一样,本研究也可能存在如下不足:例如划分了项目组以后,是否能在有限的时间内收集到满足研究目的的数据,如何安排和协调项目组组员之间的任务分工等问题,这些将在今后的教学实践中加以不断的完善.但不管如何,本研究旨在探讨如何将统计学的理论与大学生的实践联系起来、促进统计学教学模式和手段的更新,希望能起到一个抛砖引玉的作用.
作者:李春华吴望春单位:广西民族大学商学院
参考文献:
[1]刘海燕、龚玉荣.对应用统计学课程教学的几点看法[J].统计教育,2003,(1):32G33.
[2]马铁成.探究式教学法在统计学原理课程中的应用[J].教书育人:高教论坛,2015,(7):108G109.
[3]汤静,苏小东,丁威,案例教学法在统计学课程中应用的探讨[J].统计与咨询,2008,(04):54G55.
如何学好数学论文篇4
关键词:几何画板概念形成公式推导问题解决
几何画板作为一款可视化动态软件,它在中学数学课堂教学中不断被应用,成为了中学数学教师不可或缺的一种教学工具。初中学生无论是空间想象能力还是逻辑推理能力都尚未成熟,几何画板的应用为实现有效教学提供了强有力的助力。在教学中,笔者结合学生的实际情况,适当运用几何画板,或作为直观演绎,或是创设情境,为课堂注入了活力,极大地提高了学生参与课堂的积极性。本文就结合实际教学案例讨论了几何画板在概念形成、公式推导以及实际问题解决方面的作用。
一、几何画板在揭示数学概念形成过程中的尝试
初中数学是以概念为基础的,正确理解数学概念是掌握、应用数学知识的前提。由于初中学生受生活体验及智力发展等因素的制约,以往传统的教学模式已无法满足学生的需求。几何画板的出现打破了这一局面,它在保留学生想象力,帮助他们顺利过渡到初中数学学习的同时,也能更好地帮助他们理解数学概念。
案例1.圆的认识
如图1,在小学数学已有知识经验的基础上,通过几何画板中的直观演绎可以更好地帮助学生确定一个圆的元素,进而在几何画板“度量”工具的帮助下,使学生进一步加深对圆的认识。
二、几何画板在公式推导中的应用
数学公式是数学学习的重要内容。传统的公式推导仅注重记忆,这样的教学通常都是以教师通过几个满足所要学习公式的简单例子给出公式,重视学生对公式的记忆,而忽略了学生的好奇心,不利于提高学生学习数学的积极性。借助几何画板却能帮助学生有效地在概念的基础上推导出相应的法则、公式,不仅知其然,而且知其所以然,提高了学生学习的积极性。
案例2.有理数减法法则的推导
传统教学中,我们通常给出两组计算结果,通过学生观察两组数据推导得到有理数减法法则。这样教学,学生似乎对法则倒背如流了,但在实际计算中却屡屡出错。在反思教学并尝试突破的过程中,我开始应用几何画板生动演绎法则的推导,如图2(见附表)。令人惊喜的是,学生的参与度提高了,在计算碰到困难时学生开始尝试数形结合,而不是单纯地背法则。
案例3.平方差公式的推导
一般来说,教学中教师通常用几何图形的面积问题来推导平方差公式,有的直接在黑板上手绘图形,有的运用可粘在黑板上的卡片等。几何画板的应用使平方差公式的推导有了不同的演绎方式,如图3。对学生而言,相较于不使用几何画板,生动的直观演绎更有吸引力,不仅活跃了课堂气氛,满足了学生的好奇心,也能帮助学生更好地记忆公式。
三、几何画板在解决实际问题中的应用
(一)动态几何方面的应用
初中几何教学难主要在于其抽象性较强。传统的数学教学中,教师通常用尺规画图,静态的呈现方式不但无法很好地表达图形变化中的特点、规律,而且容易让学生产生畏惧感。几何画板的动态演绎弥补了传统教学手段之不足,教师可以在“动”中教,学生可以在“动”中学。
案例4.三角形沿着直线旋转运动
如图4,一个边长是1厘米的等边三角形ABC,将它沿直线作顺时针方向的翻动,到达图示中最右边三角形的位置。试在A、B、C三个顶点中选一个点,求该点所经过的路程是多少厘米(精确到0.01厘米)。
我所任教的班级大部分学生都能明白这道题考察的是弧长公式的应用,但能画出某个点清晰的运动轨迹的学生几乎没有,有的学生甚至无从下笔。讲解时,我未用平铺直叙的方式,即在黑板上画出运动轨迹,而是运用几何画板直观演绎此题,收到了意想不到的效果,给予学生耳目一新的视觉感受。
(二)在应用题中的应用
案例5.A、B两地相距940km,甲驾车以80km/h的速度从A地出发,3小时后,乙从B地出发,经5小时两人相遇,问乙的速度是多少?
这是一元一次方程中的行程应用题,学生不会做的主要原因是不理解题意,找不到其中的等量关系。对此,教师可用几何画板直观演示,这样学生更容易理解,列出方程,如图5。
四、小结
几何画板作为数学教学的辅助工具,已被广大教师接受与认可。它在初中数学教学中的应用,打破了传统的尺规教学的方式,为教师的教学工作带来了极大的帮助。不仅如此,合理使用几何画板符合中学生的逻辑发展与心理发展特点,更易于被学生接受,有利于调动学生的学习积极性,提高他们的自主探究能力。
参考文献:
如何学好数学论文篇5
关键词:数学史;教育价值;教育功能;数学教学
在新一轮中学数学课程改革中,数学史首先被看作理解数学的一种途径,要通过数学史的学习使学生体会数学对人类文明发展的作用,提高学生的学习兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生学习数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。高师院校是培养中学优秀教师的摇篮,在高师院校的数学教学中更应该注重将传统的课程内容与数学史有机地结合起来,用历史上出现过的原始数学问题来引入教学的课题,并且运用古人的朴素想法来解决一些相对简单的问题,从而揭示了抽象的数学概念与方法所包含的丰富内涵。
一、数学史教学的教育功能
(一)学习数学史可以帮助学生认识数学、形成正确的数学观
学习一门学科首先要弄清楚这是一门怎样的学科,学习数学就要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段大学本科学生对数学的看法还大都停留在感性的层面上─枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其他学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿―莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征─抽象性、严谨性和广泛应用性了。
同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于高师院校的本科生来说是很有必要,也是必不可少的。
(二)学习数学史有利于培养学生正确的数学思维方式
现行的数学专业课教材一般都是经过反复推敲的,语言十分精练简洁。为了保持知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。
数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。
数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。
(三)学习数学史为德育教育提供了舞台
德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从以下几个方面来探讨一下。首先,学习数学史可以对学生进行爱国主义教育。现行的数学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少,其实中国数学有着光辉的传统,有刘徽、祖冲之、祖、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上,从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。
其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的精力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。
最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达•芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。
二、把数学史看作理解数学的一种途径
(一)了解数学理论发展的历史背景,加深理解数学理论、公式、定理和数学思维
一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然性、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。它既可以激发学生对数学的兴趣,培养他们的探索精神,而历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。
写在书本上的数学公式、定理、理论都是前人苦心钻研经过无数次的探索、挫折和失败才形成的,是在当时社会生产、人们的哲学思想、数学家的独创精神联系在一起的活生生的数学。但是,我们从书本的条文上,已看不到数学成长、发展的生动的一面,而只看到数学的浓缩的形式,这就妨碍我们对这些数学理论的深刻理解。
(二)数学史与师范院校本科数学教育的内容的整合
数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神等。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,数学专业课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,同时设立“数学史选讲”等专题,让数学史与师范院校的数学专业课程教育有机整合。下面结合本人在师范院校几何专业课程的教学经历,浅谈一下数学史的内容如何融入到实践教学中去。
1.欧氏几何:欧氏几何在全部几何学中占有最基础的地位。如果不对欧氏几何有一个整体的理解,则不仅不可能理解后来的各种几何学的由来与发展,而且也难以从根本上把握中学几何教学中的基本问题。许多在传统“高等几何”课中所讲的内容其实都可以先在欧式平面上讨论,使学生有一个印象,在此基础上再进行逐步抽象与推广。这样做比较符合历史发展的顺序和学生学习新知识的规律。先详细地介绍欧几里得《几何原本》第一卷中的所有命题,这是学习和理解公里体系的最好材料,从中可以知道什么是不定义术语、定义、公理、定理以及证明所需要的论据。这样学生对中学教材就有了更深层的了解。另外,通过仔细讲解第一卷,还为后面讲第五公设的试证做好了准备。接下来让学生熟悉有关圆、相似三角形以及能够反映欧氏几何本身进一步发展的定理和它们的证明。由此引出一系列结论,如巴普斯定理和关于圆内接六边形的帕斯卡定理、共线四点的交比、调和点列与调和线束及其对圆的应用、圆的极点与极线、圆的外切六边形的布里安桑定理等。
2.平面射影几何:历史上,射影几何的深刻思想曾经极大地拓展了人们的视野。如同在代数中引入至关重要的“i”一样,数学家们通过引入虚无缥缈的无穷远点,把古典的欧氏几何发展成了一个十分完美而且比较抽象的几何理论。初步学习这个理论,有助于使学生在一个新的高度上重新认识欧氏几何。
从文艺复兴时期的画家们得到的绘画透视几何原理引出中心投影及其不变性质和不变量的概念(例如交比在中心投影下不变)。然后介绍笛沙格和帕斯卡等人用中心投影的方法从圆的性质推出许多关于圆锥曲线的性质(例如关于切线的许多定理和帕斯卡定理等),这实际上是通过中心投影这样一个简单的概念将圆与圆锥曲线统一起来了。
更为惊人的想法是无穷远点概念的引入。笛沙格用这个想法统一了圆锥曲线的直径和极线这两个在希腊人看来是截然不同的概念。开普勒将抛物线看成是一个焦点是无穷远点的椭圆。通过引进无穷远点,就得到与欧式平面完全不同的射影平面。近代的几何学家还系统地发展了“将给定直线投影到无穷远”的几何证明方法,用这种独特的方法可以很容易地证明关于圆锥曲线的笛沙格定理、帕斯卡定理和布里安桑定理等几何命题。
3.球面几何:弯曲空间是现代科学中的一个基本的几何概念。传授这方面知识的最好途径是利用球面这样一个简单的曲面。生活在地球上的人类很早就开始了对于球面的研究。除了它的实用价值,球面几何对于产生非欧几何的想法也有明显的启发作用:它使学生首先认识到直线可以弯曲,三角形的内角和并不总是等于180度等。
4.双曲非欧几何:这部分将沿着历史发展的顺序,从古老而不朽的《几何原本》第一卷出发,像历史上的许多数学家一样试证著名的第五公设,逐步进入双曲非欧几何这样一个完全是由人们想象出来的几何新天地,使学生透彻地理解几何学的本质和数学中的公理化方法。
参考文献:
[1]张奠宙,李士,李俊.数学教育学导论[M].北京:高等教育出版社,2003.
如何学好数学论文篇6
关键词:初中几何入门教学课堂组织实施层次
初中平面几何可分入门阶段、基本阶段、综合阶段三部分。如何搞好几何入门教学的课堂设计,提高教学效率,让全体学生都能顺利地跨入几何的大门,是数学教师应该认真思考的问题。
一、平面几何入门教学所面临的困难
小学生升入初中以后,在几何学习中将面临种种挑战,任何一个不适应,都有可能使他们丧失对数学学习的兴趣,产生畏惧的情绪,从而在两极分化中成为被淘汰者。因此,作为教学过程的设计师,教师必然首先明确这“苦难”所在。
1.研究对象的转变带来的困难。
学生在小学阶段,学习的主要对象是“数”,没有涉及几何的本质。学生接触几何知识后,研究对象以数为主转变到以形为主,其角度、抽象程度都有显著的变化,在这一转变的过程中,学生不能很快适应就会形成几何入门学习的一大难关。
2.抽象层次与思维方式带来的困难。
从代数向几何的过渡,其抽象程度的飞跃表现在,由以前的单纯的计算为主到对数学的推理、论证、抽象符号和数学语言的运用过渡。抽象程度发生了一次质的改变,是“难关”的成因之一。当几何以全新的研究对象出现时,演绎推理占了主导地位,是对归纳思维的一种扬弃,思维方式的转变也是造成几何入门难的重要原因。
二、在课堂教学组织设计中应注意的问题
1.引导学生观察,解决好由数到形的过渡。
几何图形训练是几何入门教学的重要一环,画图、识图是学好几何的前提。教学中,可通过看图说话,读文画图来强化概念与图形间的内在联系。图形训练中,教师还可以让学生设计一些简单的几何图案,揭示几何学无穷的美。教学中还注重每课后的做一做、读一读、想一想等内容,让学生多动手,提高解决实际问题的能力。另外,教师还要引导学生不仅会看规范易懂的图形,还要善于观察复杂图形中的一些基本图形,会把复杂图形简单化。
2.引导学生分析,解决好由计算到推理的转化。
在几何学习中,推理论证能力的形成是一个长期的过程,因此,在入门阶段,对这部分内容要分步骤、缓坡度、循序渐进地进行。训练可以分“三步走”。
(1)示范引路。这个阶段的训练应从第一章开始,要小步进展。开始先用文字语言说理,然后将文字译成“…………”形式的几何符号推理语言。
(2)倚仗走路。从第二章开始进行填理由论证训练。首先训练先给出证明的步骤,由学生在()中填写理由,然后,擦掉证明的理由,填写证明步骤,逐步了解几何解题的思路,为学生独立证明打好基础。
(3)独立证明。学生通过前两阶段训练,基本上熟悉了证明的步骤与格式,通过一定的逻辑推理训练使学生独立写出证明过程。这个阶段一定要强调言必有据,并培养学生分析问题的能力。
3.引导学生掌握几何语言。
几何语言是正确理解几何概念,认识几何图形,顺利地进行推理的基础,掌握几何语言要注意下面两点:(1)准确掌握几何语言中每一个词的意思。几何语言中的每个词都有固定的意义,一般不能用其他词语来替代,比如直线、射线、线段虽然都含有一个“线”字,但它们的含义是不同的,几何图形也不同。例如“求直线AB的长度,”“延长直线AB”就是错误的表达。(2)要注意捕捉几何语言中的微小差别。如“两条线段AB与CD互相平分”,“线段AB被CD平分”,它们表面近似,都有“平分”二字,但还是有差别的,前者是互相平分,后者是AB被CD平分,而CD未必被AB平分。
三、课堂组织设计及实施的基本层次
课堂是实施素质教育的主阵地。因此,做好几何入门课的课堂组织设计是提高学习能力的根本环节。对于几何入门教学的课堂组织设计应按以下四个层次进行。
1.创设恰当的问题情境。
每堂课教师应结合具体的教学内容,从学生感兴趣的几何实例引出问题。问题的设置既要符合大多数学生的需求,又要有一定的层次,能吸引各层次的学生投入到探究中。
2.知识发展过程中的应用。
教学中,教师要引导学生构建自我的知识体系,关键能否让学生在互动中体验到成功,感受数学推理过程的条理性和数学结论的确定性;学生在合作中,能丰富数学活动经验,学会学习,在运用知识的过程中掌握数学思想和方法。
3.重视学生不同见解和方案。
在分析问题中,应该让学生充分表述其想法,教师要鼓励学生讨论,发现解决问题的最优方案,指出问题的核心,让学生分清错对的原因。
4.反思与评价。
教学过程中知识的掌握与技能的形成不是一帆风顺的,教师要引导学生通过反思与评价,从教学过程的各个环节认真总结课堂上的收获与不足,进一步优化学习方法,让学生顺利地迈入几何学习的大门。
参考文献: