当前位置: 首页 > 范文大全 > 办公范文

能源化学工程(6篇)

时间:

能源化学工程篇1

摘要:新能源技术、轻量化和智能化是未来汽车的发展方向,汽车材料的创新和应用是推动我国由世界汽车工业大国走向强国的必由之路。为了培养具有源头创新能力、车辆工程和材料科学与工程学科交叉的高端人才,该文介绍了同济大学“材料-汽车-新能源复合型人才培养模式创新实验区”的培养目标和课程体系设立,为我国学科交叉和创新型汽车工业人才培养探索新路。

关键词:车辆工程材料科学与工程学科交叉源头创新未来汽车

中图分类号:G643文献标识码:A文章编号:1674-098X(2016)08(a)-0150-03

SubjectCrossingTalentCultivationforSourceInnovationofFutureAutomotiveIndustry

LinJian

(SchoolofMaterialsScienceandEngineering,TongjiUniversity,Shanghai,201804,China)

Abstract:Newenergy,lightweightandintelligenttechnologiesarethefuturedirectionoftheautomobilerevolution.TheinnovationandapplicationofautomotivematerialsistheoneroutetochangeChineseautomobileindustryfromindustrialgianttothepower.Inordertocultivatetalentswithsourceinnovationabilityandsubjectcrossinginvehicleengineeringandmaterialsscience&engineering,theMaterials-Automobile-Newenergyinnovationexperimentationareaforinter-disciplinarytalentcultivationinTongjiUniversitywasintroducedinthispaper.Anewkindsubjectcrossingandinnovativetalentcultivationsystemforautomotiveindustrywasalsodiscussed.

KeyWords:Vehicleengineering;Materilasscienceandengineering;Subjectcrossing;Sourceinnovation;Futureautomotive

自1886年第一辆汽车诞生以来,人类社会生产与生活发生了深切的变化。汽车工业的迅猛发展,已经成为许多工业大国的支柱产业。20世纪50年代起中国开始自主建设汽车工业,并于20世纪80年代起通过大规模引进和消化吸收、自主开发,我国的汽车工业已发展成为世界汽车大国,产量占全球第一,不过在汽车技术领域与国际先进国家仍有较大差距[1]。

随着人类社会对资源消耗的大幅增加,化石能源短缺、温室效应、环境污染已成为人类所面临的一个重大问题,而建立在大规模资源消耗的汽车工业则走到了一个十字路口。为适应社会发展的需求,新能源技术、轻量化、智能化已成为未来汽车产业发展的必由之路,诸如:锂电池、轻量化材料、传感器材料等一大批汽车新材料不断涌现,成为新一轮汽车工业革命的源头动力[2]。

1我国汽车相关本科专业人才培养现状及需求

为了培养我国汽车工业研发、技术与管理人才,国内一些高校相继建设了车辆工程、汽车服务工程等一批汽车类专业,成效显著。但目前该类专业的人才培养模式与我国汽车工业发展模式相近,即偏重于汽车生产制造和汽车服务保障,各高校车辆工程专业培养方案同质化现象较为严重[3,4],在汽车技术源头开发创新人才培养上则有所欠缺。近年来,我国许多高校在车辆工程等本科专业教学实践中已逐渐认识到,单纯偏重于车辆机械工程领域的教学模式已不完全适应汽车产业的高端人才培养所需,因此,相继开展了跨学科培养试点。如同济大学汽车学院近年来除了在车辆工程专业中新增了“新能源汽车”专业方向外,还与工业设计相结合建立了汽车造型专业人才模式创新实验区。江苏理工学院将车辆工程与电子信息工程两个专业相结合开展了跨学科人才培养试点。许多高校相继开设了一些汽车材料类课程,为车辆工程或材料类专业课程体系中增加了一些跨学科元素。[5-7]

自古以来,材料科学始终是人类文明发展的基石、推动现代工程技术创新的源头动力。未来汽车技术的变革离不开在汽车材料领域的源头创新[8-11]。在目前国内高校车辆工程专业的课程设置中,一般偏重于机械、汽车技术方面的知识点教学,而对于汽车生产所用材料科学领域的知识点则多局限在应用范围,汽车工业人才的培养缺乏汽车材料科学与技术研发领域的积淀。

因此,为了适应国家对汽车产业发展的新需求,培养兼具汽车材料源头创新和汽车设计制造创新的高端研发和工程技术人才,同济大学材料科学与工程学院、汽车学院结合各自优势,强势联合,在国内首创“材料-汽车-新能源复合型人才培养模式创新实验区”,将新材料与新能源技术、汽车技术有机结合,重点培养服务于新一代汽车工程技术与汽车材料创新、具有源头创新思维的汽车产业领域高端人才,以满足国家发展之急需。

2创新实验区建设理念及思路

从现有的本科培养体系来看,车辆工程专业是研究汽车等各类车辆的理论、设计及制造技术、培养从事上述领域高级研发和工程技术人才的本科专业,目前我国数十个高校开设了此类专业。该专业除了要求掌握必需的车辆工程专业知识外,还要求具备扎实的力学、电工、电子、机械、设计等方面的工科基础知识。其主干课程包括车辆工程、机械原理、理论力学、材料力学、机械设计、电工与电子技术、汽车构造、汽车理论、内燃机理论、汽车设计等。

材料类专业则是全国综合性高校大都拥有的本科专业,是一类涉及材料学、工程学和化学等方面知识的宽口径专业,其以材料学、化学、物理学为基础,重点研究材料成分、结构、加工工艺与其性能和应用。材料类专业又可细分为材料科学与工程、金属材料、无机非金属材料、高分子材料、复合材料等本科专业或专业方向,随着新材料研究和应用开发的不断深入,功能材料、纳米材料、光电子材料等一些新的本科专业也都有招生。

2014年在上海汽车集团考察时就强调,发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路。未来汽车的发展必定围绕着新能源技术、轻量化节能减排和智能化方向发展,而要实现这一目标,就必须在汽车材料上的进行不断创新,才能进而实现汽车技术上的变革。

为了培养服务于未来汽车工业领域源头创新、能够从事新能源、轻量化、智能化汽车相关材料、装备及整车开发的综合性高级科学研究和工程技术人才,同济大学近年来通过不断深入研讨汽车、材料、新能源技术领域学科交叉及复合型人才培养机制,于2016年设立了“材料-汽车-新能源复合型人才培养模式创新实验区”,并正式对外招生,以培养兼具物理、化学、力学、机械、设计等工科基础知识以及材料科学与工程、车辆工程等必备专业知识的学科交叉复合型拔尖人才为目标,定位于依托材料科学与工程专业、同时与车辆工程专业开展学科交叉密切合作,在未来汽车产业紧缺人才培养上协同创新,为未来汽车工业的发展和新一轮变革提供源头推动力。

3创新实验区的课程体系建设

在同济大学材料科学与工程本科专业课程体系中,分别开设了物理、化学类基础课程、电工、设计等工科基础课程以及大量材料类专业课程,专业总学分为175。而车辆工程为5年制本科专业,除了大量的车辆工程专业课程外,还开设了力学、机械、电子、电工等工程基础课程,5年总学分达211.5,即使在扣除其第二外语课程设置后,总学分也高达179.5学分。由于国家及学校对本科教育的总学分有严格的限制,因此,创新实验区的课程体系设置不能简单合并两个专业的课程体系,需保证学生有适宜的课堂学习强度和足够的课外学习时间。

因此,在设定实验区课程体系建设目标时,根据人才培养定位,遵循以材料科学与工程本科专业课程体系为基础、融合汽车工程核心课程教学、强化新能源技术、轻量化技术、智能化技术等特色交叉课程教学的培养模式,开展复合型人才的教学与培养工作。创新实验区课程体系在保证完整的材料类专业基础课程体系和必要的物理、化学类、电工、设计基础知识的基础上,增加车辆工程类专业基础课程和必要的力学、机械等基础课程教学内容。同时大规模开展材料-汽车-新能源技术学科交叉课程建设,在保证材料科学与工程专业必须的专业课程总学分和毕业要求基础上,同时满足车辆工程专业课程体系结构要求。

因此,在创新实验区的课程设置中,除了开设高等数学、普通物理、三大化学、电工学等理工科基础课程外,还增设了理论力学、机械原理、机械制图、制造技术基础等力学、机械类基础课程。在材料类课程中则保持了材料概论、材料科学基础、材料工程基础、材料研究方法等全部材料专业基础课程以及材料力学性能、材料物理性能、功能材料学、功能材料制备工艺基础等重要专业课程。对于车辆工程专业课程来说,则根据创新实验区培养目标开设了车辆工程导论、汽车理论、汽车构造、车用新能源及动力系统、自动控制原理等核心专业课程。与此同时实验区通过深入研讨开设了诸如汽车工程材料、新能源材料、轻量化汽车技术与材料、车用传感器技术与材料、新能源汽车产业概论等学科交叉课程,同时两院合作设立了材料专业与车辆工程专业综合实验、车用新能源技术及材料综合实验、汽车构造实习等一批学科交叉型实验实践类课程。这些学科交叉课程的设立不仅使创新实验区学分分布可满足材料科学与工程专业毕业要求,也能够满足学生在车辆工程专业继续深造和就业的要求。同时创新实验区的总学分控制在17分,保证了学生能顺利完成在4年本科阶段学习。(如图1)

为了进一步加强材料-汽车-新能源技术学科交叉领域的高端人才培养,创新实验区采用本-硕-博贯通式复合型人才培养模式,即学生通过本科阶段学习训练,完全具备同时在材料科学与工程、车辆工程专业继续学习深造、工作的能力。学生可以通过选拔进入材料科学与工程或车辆工程专业的研究生阶段学习,同时也提供赴美、英、法国等知名高校进行国际联合学位培养的机会,以培养在汽车工业领域国家急需之才。学生也可以经过本科学习直接进入汽车、新材料、新能源等相关行业工作。

4结语

创新实验区的学生经过创新实验区的跨学科模式人才培养,将兼具材料学科和车辆工程的专业知识,材料研究和汽车工程开发相结合,在车用材料开发时直接掌握汽车应用之需,而在汽车研发和生产、维护时则明晰各类车用材料的特点和可能面临的挑战。材为车用,车以材先,对于现代汽车工业的发展和未来汽车技术源头创新具有重要意义。同济大学将在创新实验区的建设中不断探索,优化并健全实验区课程体系,并由学科交叉型本科教学逐渐向教学、科研并重的研究生跨学科培养延伸,并希望在不久将来建设成一个汽车材料相关学科交叉新专业,为我国汽车工业的创新发展提供强力支持,同时为高等教育跨学科融合式人才培养树立典范。

参考文献

[1]吴斯.追逐数十载中国汽车工业落后之痛缘何还在[N].现代物流报,2016-5-13(C3).

[2]唐科祥.浅谈汽车未来发展趋势[J].企业科技与发展,2016(4):148-151.

[3]王旭飞,康芹,施绍宁,等.地方院校车辆工程专业培养方案的研究[J].中国现代教育装备,2016(4):50-52.

[4]陈茹雯,张雨.车辆工程专业同质化现象探析[J].科学大众-科学教育,2014(11):156.

[5]张兰春,赵景波,刘晓杰.车辆工程专业跨学科人才培养模式的探讨[J].江苏理工学院学报,2014,20(6):112-114.

[6]王天国,罗成,李建.面向汽车工业的材料科学与工程专业应用型人才培养模式的研究[J].时代教育,2015(18):5.

[7]常颖,李晓东,魏志勇.汽车材料类课程整合及教学模式改革研究[J].实验室科学,2014,17(6):190-192.

[8]牟宁博.关于汽车新材料的应用现状及发展探讨[J].化工管理,2016(4):89.

[9]周贺祥.汽车用新材料的应用进展[J].化工新型材料,2016,44(2):41-42,45.

能源化学工程篇2

东北农业大学工程学院简介

东北农业大学是一所“以农科为优势,以生命科学和食品科学为特色,农、工、理、经、管等多学科协调发展”的国家“211工程”重点建设大学,是黑龙江省人民政府与农业部省部共建大学。东北农业大学工程学院始建于1948年8月,是学校建立最早、在学科建设和培养人才方面具有强大优势的农业工科学院。学院现设有:机械设计及制造工程系、农业机械化工程系、能源与动力工程系、管理科学与工程系和工程技术基础部。新能源科学与工程专业自2012年开始招生,依托于农业建筑环境与能源工程专业多年的建设经验与条件,立足于农业大学,结合自身的特色,以生物质能源、风能和太阳能为主要方向,培养服务于新能源产业,具备新能源工程基础理论与专业知识,能在新能源技术与装备领域从事研究与规划设计、装备开发与集成、经营与管理、教学与科研等方面工作,具有创新精神、实践能力和创业精神的复合性研究应用型工程技术人才。

新能源科学与工程专业建设情况

学校的新能源科学与工程专业覆盖了生物质能、风能、太阳能等方面的内容,专业面较宽,有利于培养复合型人才,适应我国新能源产业发展现状以及人才需求特点,本科毕业生就业渠道宽广,符合我国“厚基础、宽口径”的本科人才培养方针,更深层次专业人才可以通过设置专业方向和研究生阶段解决。东北农业大学的新能源科学与工程专业侧重定位在“工程”上,依托东北农业大学工程学院深厚的工程背景,培养具有工程特色的新能源领域的人才。

明确人才培养目标

东北农业大学新能源科学与工程专业的人才培养目标是:培养服务于新能源产业,具备新能源工程基础理论与专业知识,有较高的道德和文化素质,能在新能源技术与装备领域从事研究与规划设计、装备开发与集成、经营与管理、教学与科研等方面工作,具有创新精神、实践能力和创业精神的复合性研究应用型工程技术人才。

与此对应的人才培养要求是:(1)有较扎实的自然科学基础知识和新能源工程专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法,了解本专业工程技术的前沿和发展趋势。(2)具有较好的人文、艺术修养,勤奋进取、团结合作的工作精神。(3)掌握化学分析、热工基础、机械与工程设计、管理以及生物质能、风能、太阳能等新能源转换技术方面的知识与基本技能。(4)具有新能源工程技术与装备的科研、开发及应用等基本能力。(5)能阅读本专业外文文献,具备一定程度的写作与翻译能力;具有较强的计算机应用能力及文献检索基本技能。(6)具有较强的自学能力、创新意识和实践能力,综合素质高,具有基本开展科研工作的能力。

完善课程体系

明确的培养目标为合理制定课程体系提供了良好的基础。学校的新能源科学与工程专业,在课程体系上围绕着热能与动力工程、农业工程、环境科学与工程三个依托学科进行设置。基础课和专业基础课程主要包括:有机化学、生物化学、工程制图、工程热力学与传热学、流体力学、燃烧学,机械设计基础、能量有效利用、能源微生物等。由于农业类院校以生物质能为主要方向,因此在主干课程上加大了化学类课程比重,同时也兼顾了热工、流体和力学方面的课程,力争做到“厚基础”。专业课主要包括:新能源工程概论、生物质能工程、风能工程、太阳能工程、新能源装备设计、生物质能经济学。在新能源工程概论中重点介绍新能源的基础知识以及能源与环境等内容。专业课以生物质能、风能和太阳能三大新能源为主干课程,并配以装备设计和经济学方面的知识。使学生能重点掌握最主要的新能源的工程、装备和工艺等方面的知识和技能,实现“宽口径”的人才培养。

强化实验实践教学

能源化学工程篇3

化学工程与工艺专业的定位

1.化学工程与工艺专业的性质及培养模式

化学工程与工艺专业属于工科专业,授予工学学士学位。由于化学工业的相关领域极为广泛,化学工程与工艺专业涉及的专业方向也就非常多样化,各高校的化学工程与工艺专业特点亦不尽相同。我校近年来根据社会经济、工业发展的需求趋势,兄弟院校化学工程与工艺专业方向的设置,以及我校原有的相近专业优势,设置了能够体现我校特色的化学工程与工艺专业方向,逐步建立了适合我校化学工程与工艺专业的教育培养模式。2008年,我校化学工程与工艺专业已有7届本科毕业生,其学生就业形势良好,社会反馈积极.在制定教学计划的工作中加强教学内容和课程体系的改革,加强实践教学环节,目的在于进一步提高教学质量,培养适应能力更强的化学工程与工艺人才。

2.化学工程与工艺专业的任务

根据化学工程与工艺专业的性质,化学工程与工艺专业的任务是培养学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练.具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。由于涉及化工的学科和领域很多,化学工程与工艺专业除了让学生学习一般应用化工的基本知识和基本技能外,还应该结合本地区、本行业及本校的实际情况,重点学习化工在某个或某几个领域中的具体应用,以便形成不同高校应用化工专业的特色专业方向.

3.化学工程与工艺专业的业务培养目标

本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。

4.化学工程与工艺专业的课程设置

为了使不同高校既有统一的规范,又有不同的专业特色,根据应化学工程与工艺专业的任务和业务培养目标,化学工程与工艺专业的毕业生应该具有较扎实的化工理论基础,较宽的化工应用知识以及一定的工程技术基础,从而该专业的课程设置(公共课、基础课除外)应由基础化学课、工程基础课和专业方向课3部分组成。基础化学课包括:无机化学、有机化学、分析化学、物理化学等。工程基础课主要包括:化工仪表与自动化、化学工程基础、电工电子学等。专业方向课:可根据具体方向选择专业化学课,如电化学工程方向可选理论电化学、化学电源工艺学、电解工程和电镀工程等。精细化工方向可选择化工工艺学、化工分离工程、化学反应工程等。另外实践性环节包括基础实验、综合实验、提高实验、生产实习、毕业实习和毕业论文等。

我校化学工程与工艺专业方向

就专业方向而言,化学工程与工艺专业的性质是工科。化学工程与工艺专业应该是培养具有较扎实及宽广的化学工程理论基础知识,特别注意培养学生的动手能力及解决实际问题的能力。教学计划的总体设计中要体现应用型人才所具备的工程技术基础知识,重视实验、实践、实习、毕业论文等环节。设置专业发展方向,结合广西经济发展的需要,建立在合理利用广西及学校的资源及适应科技发展、注重社会需求基础上。据此,我校化学工程与工艺专业专业方向设定为:电化学工程与精细化工。

能源化学工程篇4

关键词:化学工程;可持续发展;科技创新;挑战

化学工程是研究化学工业及其相关产业生产过程中所进行的化学过程、物理过程及其所用设备的设计与操作和优化的共同规律的一门工程学科。化学工程领域涉及工艺开发、产品研制、过程设计、装备强化、系统模拟、环境保护、生产管理、操作控制等内容。该领域包含无机与有机化工、精细化工、石油化工与煤炭化工、冶金化工、生物化工、环境化工、材料化工等行业。在社会发展与国民经济建设中,化学工程领域具有重要作用,且化学工程与信息、材料、生物、能源、资源、航天、海洋等高新技术领域相互渗透,共同推动高新科技的发展。

1我国化学工程的发展历程

化学工程在发展的过程中经历了三个阶段。第一个发展阶段称为“单元操作”[1],该阶段的化学工程是一门共性化学工程学科,以各工业种类所需的单元设备或操作的共性规律为基础;第二个发展阶段称为“传递原理和反应工程”[2],该阶段总结出了不同的单元设备和操作中的共性现象———流动、传热、传递和反应,即“三传一反”,第二阶段是在第一阶段基础上进一步的知识深化;第二阶段中,化学工程吸收了当时相关科学技术发展的新成果,强化了解决工业问题的能力,形成了模型化的方法论,进一步推动了化学工程在其他工业领域中的应用,第二阶段“三传一反”的相关研究引领了化学工程近半个世纪的发展。伴随社会经济的持续发展和工业技术的高速发展,化学工程的需求也在快速增长,特别是资源、能源利用与环境破坏问题的挑战,使得化学工程的重要性进一步凸显。然而,一方面化学工程的现有理论与方法已经愈发无法满足当前工业工程应用与发展的需求;另一方面,一些高新技术的发展如纳米科学、生命科学技术等也为化学工程未来深层次的发展创造了新的机遇。在此状况下,化工界关于化学工程新的发展阶段的讨论越来越多。我国化工学者郭慕孙提出“三传一反+X”[3],认为传递过程与反应工程的研究必须扩展到介观尺度、微观尺度范畴,并在探索多尺度转变规律过程中不断发展与更新(汪家鼎)[4]。复杂性科学的进步将有力推动化学工程的发展。为了满足社会经济发展对化学工程的需要,我们首先应当关注化学工程当前面临的挑战是什么?然后面对这些挑战怎样将其转变为机遇。

2化工发展中面临的挑战

目前,在我国化学工程的发展中,第二阶段的“三传一反”依然是化学工程研究的主要内容,但化学工程的研究内容只有产生适应学科交叉融合和经济需求的变革,才能继续在社会发展中发挥重要作用。而在此变革过程中,我们面临着多方位的挑战。

2.1化学工程与环境的可持续发展

近二三百年来,随着工业的飞速发展,资源的急剧消耗,环境也日趋恶化,在人口、资源、环境与社会经济的发展上,出现了一系列矛盾。人类面临着资源短缺、生存环境质量下降等现象,迫使人们在改造自然的同时要进行深刻的反思。人们不得不面对现实,努力建立与自然新型合作关系,走可持续发展道路,建立和谐的社会经济发展的大环境。我国政府也制定了可持续发展战略,采取了积极的措施来促进经济的全面发展和生态环境的平衡。而化学工程是对环境中的各种资源进行化学处理和加工的生产过程,该生产过程产生的废弃物部分有害、有毒,进入环境会造成污染。并且有的化工产品在使用过程中也会造成对环境的污染。因此化学工业对环境影响巨大,所以实施可持续发展对化工生产尤为重要。化学工程领域要积极探索新的方法减少化工生产过程中或产品对环境的危害。这是化学工程今年来面临的一大挑战。目前我国环境保护问题面临着严峻挑战,同时资源、能源的高效清洁利用问题也面临着突出挑战,因此,化学工程的研究对象将由以煤、石油、天然气为代表的传统不可再生能源向生物质能等新兴可再生能源进行实质性的扩展。新兴可再生能源应当具有环保性、成本低和宜于大规模利用等优点。随着环境保护、气候变化、能源清洁利用等问题越来越受到重视,各种资源的循环利用也将成为化学工程面临的重要难题,化学工程必须重视并解决这一难题。今后,化工必须以重大需求作为牵引力,以解决能源、资源利用与环境保护的重大问题为目标(李成岳)[5]。

2.2化学工程与科技创新

传统的化学工程对于“三传一反”的研究难以突破常规化工过程的量化放大和调控这一瓶颈问题,更需面对高新技术,尤其是生物技术、纳米技术和材料科学发展过程中遇到的新问题,因此其时空内涵和范围必须深化和扩展。化学工程需要解决的大多数难题都具有多尺度结构特征,空间上跨越从原子、分子到设备、系统,甚至自然生态的尺度,时间上跨越秒、月到年甚至更大的尺度,之前的计算方法并不能在这样的时空尺度中运算,更无法建立不同尺度之间的关系,因此认识不同层次结构与宏观性能的关系十分困难,这是解决很多化学工程问题的瓶颈。我国目前的可持续发展战略要求对化工产品进行全生命周期的设计,从产品研发开始就必须提前考虑以后整个周期中可能产生的生态环境效应和如何回收资源,这就需要大大扩展化学工程研究的时空范围。化学工程必须树立复杂性的观念,进入复杂性科学[6]。由于当今很多新兴领域在持续高速发展,而目前的化学工程理论与技术并不能满足这些领域发展对于化工技术的需求,因此很多化工行业的企业在市场需求和经济利益的推动下,采用了高能耗、高污染、高排放的生产模式。但如果长期忽视了化学工程相关知识的扩展和应用,忽视了化学工程学科自身的发展,长此以往,化学工程会失去发展的机遇,甚至可能在学科交叉与融合的进程中落伍。

3结论

我国化学工业正面临许多挑战,并且也会伴随有机遇,化学工业发展所带来的科技创新和对环境的友好型发展的步伐也将有较大进展。面对高新技术的发展、可持续发展战略的趋势,应认清形势,明确任务,调整发展战略,全面提高竞争力。

参考文献:

[1]DavisGE.HandbookofChemicalEngineering.Manchester:DavisBrothers,1901.

[2]BirdRB,StewartE,LightfootEN.TransportPhenomena.NewYork:Wiley,1960.

[3]KwaukMooson,LiJinghai.Transport,reactionandmulti-scale.ProgressinNaturalScience(自然科学进展),2000,10(12):1078~1082.

[4]中国科学院化学学部,国家自然科学基金委员会化学科学部.展望21世纪的化学工程.北京:化学工业出版社,2004.

[5]LiChengyue.Progressandperspectivesonchemicalengineering.ChemicalIndustryandEngineeringProgress(化工进展),2000,19(3):4~7.

能源化学工程篇5

关键词:项目课程设计焊接产品质检测资源库

中图分类号:G647文献标识码:A文章编号:1672-1578(2013)09-0033-03

2011年,江苏常州机电职业技术学院获批国家骨干院校建设单位,“焊接产品质量检测”被确定为材料成型与控制课程群资源库建设的一门课程。本课程的开发团队根据“工作过程导向”原则,组织了“项目”化教学内容的,在学法与教法上也实现了项目驱动工作化、流程化;同时在建设课程资源库方面也做了很多工作,在收集和整理资源时也提出了具体的方法与措施。

1“焊接产品质量检测”课程的教学设计

通过分析焊接技术及自动化专业培养目标中的就业岗位――焊接质检员,所需的职业能力和就业能力,课程团队重新制定课程的教学目标,最终目标是使学生能够进行焊接接头的无损检测,感受无损检测为质检工作带来的方便,形成学生正直无私、一丝不苟的质检职业道德。

课程改革流程为:以突出能力目标、职业活动导向、行动项目载体、强调学生主体、理论实践一体、开展任务训练六个原则来进行课程设计,首先请行业专家进行职业能力和工作任务分析,明确焊接质检员职业工作任务,接着进行了行动领域归纳,以企业的工作任务细化为具体的教学模块,以职业技能目标提炼教学内容,然后校企专家共同进行学习领域转换,而设置焊接产品质量检测课程,最后经过学习项目开发,共开发六个学习任务。

1.1教学设计项目化

在纵向上归纳了六个学习项目,分别为:外观检测、射线探伤、超声波探伤、磁粉探伤、渗透探伤和破坏性检测;横向上按着探伤工作过程,即检测的实施过程(检测前准备、实施检测、检测结果评定),将每个学习项目,再细化为二至三个工作任务,课程总体上实现了从职业任务大过程向小过程逐步细分而构建教学内容的方式方法,与工学结合的教学模式设计高度吻合。

1.2课程实施工作化

根据学情,课程实施主要以实践动手为主。依托“厂中校”,以焊接质检员的身分,完成质检工作,上课的过程即工作过程,不仅锻炼学生的技术技能,同时也形成学生的工作责任心。

以焊缝射线探伤项目中“平板对接焊缝的射线检测操作”任务为例,介绍课程实施的工作化。整个四个课时的教学过程分为五个步骤进行的,先是安排学生查找资料获取本次课所需资讯,这是在课前需要每个学生独立完成的,教师在这个环节当中只提供正确合理足够的信息资源和帮助;然后是检测准备,由于在前一次任务的学习当中,已有一定的知识构建,因此主要完成人依然是学生,通过小组共同进行协商完成检测器材的选择、确定检测的操作流程,教师则解答学生疑惑、现场分巡回指导。接下来是制定工艺,这部分是本次课的重点,也是难点,由学生和教师共同完成,这部分内容主要包括六个方面,其中前三项由学生按操作任务书,通过简单的讨论自学可自行完成前三项即:调试检测设备、选择射线照相质量等级、照相设备及器材的选用,而后三项内容是本次课的难点(选择透照方式、确定几何参数、制定射线检测的工艺规范)则由教师先行完成,工作过程中边演示,边向学生提出问题,引导学生思考,再让每个学生模拟练习,最后小组给出最佳探测规范。

1.3课堂组织团队化

学生在进行课程教学之前已按照企业焊接产品质量检测小组的形式进行分组,在学习过程中小组成员按照工作角色分工,团结协作,共同完成课程所要求的六大项目的训练,在此过程中小组成员间知识、技能、素质各有所长,通过相互学习,相互评价,让基础好的学生发挥示范辅导作用,同时也能让学生体验相互协作,友善竞争的职场氛围。

课堂组织团队化教学的目的,正是要将课堂还给学生,给学生一个自主的发展空间。

1.4教学方法多元化

采用的教学的方法与手段,也是根据学生的学情来按排的,所以采用了以学生为主体,以行动为导向、理实一体、“教学做评”合一的教学方法。

课堂的主体是学生,由学生独立完成项目的资料收集、整理,独立动手操作,对操作的方法、步骤、结果自查整改。教师则监控课堂,主要提供课程资源;允许学生犯错;接受学生各种行为;鼓励学生自寻解决问题的办法。解决学习难点和重点方法是教师巡回指导,及时解答学生疑问并纠正操作过程中的错误操作,对重点、难点则采用教师提问,先不予回答,组织学生讨论,在成果汇报中学生接受教师提问引导强化重点,然后通过项目教学,教师演示,学生讨论、练习突破难点。

教学手段则利用多媒体生动、形象、直观地展示学习信息;通过角色仿真,将学生定位为焊接质检员,体验职场氛围,拉近学习与工作的距离;通过现场教学培养学生的实践操作技能,通过分组讨论培养学生,体验职员间的协作与竞争。

1.5课程成果产品化

学生每完成一个项目的学习,都要有检测工艺卡、焊件探伤报告二份文档作为该项目的学习成果,向全班级进行展示,并列入课程评价。

1.6课程评价立体化

课程评价更加注重过程考核,无论是过程考核还是结果考核,考核过程中实行以“技能”为主体,以“课前预习”和“小组参与度”为两翼,构建“一体两翼”的教学评价体系,如表1所示。

表1课程考核细则

2“焊接产品质量检测”课程的资源库建设

项目教学建设的重点就是课程资源库的建设,但以有资源库却存在很多问题,例如,教学资源库的建设缺乏统一标准和框架、专业内各课程教学资源库缺乏统一的支撑平台、教学资源库的建设只注重验收环节,而缺乏持续运行的战略思考、后期的运行需要自筹经费、教学资源库建设缺乏体现高职院校特色的点睛之笔等。为使资源库“活”起来,应提出具体的建设思路与实施措施。

2.1设计理念

资源库建设的设计理念概括为:“广泛共享、有效聚合、充分应用”。也就是说资源库建设不是简单的资源堆积,要体现高职注重校企合作,注重培养学生的动手实践能力,实行“导教相融、学做合一”的教学组织形式,因此需在校企深度合作的基础上,组织校企优质资源,构建校、企、社会共享资源平台,供教师、学生、企业员工、社会培训部门等用户来使用,其最终的目的是培养高素质技能型人才。

2.2资源库内容架构

本课程资源库采用三级教学资源框架构建如图1,课程改革和课程资源库建设,首当其冲是科学的界定职业教育与课程之间的边界,即专业课程体系设计;然后才是课程的开发,以确保一门专业课程教学内容选择与组合时无判据的随意局面,确保了专业课程体系中课程与课程之间的系统衔接和边界清晰。

图1三级教学资源框架图

2.3具体实施措施

2.3.1需求导向,目标明确

高职院校专业教学资源库不同于精品课程和精品资源共享课,必须以行业、企业需求为驱动力,以最新的高职教学改革理念为指导,借鉴国内外先进经验,整合国内外校、企优质资源,通过系统化设计,建成具有内容丰富、技术先进、功能强大,满足不同院校教师用户的的要求如:课程开发、课程教学、知识更新等;支持学生的自主个性学习、就业服务、创业引导、工作后的终生教育;同时兼顾行业、企业需求如:职工培训、校企技术交流、各类社会培训、就业信息等,即建设成为能够持续更新的面向用户的应用学习型专业教学资源库。

2.3.2多元合作,优势互补

联合其他高职、社会培训部门机构、相关企业共建课程教学资源库。充分利用各高职院校已有教育教学改革成果,充分吸纳行业企业、培训机构优质项目资源及先进技术,以开放共享的资源库平台为载体,不断丰富和完善资源素材,满足各类学习者的学习需求。

2.3.3系统设计,分步实施

在充分调研、科学论证的基础上,运用国际通用资源开发SCORM标准、中国国家教育信息化技术标准委员会CELTS(学习者模型规范)等标准,对资源库建设进行整体系统设计。制定资源库建设规划,明确各阶段实施细则,采用项目化管理办法,对资源库建设全过程进行动态监控,确保资源库建设各环节按计划稳步推进。

2.3.4加大投入,多方支持

必要的投入是资源库建设的保证。资源库建设将更进一步促进信息化环境的完善。一要进一步完善网络基础设施,配套建设存储系统、数据库备份、容灾系统,搭建安全、快速的网络平台,建设先进的管理系统,确保资源库数据安全,支持资源库的大容量存储和大规模应用;二是建立课件制作环境,建设同时可供5人以上同时进行课件开发的开发中心,配置高性能的多媒体计算机,网络课件制作工具,摄、录设备,音、视频处理工具等,为资源库建设提供较好的环境和平台;三是建设网络多媒体教室,为师生利用互联网资源、教学资源库开展课堂辅助教学提供环境和保障。

2.3.5动态更新,长效运营

资源库建设并不是一步到位,而是一个“缺失――供给――平衡――缺失――供给……”不断循环的动态过程,它和整个教育的发展是相辅相成的。建立资源库定期更新保障制度,确保资源库资源每年更新度不低于15%。采取激励措施,鼓励院校、企业及培训机构将行业领域的新方向、新技术不断应用于资源库建设。为使资源库“活生生”,要通过科学管理赋予资源库“自我造血”功能,实现资源库平台平稳有效、持续健康地长期运营。

2.3.6有效激励,促进建设

教学资源库建设的进展和成败的关键在于能否真正调动广大老师参与建设积极性。学校应制定切实有效的、完善的激励机制,对积极参与学科资源库建设项目申报和建设实施的项目组,给予经费上的支持;对于建设成果经专家评审合格,应将成果纳入参与者业绩评估或工作考核中,并给予物质奖励;对积极参加知识共享的教师在精神和物质上给予足够的奖励(智慧结晶,具有知识产权)。通过建立有效的激励、评价机制,促进学科教师参与教学资源库建设的积极性和热情,促进学校教师的知识共享,提高教学资源建设的质量。

3结语

就学校当前条件而言,课程改革和资源库建设尚存在某些瓶颈,但不能因此而迟疑。所有的教育工作者和关心教育的人士应切实将其列上重要议事日程,成立领导小组、专家组、项目组,充分论证,认真规划,扎实实施,制度激励,切切实实将课程改革进行到底,将资源库建设好。以此推动办学理念的变革,促进专业建设、人才培养、教科研创新、合作交流等的持续发展,为提高创新人才培养质量、提升创新能力、提高管理水平提供最好的信息环境,并最终建成并为全人类服务。

参考文献:

[1]陈叶娣,柴建国.高职模具设计与制造专业教学资源库网络平台建设与应用研究[J].职业教育研究,2012,(11).

[2]戴勇.高职院校共享型专业教学资源库建设核心问题研究[J].中国高教研究,2010,(3).

能源化学工程篇6

关键词:化学工程;环境化学工程;现状;发展

随着经济的迅猛发展,国家越来越工业化、城市化,同时也衍生了各种环境污染问题。而化学工业作为造成大规模严重环境污染的主要过程之一,越来越被国家所重视,如今,化学工程已经开始向环境化学工程方向发展。而环境化学工程无论是在环境改善、修复,还是在提高人们的生活等各个方面,都能起到重要作用。本文大略的分析讨论了化学工程的现状及发展。

1化学工程的现状

由于我国仍属于发展中国家,且人口基数大,工业化发展相对发达国家而言还比较落后,人们对于各种基础化学品的需求远远没被满足,许多地方企业为了牟利,仍然走的是先污染后治理的老路,对环境造成了很大的破坏。目前,我国的主要污染有三:(1)水污染工业生产必不可少的东西就是水,而工业生产用过之后的废水回收过程过于麻烦,又没有经济价值,一般的工厂就会选择排放到山河湖泊里。由于排放量太大,超过了湖泊自我修复能力,湖泊就被污染了,这种湖水是不能喝的。据不完全统计,在我国被污染的水量已经达到了总淡水量的76.63%。(2)空气污染我国的工业生产所用能源大多是化石能源,而绝大多数化石能源焚烧后都会产生污染气体,不回收利用直接排向大气的话就会造成严重的空气污染。而我国回收利用废气的技术并不成熟,很多工厂简单处理一下就排向了大气。(3)土壤污染如果把化学肥料乱填乱排,土壤就会慢慢失去活性,这种失去活性的土壤是不能耕种的。因此,原来的那种先污染后治理的思想是行不通的,我们应该将注意力集中在化工生产最优化、实现资源回收利用、新能源的开发上面,也就是环境化学工程。

2化学工程的发展

环境化学工程在20世纪60年代初期,许多国家为了发展化工工业,忽略了化工工业发展所带来的环境污染。随着环境污染的日益严重,随之而来的各种问题也越来越多,人们开始重视环境的保护,各国政府也想方设法的去改善环境。但是这些措施的作用很有局限性,并不能从根源上消除或减少污染的增长,而且还会影响到国家经济的发展,不能适应人类进步的要求。为了解决这一矛盾,各国政府制定了许多条例。1984年,在原苏联召开的国际会议上,联合国欧洲经济委员会指出:无废工艺是一种让所有的原料、能源在资源-生产-消费-二次资源的循环中得到充分的回收利用的生产产品的方法,同时,不破坏环境的正常功能;在法国,也制定了《预防优于治理》的条例,来做出规定;1990年,美国将污染防治设为国案;在我国,国家自然科学基金委员会与中国石化公司为了开展环境友好的催化化学和反应的研究。想要从根本上解决化学工业所产生的污染问题,实现可持续发展的战略目标,应从根源下手,开发出无污染工业,或者优化反应过程,将污染扼杀在生产过程中。简而言之,就是开发出新方法把对人类或者环境有害的原料或溶剂反应掉,反应出对环境无害甚至有利的材料,实现零污染,这就是环境化学工程的目的。

3结语