当前位置: 首页 > 范文大全 > 办公范文

高分子材料研究进展范例(12篇)

时间:

高分子材料研究进展范文篇1

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。转贴于

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

高分子材料研究进展范文篇2

本文的主角――陕西师范大学材料科学与工程学院特聘教授胡鉴勇,是国内有机光电子材料研究领域的新生代杰出代表。以有机电致发光二极管(OLED)、有机场效应晶体管(OFET)和有机太阳能电池(OPV)为代表的有机光电子材料和器件是研究的热点,胡鉴勇博士长期致力于应用于高性能有机光电子器件的新型有机/高分子半导体材料的开发和研究,在高效稳定的有机光电子材料的设计、合成、性能表征及其在有机光电子元器件的应用方面开展了大量创新性研究,取得了一系列原创性成果,逐渐成长为有机光电子材料领域的骨干力量。

勤奋钻研,铸就科研里程碑

早1995年大学毕业后,胡鉴勇在家乡的一所中学担任了9年的化学教师;2004年留学于日本佐贺大学获得工学博士学位,随后进入日本山形大学有机光电子研究中心,OLED研究世界权威科学家城户淳二教授(Prof.JunjiKido)研究室进行博士后研究,并在日本世界级科研中心-日本理化学研究所RIKEN,跟随著名有机半导体材料科学家龙宫和男教授(Prof.KazuoTakimiya)从事特别研究员工作;2015年由陕西师范大学以海外高层次人才-陕西省“百人计划”特聘教授身份引进到陕师大材料科学与工程学院工作。

“勤奋、刻苦、创新、突破”是胡鉴勇博士的特点,在日本求学工作期间,他参与过一项日本国家研发课题(高效有机电子器件研发),承担过日本文部科学省、日本新能源和产业技术开发机构(NEDO)和日本科学技术振兴机构(JST)资助的多项研究课题。

在有机深蓝荧光材料的研究方面胡鉴勇博士贡献卓著。高效率的深蓝发光能最大限度地提高全彩显示品质或照明的显色指数,有效降低OLED显示器的功耗,开发性能好的蓝光材料,尤其是具有高的发光效率和CIE色度坐标Y值小于0.10的深蓝光材料对于实现高性能的OLED器件意义重大,胡鉴勇博士设计合成了一类新的蒽类衍生物―基于双蒽的D-A型深蓝延迟荧光材料,通过对传统的蓝光始祖材料蒽分子进行一系列结构上的修饰,包括采取苯基为中心桥链和pi共轭阻隔基团,在其对位上分别引入以单蒽为核的电子供体单元(D)和电子受体单元(A),形成了具有独特的双蒽结构的D-A型材料分子,以该类材料为发光体,成功实现了满足高清晰度电视(HDTV)蓝光标准的高效率器件,对实现高性能OLED器件具有“里程碑”式的创新意义。该工作发表在材料领域国际顶尖期刊《先进功能材料》上(Adv.Funct.Mater.2014,24,2064),并入选SCI高被引论文(top1%)。

在空气稳定的、高迁移率的双极性有机半导体材料的研究方面胡鉴勇博士成绩斐然。开发空气稳定的、高迁移率的n型和双极性有机半导体材料,是实现高性能OFET的前提。胡鉴勇博士和团队成员一起合作开发了一种全新的电子受体单元―萘并二噻吩二酰亚胺(NDTI),以其为共聚电子受体中心的D-A型聚合物实现了空气稳定的,高迁移率的n型和双极性有机场效应晶体管,该成果发表在美国化学会上(J.Am.Chem.Soc.2013,135,11445),并入选SCI高被引论文(top1%)。以此为契机,胡鉴勇博士进一步基于NDTI发展了新型双极性有机小分子材料,并实现了空气稳定的、可溶液加工的、高迁移率的双极性有机场效应晶体管和互补逻辑电路(J.Mater.Chem.C,2015,3,4244;Chem.Mater.2015,27,6418)。

在非富勒烯受体材料的研究方面胡鉴勇博士成效显著。近些年来,以聚合物电子给体和富勒烯电子受体材料为活性层的本体异质结太阳能电池取得了巨大的进步,但由于富勒烯价格昂贵、吸收光谱和能级调制较为困难,开发高效的n型聚合物电子受体材料来替代富勒烯备受业界关注。胡鉴勇博士开发的基于NDTI的有机小分子和聚合物,作为非富勒烯受体材料,在全聚合物OPV器件中取得了较好的光电转换效率(ACSMacroLett.2014,3,872)。

迄今为止,胡鉴勇博士以第一作者或通讯作者在Adv.Funct.Mater.;J.Am.Chem.Soc.;Chem.Commun.;Org.Lett.;J.Mater.Chem.C.;Chem.Eur.J.;和J.Org.Chem.等国际著名学术期刊上共发表SCI论文30余篇,受邀撰写英文论著1章,在国际学术会议上作讲演报告20余次,多次受邀在国内著名大学和学会上做学术交流报告,申请日本专利多项,已授权2项。多年来作为一名有机光电子材料领域的科研人员,胡鉴勇博士兢兢业业、孜孜以求,以自己的实际行动为铸就科研力量不断添砖加瓦。

迎接挑战,提升人生新高度

“十年弹指一挥间”,十年前为了提升人生高度,丰富人生阅历,胡鉴勇博士以34岁的“高龄”选择自费出国留学路,付出了常人难以想象的的艰辛和努力;十年后怀揣着拳拳赤子之心,胡鉴勇博士毅然谢绝多家日本和国内公司的诚意邀请,选择了陕西师范大学作为自己事业发展的新平台。

为了进一步提升有机光电子材料研究新高度,拓展以有机电致发光二极管(OLED)、有机场效应晶体管(OFET)和有机太阳能电池(OPV)为代表的有机光电子材料和器件在新型信息显示、绿色节能固体照明和新能源等技术领域的应用前景,胡鉴勇博士争取到了多项科研课题,在不到一年的时间里,成功打造了一个环境优美、设备一流的先进实验室和一个小而精致的科研创新团队,以期在OLED跻身最具发展前景的下一代显示技术和固态照明技术产业化,OFET应用于有机传感器、有源矩阵显示、射频标签、电子纸等新兴产业,OPV技术光电转换效率实用化等领域大显身手,开展更深入、更细致的高端研究工作。

高分子材料研究进展范文篇3

激光隐身材料的研究新进展卢言利张拴勤吕绪良毕道鵾(5)

我国压力容器用中厚板的状况和发展趋势胡滢彭康蔡彬梅容俊(8)

纳米TiO2光催化剂的改性研究刘转年蔡倩倩韩晓刚赵西成(11)

热机械循环训练对Fe—Mn—Si系形状记忆合金组织和性能的影响许宏林王彬陈珊俸莉周莉华杨军(16)

聚乳酸合成方法的研究进展吴景梅邰燕芳(19)

连续纤维增强复合材料的制备方法李丹武建军董允(22)

三价铬电沉积研究状况雷华山何湘柱舒绪刚(25)

偏心盘和摆杆摩擦副的选材和工艺材料导报网络版樊琳李新成(28)

多孔金属材料用于废气净化贵金属催化剂载体的研究金家敏包伟芳吴菊清张德明(1)

导电聚吡啶的研究进展冉奋吴有智孔令斌罗永春康龙(4)

聚ε-己内酯的合成及其复合材料研究王慧庆陈松林朱长健聂康明王嵩(8)

金属材料表面改性技术的研究进展程挺宇郑锋(13)

离子液体对聚合物相转变影响的研究进展汪潇陈烨朱天祥张玉梅王华平(16)

四方晶系(000-555)特征平行四边形表的统一宋宝来(21)

一维导电聚合物的制备及其在生物传感器中的应用杨光明谭琳卢旭晓刘晓靓白慧萍杨云慧(33)

PDP用透明介质浆料的研制常国海韩文高伟(37)

钢铁企业废气洁净技术的发展周祺张舞文刘爱华么文静霍光辉马爱斌(40)

智能型节能环保玻璃研究进展张波张建新蔡伟(44)

加强实验室改革,培养创新型人才贾芳马晓翠吕有明曹培江亮(1)

金刚石薄膜的发展、制备及应用王丽军段新超张雷王隆洋王小平(3)

微波等离子灯谐振腔及其材料的研究与分析诸葛天祥杨中海黄启先(8)

关于金属纳米材料力学性能的几个问题王玲张黄莉(12)

有机硅氟材料的改性研究进展及应用范敏马振华陈粤马清林(16)

表面活性剂、pH对ZnO光致发光及光催化性能的影响饶兴堂王萍萍李珍靳福江(19)

绝缘陶瓷材料电火花加工技术的研究进展杜平凡席珍强王龙成王耐艳高林辉姚剑(23)

材料导报网络版高新技术在聚合物防污涂层研究中的应用唐新德韩念凤徐静(25)

纳米晶体铜的制备及其力学性能李东波魏钦帅刘环陈晓斌李依帆(29)

染料敏化纳米晶太阳能电池的研究进展胡艳丽王华张海军(33)

墙体材料的现状及进展吕永桃孙道胜丁益王爱国张伟(37)

基因转染新载体-纳米微囊的研究进展李幼琴徐靖宏谈伟强林军(1)

可逆热致变色材料及其应用现状董翠华龙柱庞志强杨淑蕙(4)

水溶液锂离子电池电极材料的发展概况杨绍斌蒋娜(8)HttP://

无卤阻燃材料的研究进展查忠勇侯文斌晏华王志娟王雪梅余荣升(11)

MgB2(001)面超导结构的电子浓度第一原理分析李东波魏钦帅刘环(15)

含环氧键的液晶高分子改性环氧树脂的研究吕程牟其伍(20)

电气石的结构、性质与应用许文花吕宇鹏赵光峰徐忠杰王爱娟肖桂勇(22)

体系酸度对直接沉淀法制备钛酸钡的影响王璟董赛男栾雪梅商少明(27)

Mn、Sb掺杂NBT—KBT—BT无铅压电陶瓷的研究魏敏先黄新友高春华崔永臻(30)

快速水热法制备铝掺杂羟基磷灰石洪流林长春于文利赵亚平(34)

Origin软件在材料科学实验数据处理中的应用龚喜兵李宇明胡红军(36)

40Cr激光熔凝硬化组织形态及硬度研究邱玲李刚邱星武(39)

聚硅烷陶瓷先驱体研究进展李新孙争光廖义军黄世强(42)

我国电容器级钽丝发展与展望材料导报网络版万庆峰王德志赵兵田苗(1)

TiO2-SiO2复合薄膜光催化活性的研究进展彭晓光(5)

二硼化钛基陶瓷涂层的制备研究进展林金平马静王俊孙宝德(9)

透明导电氧化锌薄膜的制备贾芳马晓翠吕有明曹培江亮(13)

新型耐热镁合金Mg—Zn—Cu的研究麻彦龙杨明波彭华东彭晓斌李元君(16)

无机载银抗菌材料抗菌机理及细菌对其抗性机制李文茹谢小保欧阳友生陈仪本(20)

相变材料Na2SO4·10H2O的脱水过程及相分离分析黄金柯秀芳(24)

钛酸铋钠系列铁电薄膜的研究李大吉王亚平李绍霞王卓(27)

聚乙烯醇-海藻酸钙制备的研究及优化王孝华(31)

合成二苯基硫脲的新方法研究艾艳玲扬琴(34)

PECVD法制备氮化硅薄膜的研究进展王育梅吴孟强张树人(36)

粉末溅射法制备薄膜充电电池材料王定友任岳顾正建牛连斌房燕(40)

柔性热防护系统的发展与应用杨国威胡海峰张玉娣王其坤(42)

纳米氧化铬的制备方法及应用研究进展谭瑞林红朱春城(46)

光催化技术应用进展刘长坤谢娟王虎吴启凤(52)

质子交换膜燃料电池双极板材料研究进展张翔张宗科吴国清黄正(1)

高铬Ni-Cr基高温合金的应用与发展毕中南董建新(6)

超塑性钛合金研究究开发概?寇生中昝斌(10)

二次硬化型超高强度钢的发展李阿妮王春旭刘宪民(13)

Ti/Zr基准晶研究进展黄火根羌建兵董闯(17)

超支化聚合物刘涛范晓东(23)

导电聚合物的温差电性能刘显杰(27)

界面处理对涤纶帘线/天然橡胶复合材料粘结性能的研究袁爱春胡祖明刘兆峰(31)

聚乳酸降解机理及其方法探讨朱振宇骆光林任鹏刚(35)

聚氨酯胶粘剂的制备、性能及其交联改性研究杨冬亚邱凤仙曹国荣吕杰(38)

平辊压扁轧制圆钢丝工艺的研究动态宋清华王伯健(41)

材料导报网络版制备磷酸锆介孔材料的新型方法冯英俊何文赵洪石李正茂(46)

热致相分离法制备聚烯烃微孔膜蔡颖刘振周津(49)

KH-570对纳米氧化锌表面接枝改性研究马书蕊施利毅冯欣付继芳(52)

高分子材料研究进展范文篇4

【关键词】电子俘获材料;光存储;信息技术

随着信息技术的飞速发展和信息设备的迅速更新,各种信息载体对自身的记忆功能和存储功能提出了更高的要求。为适应时代的发展,信息载体不仅要求其记忆材料具有信息储存量大、高存储密度的功能,而且还要其具有高数据传输率、高存储寿命、高的擦写次数及很高的重复操作性。就拿迅速发展的计算机技术来说,电子俘获光存储技术当属发展潜力最大的信息存储技术。

1几类典型的电子俘获光存储材料

以BaFBr为代表,常用于X射线或紫外光影像存储。读出光波长在400~700nm之间,读出发光为380~400nm之间的蓝紫色发光。该种材料为研究最早、具有最强实用化程度的电子俘获材料之一,其光激励发光机理的研究,奠定了电子俘获光存储机理研究的基础。

目前BaFX:Eu2+(X=C1,Br)的光激励发光机理的模型主要有以下几类:其一,以日本TakahashiK为代表的导带复合模型;其二,以德国vonSeggernH为代表的隧穿模型;其三,近年新提出的导带隧穿并行模型[1]。

1.2AES型电子俘获材料(AE=Ca,Sr)

例如SrS:Eu,Sm等。该类材料的写入光波长在紫外或蓝光区,读出光在近红外区域,读出发光波长范围从绿光到红光。除了用于光信息存储外,该材料还广泛应用于光信息处理中。

对于SrS:Eu2+,Sm3+的电子俘获机理,一般认为:Eu2+是发光中心,Sm3+是电子陷阱,在写入读出时分别产生如下离化、复合或俘获过程:Eu2+~Eu3++e,Sm3++e~Sm2+,但新的研究发现将Sm3+独立地作为电子陷阱仍存在问题[2]。最新的发光机理研究表明,杂质引起的缺陷而不是杂质本身承担电子俘获中心或空穴俘获中心,离子杂质的价态在激发后的光存储状态下没有发生改变。光激励吸收带以外的波长范围的Sm3+吸收峰(6H5/2-6F1/2,3/2)没有发生变化,由此Sm3+离子在激发前后的价态和数量并没有发生变化,即Sm3+在激发后没有因为电子俘获或空穴俘获转变为Sm2+或Sm4+[3]。

研究表明,共掺杂时,Eu2+离子的束缚空穴能力远大于Sm3+离子;Sm3+离子的作用就是与俘获中心组成为复合体陷阱并影响陷阱能级的深度,使陷阱在室温下能稳定地存储电子。一些过渡元素离子或稀土离子也有这个作用,如Mn、La。

典型的有KC1:Eu、CsBr:Eu等。其写入波长为X射线或紫外光,读出光波长范围从绿光到红光,读出发光波长范围从蓝光到绿光。该类型为新兴的一类电子俘获存储材料,一般具有较深的陷阱,读出衰减较慢。

在材料改进方面,新研究的KCl:Eu,KBr:Eu,NaCl:Cu等的紫外(X射线)存储,具有相对较缓慢的读出衰减,可更好地弥补BaFB:的较快衰减特性。这类材料虽然容易制备成单晶,但是掺杂后易潮解,部分材料还可能具有放射性,不利于民用。而且部分材料的有效原子系数小,不利于做高能射线存储,也限制了使用范围。另外在此类材料中发现的光激励发光衰减慢的原因尚未得到很好的解释,深陷阱不易擦除(或存储信息残留)对反复使用也不利。

1.4玻璃陶瓷电子俘获材料

玻璃陶瓷材料为近年来最新投入研究的电子俘获光存储材料。已有报道用于电子俘获的玻璃陶瓷材料有硼酸盐玻璃陶瓷、氟铝酸盐玻璃陶瓷和氟锆酸盐玻璃陶瓷等。氟氧化物玻璃陶瓷的研究目前正在进行中。玻璃陶瓷的结构是以玻璃作为基质,镶嵌有若干掺有稀土发光中心的微晶[4]。由于玻璃陶瓷材料均匀且各向同性,不存在双折射及光散射现象,因此能得到更高的空间分辨率。众所周知,玻璃陶瓷经过高温烧结,性质稳定,易于存放和加工,以此为基质,又可克服以往电子俘获材料稳定性不好的缺点。

最近研究的氟氧化物玻璃陶瓷在化学稳定性、机械度、激光损伤敏值等指标上都有明显的优越性,而且易制成各种形状。它虽然在宏观上获得了光激励发光,但是有关光激励发光的来源,以及相关的电子、空穴俘获中心的位置和存在方式,存储能量的传递等仍然是有待研究解决的问题。

2电子俘获光存储机理

电子俘获是一种光激励发光现象[5]。光激励发光是指材料受到辐照时,产生的自由电子和空穴被俘获在晶体内部的陷阱中,从而将辐照能量存储起来,当受到光激励时(波长比辐照光长),这些电子和空穴脱离陷阱而复合发光。因而这种材料被形象地称为“电子浮获材料”。电子俘获光存储写入与读出的简单原理,如图1所示。

当用写入光辐照时,材料中产生大量的电子和空穴,这些电子和空穴被俘获在晶体内部的陷阱中,从而将辐射能量存储起来。当受到光激励时(即读出光,能量小于写入光),陷阱中的载流子(电子和空穴)脱离陷阱而与发光中心复合发光。图1中,过程1表示晶体受电离辐射产生跃过禁带的自由电子和空穴,过程2、4表示自由电子被俘获并暂时存储在陷阱中,过程3、5存储在陷阱中的电子和空穴在受可见光或红外光激励时跃迁出陷阱,又处于自由状态,过程6、7、8表示这些自由电子和空穴可以在材料中的某些发光中心离子的局域能级上发生复合,而把它们所带的能量以一定波长的能量(hv)释放出来从而完成整个读出及写入过程。电子俘获光存储的写入(激发),读出(激励)的波长范围,受基质的晶格影响,也受杂质原子,晶格缺陷,以及一些破坏晶格周期性的界面等的影响。破坏了晶格的周期性,就可能在禁带中形成一些定域能级,定域能级的不同,直接影响了激发、激励以及激励发光的不同。电子俘获材料正是选择了不同基质以及掺杂,得到了不同波段的存取,电子俘获材料的读写波长由材料中的发光中心决定。

3存在问题

由以上分析可见,现有的电子俘获光存储材料还存在了很多的问题,而解决这些问题的一个最有效的途径就是开发新的材料。硅酸锌即为一种良好的基质材料,它具有良好的化学稳定性、允许高掺量掺杂光活性离子等特点,Zn2SiO4:Mn2+还有良好的发光性能,且由于其制备简单,成本低廉已经在荧光材料中得到了应用。但这种材料在电子俘获光存储方面的研究和应用却鲜有报道。硅酸锌的研究已越来越引起人们的重视,必将推动光存储材料的进一步研究与开发。

【参考文献】

[1]赵辉,王永生,徐征,等.光激励发光的并行模型[J].物理学报,1998(2):334-338.

[2]何志毅,王永生,孙力等.SrS:Eu与SrS:Eu,Sm中电子陷阱与光存储研究[J].物理学报,2000(7):1377-1380.

[3]HeZY,WangYS,SunL,et,al.TheroleofSmionsinopticalstorageofSrS:Eu,Sm[J].Scienceinchina2001,44(9):1189-1196.

高分子材料研究进展范文

1凝聚态物理学与材料概述

凝聚态物理学,是指研究凝聚态物质的物理性质、微观结构等之间的关系。简而言之,通过对构成凝聚态物质电子、离子等运行形态、规律进行探索,充分认识物质的物理性质。随着研究不断深入,针对凝聚态物理学的研究已经由初级层面朝着高级层面发展。如有固体形态向外拓展上升至液氮、熔盐等液态物质,甚至还有气态物质。另外,随着技术的发展,一些全新的概念体系逐渐渗透,产生了更多新的研究成果,赋予材料新特点,在很大程度上帮助学者解决疑难问题提供了极大的支持。

就广义角度来看,材料是帮助人类生产和生活,制造有用器件的物质。随着人类社会发展,自然资源和能源日益减少,对于材料概念的理解也发生了变化,因此材料是人类社会能够接受、且经济性地创造有用器件的物质,更加强调资源、环境等因素。从实用层面来划分,材料分为金属、无机及有机3种。

2凝聚态物理学与材料研究前沿问题分析

2.1表面与界面方面

表面与界面作为物理学与材料学交叉的重要领域,很多相互作用都建立在材料表面和界面基础之上。物体自身状态直接决定材料热力学效应。作为重点研究领域,界面与表面是当今该领域研究的一大难点。凝聚态物理学研究成果,在很大程度上为材料界面与表面理论发展提供了支持,如离子束的提出,使得人们自20世纪60年代开始运用离子束,注入到材料表面,对材料表面特性进行优化和调整,使其在具体实践中能够更好地发挥积极作用,为人们生产和生活提供便利。

催化和腐蚀是表面控制的2个主要过程。截止到今天,催化和腐蚀机理尚未得到完善的研究成果。此外,薄膜功能材料的提出,也成为该领域研究的重点。如光的干涉效应能够引起透射和反射。表面与界面在为电子学方面也具有非常重要的作用,如半导体和金属界面等,能够对器件性能的发挥产生不同程度的影响。综合来看,表面和界面的研究处于前沿地位,且每个关键问题的有效解决都能够给相关领域带来巨大的经济价值。

2.2微结构方面

凝聚态物理学很多基本理论,如固体能带理论、元级法理论等都是建立在粒子数无限大基础之上。这些理论证明了铜、铝具有导电性,为实践生产奠定了理论基础。现如今,运用能带理论,能够对晶体的参量进行计算,并获取准确的结果。由于该项理论非常成熟,要想进一步突破难度非常大。对此要想发现全新的结果,需要从不同的道路着手。正如R.Feynman曾指出当我们得以对细微尺度的事物进行操控,将会在很大程度上拓展我们获得的范围,其所要強调的是未来新材料的发展和研究动向,即通过设计和控制材料在细节上的差异性,从而在现有材料中探索出意想不到的物理性能。

2.3理论与模型方面

理论与模型对材料科学贡献较大。计算物理学是材料科学家运用的主要工具,定量模型的发展是物理学与材料科学交叉的产物,通过构建模型能够对物品的物理性质等进行分析和了解。目前,很多物理学概念在材料研究中应用较广。如相变、裂变等,与之相对应的仪器设备也层出不穷。如今空间分辨率能够在特定环境下观察到单个原子,因此可以说,没有这些研究成果,材料科学就不能够获得更大的进步。但是微结构的定量描述始终是材料科学的主要课题,也是物理学家和材料学家合作的重点方向。

2.4材料方面

凝聚态理论日渐完善,使得我们能够更加明确材料的物理特性,但是随着人类社会的发展,仍然面临着很多疑难问题。如强关联体系中的材料宝藏。电子关联,是电子之间形成的库仑作用。就现有理论研究成果来看,处理固体电子系统时,需要适当忽略电子之间的相互作用,在理想条件下进行研究。但得出的结论依旧不能够掩盖这一缺陷,且不能够适用于实践当中。可见,电子之间的库伦作用关联重要性受到了广泛关注。

通常来说,强关联物质存在于特定范围当中,如金属与绝缘体界限附近,即电子处于完全离域化拓展状态。因此要想实现对电子具体状态的有效判断,研究人员需要从其他方面入手,分析各个元素之间的关系,然后对其形态进行排序,最后获取到相应的规则。值得关注的是,现阶段,我们针对强关联体系的认知水平处于初级阶段,无论是理论、还是实践方面都有待进一步深入。而从材料方面来说,多元复杂结构的氧化物尚未得到开发和研究,因此,可以将此作为未来全新的研究课题,并利用强关联理论,进而实现对新材料的勘探和开发,为人类社会进一步发展提供更多支持和参考。

2.5工艺方面

凝聚态物理学发展建立在新技术及传统工艺优化进程当中。如上文提到的离子束技术,能够对材料表面的相互作用进行分析。针对处于温度较低的条件下,能够建设成为不同的材料。因此可以广泛应用于高性能、功能丰富的薄膜当中,从而形成全新的材料。另外,激光技术的提出为科学研究带来了诸多发展契机。如激光拉曼光谱与XRD技术的有机整合,能够帮助我们重新认识晶体结构,进而为半导体的进一步探索提供相应的技术支持。外延作为一种制作单晶薄膜的技术,其之所以能够发展起来,究其根本是在凝聚态物理学的支持存在密不可分的联系。随着社会进步,人们对技术将会提出更高要求。因此还应加大对全新工艺的研究,与此同时,加大对现有工艺不足和缺陷的优化和改正,进而为实践研究做好充分的准备。

高分子材料研究进展范文篇6

一、21世纪物理学的几个活跃领域

蒸蒸日上的凝聚态物理学

自从80年代中期发现了所谓高临界温度超导体以来,世界上对这种应用潜力很大的新材料的研究热情和乐观情绪此起彼伏,时断时续。这种新材料能在液氮温区下传导电流而没有阻抗。高临界温度超导材料的研究仍是今后凝聚态物理学中活跃的领域之一。目前,许多国家的科学工作者仍在争分夺秒,继续进行竞争,向更高温区,甚至室温温区超导材料的研究和应用努力。可以预计,这个势头今后也不会减弱,此外,高临界温度的超导材料的机械性能、韧性强度和加工成材工艺也需进一步提高和解决。科学家们预测,21世纪初,这些技术问题可以得到解决并将有广泛的应用前景,有可能会引起一场新的工业革命。超导电机、超导磁悬浮列车、超导船、超导计算机等将会面向市场,届时,世界超导材料市场可望达到2000亿美元。

由不同材料的薄膜交替组成的超晶格材料可望成为新一代的微电子、光电子材料。超晶格材料诞生于20世纪70年代末,在短短不到30年的时间内,已逐步揭示出其微观机制和物理图像。目前已利用半导体超晶格材料研制成许多新器件,它可以在原子尺度上对半导体的组分掺杂进行人工“设计”,从而可以研究一般半导体中根本不存在的物理现象,并将固态电子器件的应用推向一个新阶段。但目前对于其他类型的超晶格材料的制备尚需做进一步的努力。一些科学家预测,下一代的电子器件可能会被微结构器件替代,从而可能会带来一场电子工业的革命。微结构物理的研究还有许多新的物理现象有待于揭示。21世纪可能会硕果累累,它的前景不可低估。

近年来,两种与磁阻有关的引起人们强烈兴趣的现象就是所谓的巨磁阻和超巨磁阻现象。一般磁阻是物质的电阻率在磁场中会发生轻微的变化,而巨磁和超巨磁可以是几倍或数千倍的变化。超巨磁现象中令人吃惊的是,在很强的磁场中某些绝缘体会突变为导体,这种原因尚不清楚,就像高临界温度超导材料超导性的原因难以捉摸一样。目前,巨磁和超巨磁实现应用的主要障碍是强磁场和低温的要求,预计下世纪初在这方面会有很大的进展,并会有诱人的应用前景。

可以预计,新材料的发展是21世纪凝聚态物理学研究重要的发展方向之一。新材料的发展趋势是:复合化、功能特殊化、性能极限化和结构微观化。如,成分密度和功能不均匀的梯度材料;可随空间时间条件而变化的智能材料;变形速度快的压电材料以及精细陶瓷材料等都将成为下世纪重要的新材料。材料专家预计,21世纪新材料品种可能突破100万种。

等离子体物理与核聚变

海水中含有大量的氢和它的同位素氘和氚。氘既重氢,氧化氘就是重水,每一吨海水中含有140克重水。如果我们将地球海水中所有的氘核能都释放出来,那么它所产生的能量足以提供人类使用数百亿年。但氘和氚的原子核在高温下才能聚合起来释放能量,这个过程称为热核反应,也叫核聚变。

核聚变反应的温度大约需要几亿度,在这样高的温度上,氘氚混合燃料形成高温等离子体态,所以等离子体物理是核聚变反应的理论基矗1986年美国普林斯顿的核聚变研究取得了令人鼓舞的成绩,他们在TFTR实验装置上进行的超起动放电达到20千电子伏,远远超过了“点火”要求。1991年11月在英国卡拉姆的JET实验装置上首次成功地进行了氘氚等离子体聚变试验。在圆形圈内,2亿度的温度下,氘氚气体相遇爆炸成功,产生了200千瓦的能量,虽然只维持了1.3秒,但这为人类探索新能源——核聚变能的实现迈进了一大步。这是90年代核能研究最有突破性的工作。但目前核聚变反应距实际应用还有相当大的距离,技术上尚有许多难题需要解决,如怎样将等离子加热到如此高的温度?高温等离子体不能与盛装它的容器壁相接触,否则等离子体要降温,容器也会被烧环,这就是如何约束问题。21世纪初有可能在该领域的研究工作中有所突破。

纳米技术向我们走来

所谓纳米技术就是在10[-9]米(即十亿分之一米)水平上,研究应用原子和分子现象及其结构信息的技术。纳米技术的发展使人们有可能在原子分子量级上对物质进行加工,制造出各种东西,使人类开始进入一个可以在纳米尺度范围,人为设计、加工和制造新材料、新器件的时代。粗略的分,纳米技术可分为纳米物理、纳米化学、纳米生物、纳米电子、纳米材料、纳米机械和加工等几方面。

纳米材料具有常规材料所不具备的反常特性,如它的硬度、强度,韧性和导电性等都非常高,被誉为“21世纪最有前途的材料”。美国一研究机构认为:任何经营材料的企业,如果现在还不采取措施研究纳米材料的开发,今后势必会处于竞争的劣势。

纳米电子是纳米技术与电子学的交叉形成的一门新技术。它是以研究纳米级芯片、器件、超高密度信息存储为主要内容的一门新技术。例如,目前超高密度信息存储的最高存储密度为10[12]毕特/平方厘米,其信息储存量为常规光盘的10[6]倍。

纳米机械和加工,也称为分子机器,它可以不用部件制造几乎无任何缝隙的物体,它每秒能完成几十亿次操作,可以做人类想做的任何事情,可以制造出人类想得到的任何产品。目前采用分子机器加工已研制出世界上最小的(米粒大小)蒸汽机、微型汽车、微型发电机、微型马达、微型机器人和微型手术刀。微型机器人可进入血管清理血管壁上的沉积脂肪,杀死癌细胞,修复损坏的组织和基因。微型手术刀只有一根头发丝的百分之一大小,可以不用开胸破腹就能完成手术。21世纪的生物分子机器将会出现可放在人脑中的纳米计算机,实现人机对话,并且有自身复制的能力。人类还有可能制造出新的智能生命和实现物种再构。

“无限大”和“无限斜系统物理学

“无限大”和“无限斜系统物理学是当今物理学发展的一个非常活跃的领域。天体物理和宇宙物理学就属于“无限大”系统物理学的范畴,它从早期对太阳系的研究,逐步发展到银河系,直到对整个宇宙的研究。热大爆炸宇宙模型作为本世纪后半叶自然科学中四大成就之一是当之无愧的。利用该模型已经成功地解释宇宙观测的最新结果。如宇宙膨胀,宇宙年龄下限,宇宙物质的层次结构,宇宙在大尺度范围是各向同性等重要结果。可以说具有暴胀机制的热大爆炸宇宙模型已为现代宇宙学奠定了一定的基矗但是到目前为止,关于宇宙的起源问题仍没有得到解决,暴胀宇宙论也并非十全十美,事实上想一次就能得到一个十分完善的宇宙理论是很困难的,这还有待于进一步的努力和探索。

“无限大”系统物理学还有两个比较重要的问题是“类星体”和“暗物质”。“类星体”是1961年发现的,一个类星体发出的光相当于几千个星云,而每个星云相当于1万亿个太阳所发出的光,所以对类星体的研究具有十分重大的意义。60年代末,科学家们发现一个编号为3C271的类星体,一天之内它的能量增加了一倍,到底是什么原因使它的能量增加如此迅速?有待于21世纪去解决。“暗物质”是一种具有引力,看不见,什么光也不发射的物质。宇宙中百分之九十以上的物质是所谓的“暗物质”,这种“暗物质”到底是什么?我们至今仍不清楚,也有待于下世纪去解决。

原子核物理和粒子物理学则属于“无限斜系统物理学的范畴,它从早期对原子和原子核的研究,逐步发展到对粒子的研究。粒子主要包括强子(中子、质子、超子、л介子、K介子等)、轻子(电子、μ子、τ轻子等)和媒介子(光子、胶子等)。强子是对参与强相互作用粒子的总称,其数量几乎占粒子种类的绝大部分;轻子是参与弱相互作用和电磁相互作用的,它们不参与强相互作用;而媒介子是传递相互作用的。目前,人们已经知道参与强相互作用的粒子都是由更小的粒子“夸克”组成的,但是至今不能把单个“夸克”分离出来,也没有观察到它们可以自由地存在。为什么“夸克”独立不出来呢?还有一个不能解释的问题是“非对称性”,目前我们已有的定理都是对称的,可是世界是非对称的,这是一个有待于解决的矛盾。寻找独立的夸克和电弱统一理论预言的、导致对称性自发破缺的H粒子、解释“对称”与“非对性”的矛盾,是21世纪粒子物理学研究的前沿课题之一。

从表面上看“无限大”系统物理学与“无限斜系统物理学似无必然的联系。其实不然,宇宙和天体物理学家利用广义相对论来描述引力和宇宙的“无限大”结构,即可观察的宇宙范围;而粒子物理学家则利用量子力学来处理一些“无限斜微观区域的现象。其实宇宙系统与原子系统在某些方面有着惊人的相似性。预计21世纪“无限大”系统物理学将会与“无限斜系统物理学结合得更加紧密,即宏观宇宙物理学和微观粒子物理学整体联系起来。热大爆炸宇宙模型就是这种结合的典范,实际上该模型是在粒子物理学中弱电统一理论的基础上建立起来的。可以预计,这种结合对科技发展和应用都会产生巨大的影响。

二、跨世纪科学技术的发展趋势

科学技术能否取得重大突破的关键取决于基础科学的发展。所以,首先必须重视基础科学的研究,不能忽视更不能简单地以当时基础科学成果是否有用来衡量其价值。相对论和量子力学建立时好像与其他学科和日常生活无关,直到20世纪中期相对论和量子力学在许多科学领域中引起深刻的变革才引起人们的足够重视。可以说,20世纪几乎所有的重大科技突破,像原子能、半导体、激光、计算机等,都是因为有了相对论和量子力学才得以实现。可以说,没有基础科学就没有科学技术、社会和人类的发展。

20世纪重大科技成果的成功经验证明,不同学科间的互相交叉、配合和渗透是产生新的发明与发现,解释新现象,取得科学突破的关键条件之一。例如,核物理与军事技术的交叉产生了原子弹;半导体物理与计算技术的交叉产生了计算机。可以预计,21世纪待人类掌握核聚变能的那一天,一定是核物理、等离子体物理、凝聚态物理和激光技术等学科的交叉和配合的结果。这也是21世纪科学技术的发展趋势之一。

高分子材料研究进展范文

关键词:热分析技术;高分子材料;技术作用;技术应用

高分子材料是一种具有较高稳定性的材料,可以被应用到很多产品制作当中,要想进一步得知高分子材料的物理性质和温度关系,就必须使用更具针对性的技术对其进行分析,热分析技术就是一种能够分析材料物理性质和温度关系线性变化的技术,它的应用将进一步帮助人们更好的了解高分子材料的性质,提升高分子材料的性能。在本文当中,笔者将对热分析技术的概念和应用领域进行分析,进一步促进高分子材料的研发水平。

1热分析技术及其应用领域简介

1.1热分析技术简介

热分析技术利用一定的程序控制分析对象的温度,并对分析对象的物理性质进行观察和研究,最终得出温度变化与分析对象物理性质之间的关系。材料的研发对应着一定的社会需求,那么被研发出来之后,它具体能够被应用到哪些领域,这就需要对材料进行客观全面的分析,作为其中一个项目,了解材料物质性质和温度之间的关系对于确立材料的应用层面是十分重要的。例如材料的光学特性、机械性质、声学性质等等,决定了材料是否能够被用于高温环境、机械高压环境、噪音隔离等各种不同的环境当中。通过热分析技术对材料的物理性质进行确定之后,就可以得知该材料适合用于什么样的环境。

1.2热分析技术的应用领域简介

热分析技术将物质置于不同的温度环境,对其化学改变和物力改变进行分析,最终得出其与温度之间的关系,这些分析结果和数据将对材料的应用产生很大的影响。总体来讲,热分析技术可以被引用到下述领域当中:

(1)分析材料的性能和结构,并对相关产品的生产进行质量检测,重点检测产品物理性能是否合格。

(2)为生物材料以及分子生物学研究提供提理论分析工具。

(3)应用于各种动力学和热力学研究,为其提供快捷有效的研究技术。应用范围广、样品用量比较少。

(4)完善对物质的研究层面,帮助全方位了解物质的性能和特点,是一种化学研究和热化学研究的新技术。

(5)建立关于各类物质的热分析曲线图,帮助人们准确确立物质的性质。

2热分析技术在高分子材料研究与分析当中的具体应用

2.1高分子材料当中的差热分析法应用

所谓热差分析,就是将两种物质置于同样的温度变化环境下,由一定的程序执行温度变化控制,分析温度环境变化下物质温度的差值变化,保证物质在持续升温或者降温的环境下不会出现放热、吸热现象,以此展开对物质热效应现象的技术检测和技术分析。热差分析技术可以对玻璃等高分子材料进行降解或者熔融,分析高分子材料的温度变化特征。其技术优势在于可以对高分子材料进行较为全面的分析,且应用领域较为广泛。其缺陷在于不能对物质进行时点吸热,且对物质放热速度的测量达不到精确度要求,因而这种技术形态在定量测量技术性能的建构层面依然存在着极其明显的局限性,给有关技术研究事业的深入_展创造了较为充分的发展空间。

2.2高分子材料中热机械分析法的应用

热机械分析法已经被用于测试塑料制品的性质,尤其是各个技术发展步伐较快的国家。热机械分析技术的最大优势在于能够准确科学的分析出塑料类高分子材料的机械性能、应力松弛和软化点,非常适用于塑料产品的质检测试。

首先来讲,材料的机械性能分析师极为重要的,以塑料制品为例,其机械性能直接决定了高分子塑料产品具备的性能、所能承受的应用环境等。利用热机械分析法对材料进行机械性能分析,能够帮助技术人员确定材料可以被应用的环境,拓展相关产品的研发层次和空间,对高分子材料受热断裂技术临界温度实施精确测量。其次,该技术该可以应用于分析高分子材料的膨胀性能,例如陶瓷、金属类材料,这类材料要制成产品,通常需要进行升温处理,而后实施成型加工,升温环境下,就会涉及到材料膨胀问题,利用热机械分析法可以分析不同温度条件下材料的膨胀性能,并得出二者之间的变化规律,它对于升级优化材料的机械性能、压制材料的膨胀性能是十分有利的。

2.3高分子材料研究中热重法的应用

热重法主要分析材料质量、温度和时间三者之间的关系,帮助人们得出材料在不同环境下的使用寿命,提高相关产品应用的安全性、稳定性。首先来说,它可以应用分析高分子材料的组分,得出材料内部组成成分及其含量;其次,该技术可以精确的测定出高分子材料中具有的挥发性成分,以此来评定材料在不同温度和时间下的质量变化,帮助人们调节材料生产过程,减少材料中挥发性物质的含量,提高高分子材料的稳定性。

3结束语

未来,随着高分子材料的进一步研发,热分析技术还将得到更为广泛的应用,领域内还会不断的对热分析技术的缺点进行优化,提高其应用层面。

参考文献

[1]王笑笑,刑浩杰,程祥.浅析热分析技术在高分子材料研究中的应用[J].现代制造技术与装备,2016(01).

[2]刘昊.高分子材料领域热分析技术的应用研究[J].化工管理,2016(01).

[3]庞锦英,莫羡忠,李建鸣,等.高分子材料成型加工实验教学改革探讨[J].企业科技与发展,2015(02).

[4]杨锐,陈蕾,唐国平,等.热分析联用技术在高分子材料热性能研究中的应用[J].高分子通报,2012(12).

高分子材料研究进展范文篇8

关键词:民族院校《高分子材料进展》教学方法

《高分子材料进展》课程是高分子材料专业的一门知识全面且内容丰富的专业限选课程。该课程以高分子物理、有机化学、聚合物材料研究方法、高分子化学、聚合物合成工艺等课程为基础,涉及面极为广泛[1]。课程总学时为32学时,参考教材为化学工业出版社出版的《高分子材料进展》,为研究生规划教材,全书共分为5章,分别简要地介绍高分子材料合成反应、高分子合成反应实施技术、多组分高分子材料、液晶高分子材料及功能高分子材料方面的研究进展。[2]考虑到《高分子材料进展》课程是高分子专业在大三的上学期开设,而且民族院校学生的专业基础较为薄弱,课程学时短的特点,因此重点讲解高分子材料领域中的发展重点和热点。本课程的教学目的是帮助学生对异彩纷呈的高分子材料发展的热点领域有一个相对完整的了解,达到开阔视野的目的。针对《高分子材料进展》课程涉及知识面广、学生基础差及对考查课不重视的特点,有必要在教学过程中不断改进教学方法和考试模式,以期获得较好的教学效果。[3]

一、本民族院校《高分子材料进展》课程的基本情况

针对我校民族学生基础知识薄弱,而《高分子材料进展》课程“内容多、范围广、课时少”的特点,我们重点介绍高分子材料中发展迅速、发展前景广阔的功能高分子材料,推荐的教材有《高分子材料进展》和《功能高分子材料》[4]等。该课程总学时为32学时,学分为2学分,课程类型为专业限选课,课程以高分子材料的合成方法进展、吸附分离功能高分子材料、高分子分离膜与膜分离技术、导电高分子、感光性高分子和医用高分子材料等功能高分子材料的进展为重点学习内容,同时穿插一些国内外近几年新发表的文献和专利,以及国内相关会议等。本教学采用多媒体教学方式,采用课堂提问和讨论等多种形式进行学习,期末通过考查的方式考核学生,采用写论文与平时成绩相结合的方法,平时成绩包括上课出勤和课堂讨论情况,论文成绩与平时成绩各占70%和30%。表1为《高分子材料进展》教学内容的设置及学时分配情况。

表1《高分子材料进展》教学内容的设置及学时分配

二、强化基础,突出重点

首先,《高分子材料进展》授课内容看似丰富多彩,千变万化,但是万变不离其宗,归根到底都是由高分子专业的基础知识衍生出来的,比如《高分子物理》、《高分子化学》中的经典理论和概念等。从另一个角度看这些材料的出现印证了基础知识的重要性,它们的诞生是经得起检验的理论和概念的应用和发展的。因此通过介绍高分子材料的前沿进展,既使学生对异彩纷呈的高分子材料世界有一定宽度的了解,又从深度上加强学生对基础知识的理解和掌握,使学生知道这些材料是如何得到的,自己又能通过什么途径得到想要的材料。

其次,因为《高分子材料进展》这门课的每一章都是高分子材料领域中发展迅速、成果颇丰的较大分支,独立出来都能独立设课,而在本课程中必须在几个课时内讲完,所以在授课过程中,什么该讲,什么略过,讲的这些内容是否能激发学生的兴趣,是该课程的一个教学难点,要求教师对这些前沿分支有全面而深入的理解,对它们所涉及的基础知识熟练掌握,这对教师的专业知识和教学方法提出了更高要求。

三、调动学生的学习积极性,启发式教学

《高分子材料进展》是学生在已经掌握高分子化学、高分子物理基础知识的前提下进行的学习。内容除了基本概念之外,有很多设计路线、研究方法,可以引导学生运用已学知识进行思考。比如第3章吸附分离高分子材料和第4章高分子分离膜及膜分离技术中涉及自由体积和渗透压的概念,这些都是《高分子物理》中学过的内容,通过回忆这些知识,使学生加深对这些基础知识的理解,并对基础知识的应用有一定的了解。其次,要注意生活中的实际例子或新闻报道中的最新科技进展中与所讲述内容相关的部分,通过联系生活实际,引出将要介绍的高分子材料。这样既能让学生认识到这类高分子材料的重要性,提高学习的积极性,又能让学生了解到这类材料的最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的高分子吸附材料或高分子膜材料,介绍这些高分子材料的设计路线和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大提高,教学效果也会得到显著增强。

另外,还要有效利用网络资源,紧跟最新研究进展,适当补充新的教学内容。高分子材料进展课程是综述高分子材料领域发展热点的一门课程,所介绍的内容每隔一段时间可能都有新的研究成果诞生,我们应根据情况适当补充那些热门和重要的研究成果到教学内容中。比如该课的学时少,可以在课程快结束的几周时间重点介绍一些最新的前沿进展和相关会议,让学生了解到高分子材料的发展趋势,提高学生对高分子材料的兴趣。互联网资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以提供一些高分子专业的权威网页,方便学生浏览查阅。同时,可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给学生。这样,既能让学生对高分子材料进行全面的了解,又能让学生主动地参与教学,达到较好的教学效果。

四、科研与教学相结合,以科研促进教学

把科研引入本科教学是培养大学生创新能力的重要措施,也是高等教育的显著特点。在《高分子材料进展》课程本科教学过程中,正确有效地将教学与科研相结合,有利于提高教学效率,丰富教学内容,营造学术氛围并提高创新能力,全面提高教学质量。教师在课堂教学中可以介绍自己的科研成果,介绍本专业课题组正在研究探索的科研项目,引导学生参观实验室和课题组,鼓励学生积极参与到教师的科研中。例如,作者介绍自己硕士和博士期间所从事的科学研究,以及科研小组的一些趣闻趣事,激发学生的学习热情和学习兴趣。

总之,在高分子材料进展课程的教学过程中,教师首先应进行教材分析和学情分析,再采用比较适合的教学方法,在知识和技能的传授中针对民族学生基础差的弱点,采取强化基础、突出重点的教学方式,了解学生的情感态度与价值观,做到教学方法灵活多样,教学内容及时更新,这样才能调动学生的学习积极性和主动性。教师还应继续努力提高业务能力,理论联系实际,使学生在这门课程的学习中得到切实的收获。

参考文献:

[1]周立,孙荣欣.科技信息.2010,21,151.

[2]张留成,闫卫东,王家喜.高分子材料进展[M].北京:化学工业出版社,2005.

高分子材料研究进展范文篇9

随着塑料工业的快速发展,塑料产品已经广泛应用到人们的生活当中,给人类带来了许多的便利,与此同时,由于人们对其大量需求致使废弃物中的塑料越来越多,这对生态环境造成了严重的污染。因而,现在许多科学家都在寻找新的环境友好型材料。其中生物可降解高分子材料就属于环境友好型材料,这其中最受人们关注的就是聚乳酸(PLA),具有良好的生物降解性,在微生物作用下分解为二氧化碳和水,对环境不会造成危害。人们之所以选择聚乳酸作为环境友好型材料来研究,是因为聚乳酸具有强度高,透明性好,生物相容性好等优点,可以应用于很多领域,包括医用、包装、纺织等。但是由于其结晶性能差,脆性大等缺点,使其在某些性能方面存在严重的不足,这就严重限制了聚乳酸的应用[1]。为了使聚乳酸能够更好的应用到各个领域,研究者们对其进行表面改性,使其性能得到改善,能够得到更好的应用。

1.生物可降解高分子材料

生物可降解高分子材料是环境友好型材料中最重要的一类。它是指在一定条件下,一定的时间内,能被细菌、真菌、霉菌、藻类等微生物或其分泌物在酶或化学分解作用下发生降解的一类高分子材料。由于其具有无毒、生物降解及良好的生物相容性等优点,生物降解高分子被广泛应用于医药、一次性用品、农业、包装卫生等领域。按照来源的不同,可将其分为天然可降解高分子和人工合成可降解高分子两大类。

天然可降解高分子:有淀粉、纤维素、蛋白质等,这类高分子可以自然生长,并且降解后的产物没有毒性,但是这类高分子大多不具备热塑性,加工起来困难,因此不常单独使用,只能与其它高分子材料掺混使用。

人工合成可降解高分子:有聚乳酸、聚己内酯、聚乙烯醇、聚己二酸乙二酯等。这类聚酯的主链大多为脂肪族结构单元,通过酯键相连接,主链比较柔软,容易被自然界中微生物分解。与天然可降解高分子材料相比较,人工合成可降解高分子材料可以在合成时通过控制温度等条件得到不同结构的产物,从而对材料物理性能进行调控,并且还可以通过化学或物理的方法进行改性[2]。

在以上众多的天然可降解高分子材料和人工合成可降解高分子材料中,天然可降解高分子材料加工困难,成本高,不被人们选中,因此,人们把目光集中在了人工合成可降解高分子材料中,这其中聚乳酸具有其良好的生物相容性、生物可降解性、优异的力学强度和刚性等性能,在诸多人工合成可降解高分子材料中脱颖而出,被人们所选中。

2.聚乳酸材料

在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。

2.1聚乳酸的合成

聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。

聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。

2.1.1直接缩合[4]

直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。但是工艺简单,与开环聚合物相比具有成本优势。因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。

2.1.2丙交酯开环缩合[4]

丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。反应速度快,活性高,可以进行溶液和本体聚合。但是这种聚合很难制备高分子量的聚乳酸;(3)配位开环聚合是目前研究最深的,也是应用最广的。反应所用的催化剂主要为过渡金属的氧化物和有机物,其特点为单体转化率高,副反应少,易于制备高分子量的聚乳酸。但是开环聚合有一个缺点,所使用的催化剂有一定的毒性,所以目前寻找生物安全性高的催化剂成为配位开环聚合研究的重要方向。

2.2聚乳酸的性质

由于乳酸单体具有旋光性,因此合成的聚乳酸具有三种立体构型:左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和消旋聚乳酸(PDLLA)。其中PLLA和PDLLA是目前最常用,也是最容易制备的。PLLA是半结晶型聚合物,具有良好的强度和刚性,但是其缺点是抗冲击性能差,易脆性断裂。而PDLLA是无定形的透明材料,力学性能较差[5]。

虽然聚乳酸具有良好的生物相容性和生物可降解性、优异的力学强度和阻隔性,但是聚乳酸作为材料使用时有明显的不足之处;韧性较差并且极易弯曲变形,结晶度高,降解周期难以控制,热稳定性差,受热易分解,价格昂贵等。这些缺点严重限制了聚乳酸的应用与发展[6]。因此,针对聚乳酸树脂原料进行改性成为聚乳酸材料在加工和应用之前必不可少的一道工序。

2.3聚乳酸的改性

针对聚乳酸的以上缺点,研究者们对其进行了增韧改性、增强改性和耐热改性,用以改善聚乳酸的韧性和抗弯曲变形能力,提高热稳定性,进一步增强聚乳酸材料。

2.3.1增韧改性

在常温下聚乳酸是一种硬而脆的材料,在用于对材料要求高的领域,需要对其进行增韧改性。增韧改性主要分为共混和共聚两种方法。但是由于共聚法在聚乳酸的聚合过程中工艺比较复杂,并且生产成本高,因此在实际工业生产中,主要用共混法来改善聚乳酸的韧性。共混法是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能的复合达到改性目的[7]。为了拓展聚乳酸材料在工程领域的用途,研究者们常采用将聚乳酸与其它高聚物共混,这样一方面能够改善聚乳酸的力学性能和成型加工性能,另一方面也为获得新型的高性能高分子共混材料提供了有效途径。

增韧改性所用的共混法工艺比较简便,成本相应低一些,在实际工业生产中更加实用。不过受到聚乳酸本身的硬质和高模量限制,共混法改性目前主要方向为增韧、调控亲水性和降解能力。

2.3.2增强改性

聚乳酸本身为线型聚合物,分子链中长支链比较少,这就使聚乳酸材料的强度在一些场合满足不了使用的要求。因此要对其进行增强改性,使其强度达到要求。目前主要采用了玻璃纤维增强、天然纤维增强、纳米复合和填充增强等技术来对聚乳酸进行改性,用以提高聚乳酸材料的力学性能[7]。

目前,植物纤维和玻璃纤维对增强聚乳酸的力学性能效果相差不大,但是植物纤维价格低廉,并且对环境友好,因而成为对聚乳酸进行增强改性的常见材料。而填充增强引入了与聚合物基体性质完全不同的无机组分并且综合性能提升明显,因此受到广泛的关注。这其中,以纳米填充最有成效,填充后可以全面提升聚乳酸的热稳定性、力学强度、气体阻隔性、阻燃性等多种性能。此外,聚乳酸具有生物相容性和可降解的特性,因此用做人体骨骼移植、骨骼连接销钉等医学材料。

2.3.3耐热改性

耐热性差是生物降解高分子材料共有的缺点。聚乳酸的熔点比较低,因此它在高温高剪切作用下易发生热降解,导致分子链断裂,分子量降低,成型制品性能下降。因此需要对聚乳酸进行耐热改性,用以提高其加工性能,通常采用严格干燥、纯化和封端基等方式提高其热稳定性[8]。目前,添加抗氧剂是提高聚合物耐热性的常用方法,除了采用添加改性或与其它树脂共混改性来提高聚乳酸耐热性,还可以通过拉伸并热定型的方法提高聚乳酸的耐热性,与此同时,还可以改善其聚乳酸复合材料韧性和强度。在纺织、包装业等领域有很好的应用。

从上述几种改性结果来看,与聚乳酸相比,改性后的聚乳酸复合材料综合性能等方面都得到了全面的提升,在医学、纺织、包装业等领域都得到了很好的应用。因此,聚乳酸复合材料得到了人们的喜爱与关注,并逐渐将人们的生活与之紧紧联系在了一起。成为国内外研究者所要研究的重点对象。

3.聚乳酸复合材料及研究进展

3.1聚乳酸复合材料

经过改性剂改性过的聚乳酸复合材料是一种新型复合材料,它是以聚乳酸为基体,在其中加入改性剂混合用各种方式复合而成的。同时它具备与聚乳酸相同的无毒、无刺激性、良好的生物相容性等性质,但是在性能方面要都优于聚乳酸。聚乳酸复合材料在柔顺性、伸长率、力学、电、热稳定性等方面都表现出了优异的性能,目前已经将其应用与医学、农业、纺织、包装业和组织工程等[9]领域,应用非常广泛。

聚乳酸复合材料可以在微生物的作用下分解为二氧化碳和水,对环境不会造成任何的危害,加上其在各个方面都具有优异的性能,可以用于各个领域。因此成为了新一代的环境友好型材料被国内外的研究者们广泛关注。目前,就聚乳酸复合材料的研究,国内外研究者们都取得了一定的成果和进展。

3.2聚乳酸复合材料研究进展

由于聚乳酸作为生物相容,可降解环境友好材料,存在着结晶速度慢、结晶度低、脆性大等缺陷,将需要与具有优异导电、导热、力学性能,生物相容性等优点的填料复合进行填充改性[10]。这个方法成为目前国内外研究的重点。对于聚乳酸复合材料的研究以下是国内外研究者的研究进展。

盛春英[1]通过溶液共混法制备了聚乳酸/碳纳米管复合物,用红外光谱和DSC研究了复合材料的等温结晶和非等温结晶性能,重点研究了CNTs的种类、管径、管长、质量分数以及聚乳酸分子量对复合物结晶性能的影响,以及等温结晶对复合材料拉伸性能的影响。

范丽园[2]将左旋聚乳酸和纳米羟基磷灰石用含有亲水基团的JMXRJ改性剂,通过溶液共混法,加强两者亲水性能和结合能力。以碳纤维为增强体,制备出碳纤维增强改性PLLA基复合材料。并分析其化学结构、结晶行为、热性能以及等温结晶时晶球变化。

张东飞等[3]人介绍了碳纳米管制备的三种方法,即石墨电弧法、化学气相沉积法和激光蒸发法,并阐述了碳纳米管导热基本机理,对碳纳米管应用于复合材料热传导性能进行了研究与展望。

赵媛媛[4]采用溶液超声法,选用多壁碳纳米管作为填充物,制备聚乳酸/碳纳米管复合材料,并对其进行改性研究。以碳纳米管化学修饰及百分含量的变化对其在PLLA基体中的分散性、形态、结晶行为、力学性能和水解行为的影响为主要研究对象。

张凯[5]通过对有效的碳纳米管分布对复合材料的导电性能进行研究。并重点从形态调控角度,调节碳纳米管在高分子基体中的有效分布,构建了高效的导电网络。并从晶体排斥、相态演变、隔离的角度,设计三种不同形态的导电聚乳酸/复合材料,降低了材料的导电逾渗值。

冯江涛[6]通过采用混酸处理、表面活性剂修饰和表面接枝三种方法对对碳纳米管表面进行修饰,利用溶剂蒸发法制备聚乳酸/碳纳米管复合材料,采用红外吸收光谱、拉曼光谱、偏光显微镜、透射电镜、扫描电镜、差示扫描量热分析仪对复合材料的表面形貌和结构进行了分析和总结。

李艳丽[7]通过混合强酸酸化与马来酸酐接枝相结合,对碳纳米管表面修饰,增强了碳纳米管与聚乳酸之间的界面相互作用,获得了碳纳米管分散均匀的聚乳酸/碳纳米管纳米复合材料。并且研究不同条件下碳纳米管对聚乳酸结晶行为的影响,发现碳纳米管对聚乳酸的结晶有明显的异相成核作用。

许孔力等[8]人通过溶液复合的方法制备聚乳酸/碳纳米管复合材料,并对其力学性能和电学性能进行了详细的研究,而且对复合材料的应用前景进行了展望。

李玉[9]通过将聚乳酸与具有优异导电、导热、力学性能、生物相容性的碳基纳米填料进行填充改性。考察了静电纺丝参数对聚乳酸纤维的形貌影响,并且考察了不同含量的碳纳米管对复合纤维形貌和结构的影响。此外,还对静电纺丝和溶液涂膜制备工艺对复合材料性能影响。

赵学文[10]通过将碳纳米粒子引入聚合物共混体系实现了复合材料的功能化与高性能化。并且他们提出一种基于反应性碳纳米粒子的热力学相容策略,有效的提高了不相容共混物的界面粘附力,增强了材料的力学性能,同时赋予了导电等功能。

MosabKaseem等[11]人通过热、机械、电气和流变性质对聚乳酸基质中碳纳米管的类型、纵横比、负载、分散状态和排列的依赖性。对不同性能的研究表明,碳纳米管添加剂可以提高聚乳酸复合材料的性能。

MainakMajumder等[12]人通过对聚乳酸/碳纳米管复合材料制备和表征方面的研究,

综述有关碳纳米管在聚乳酸基质中分散的有效参数。并且将聚乳酸与不同材料结合用来改变其性能。

WenjingZhang等[13]人通过溶液共混制备了一系列PLLA/碳纳米管复合材料。测试了形态,机械性能和电性能。通过研究发现随着碳纳米管含量达到其渗透阈值,PLLA/碳纳米管复合材料的体积电阻降低了十个数量级。通过光学显微镜图像显示了纳米复合材料的球晶形态,用差示扫描量热法(DSC)测量,其结果显示,随着碳纳米管含量的增加,冷结晶温度升高。

EricD等[14]人通过研究在半结晶聚合物碳纳米管复合材料中,碳纳米管被视为可以影响聚合物结晶的成核剂。但是,由于碳纳米管的复杂性。不同的手性,直径,表面官能团,使用的表面活性剂和样品制备过程可能会影响复合材料结晶。研究了半晶复合材料的结构,形态和相关应用。简要介绍聚合物中的结晶和线性成核。使用溶液结晶方法揭示了界面结构和形态。

Kandadai等[15]人通过拉曼光谱分析表明PLLA和碳纳米管之间的相互作用主要通过疏水的C-CH3官能团发生。复合材料的直流电导率随碳纳米管负载的增加而增加。导电的碳纳米管增强的生物相容性聚合物复合材料可以潜在地用作新一代植入物材料,从而刺激细胞生长和通过促进物理电信号传递来使组织再生。

从以上国内外研究者的研究进展中,可以看到,大部分的研究者都是通过溶液共混的方法制备聚乳酸复合材料,这种方法对于国内外的研究者们来说比较简便可靠。并且他们将制备好后的聚乳酸复合材料通过红外光谱、扫描电子显微镜、透射电子显微镜、差示扫描量热、拉曼光谱和偏光显微镜等手段进行其结构和性能的观察和分析,发现聚乳酸复合材料的性能在各个方面都有显著的提高,并且可以应用与各个领域,应用前景非常广阔。聚乳酸复合材料作为新一代性能全面的环境友好型材料,国内外的研究者们对聚乳酸复合材料的研究还在进行着,并且对于它的发展都有很高的期待。

4.本课题的研究思路及研究内容

4.1研究思路

聚乳酸作为可降解生物材料,同时又具有生物相容性,力学性能好等优点。碳纳米管则具有良好的生物相容性,功能性等优点。将两种材料复合可以进一步改善聚乳酸结晶性能、力学性能、赋予其导电性。

对于聚乳酸/碳纳米管复合材料的制备可以通过共混法、原位聚合及静电纺丝法来制备,目前通常采用溶剂挥发法制备聚乳酸/碳纳米管复合材料。通过拉曼光谱、电子能谱、扫描电子显微镜、示差扫描量热来测定其结合能、材料表面形貌以及结晶、熔融温度等方面进行观察分析。

高分子材料研究进展范文1篇10

关键词:高分子材料抗静电研究

静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。

一、高分子抗静电的方法概述

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;

河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复

合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.

高分子材料研究进展范文篇11

随着我国科学技术水平的不断提高,促进信息功能材料的不断推广应用,而信息功能材料逐渐向着信息存储、传输、显示、转换等功能方向转换,具有容量大、速度快、能耗低、功能多样化等优势特点。近年来,信息功能材料逐渐与光电信息技术相结合,能够促进光电信息功能材料的开发和应用。主要分析光电信息功能材料的制备方式,并论述光电信息功能材料的研究进展。

关键词:

光电信息;功能材料;研究进展

随着我国科学技术的日新月异,有力的推动着社会的发展与进步。光电信息功能材料作为新材料,能够得到充分的研发,并广泛应用于社会众多行业领域中。在光电子时代背景下,光电信息功能材料具有稳定性的良好性能,在社会众多行业领域中的应用,有着良好的发展前景。目前,我国关于光电信息功能材料的研究进展主要表现在光折变材料、半导体材料、纳米材料等方面,能够在一定程度上推动我国电子时代的发展进程。1光电信息功能材料的概述在信息时代背景下,材料领域的研究更为广泛,走在国家科研的前沿之路,为现代化科学奠定坚实的基础条件。光电信息功能材料的研究,主要以量子论为基础,相关人员对电子物理运动规律进行一系列探究,偶助于推动光电信息技术的研究和开发。基于此,光电信息功能材料得以开发和应用,主要包括光折变材料、半导体材料和纳米材料,其信息存储容量更大,且信息传输和处理速度更快,适应我国社会发展和人类进步的发展趋势,同时能够在一定程度上促进信息技术的发展[1]。

1光电信息功能材料的制备方式

目前,光电信息功能材料受功能、尺寸等因素的影响,使其制备方式可能存在差异性,因而能够适应于不同社会领域的实际需求。但是,就光电信息功能材料制备方式而言,主要表现在微波反应烧结、溅射法、PCVD等。通过合理方式对光电信息功能材料的制备,可以增强材料的性能和充分发挥其积极作用,有助于推动我国光电信息技术的快速发展[2]。

2光电信息功能材料的研究进展

2.1光电信息功能材料之光折变材料

光折变材料是光电信息功能材料之一,主要是在光的照射下,发生电荷转移,形成空间电场,最终在电光效应的影响下而产生的光电材料。光折变材料在人类社会众多领域中有着广泛的应用。现阶段,我国关于光折变材料的研究主要表现在数据存储、测量、光放大、图像处理等方面。对于光折变材料而言,主要包括无机光折变材料和有机光折变材料两种。首先,无机光折变材料主要有三类,分别为:以LiNbO3、BaTiO3为主的铁电晶体;以Bi12GeO20为主的非铁电体;以GaAs、CdTe、CdSe为主的化合物半导体。其次,有机光折变材料中,聚合物的应用更具优势,在社会众多领域中有着广泛应用,其发展空间较为广阔,能够为相关技术人员创造良好的条件。总之,随着光折变材料的研究进程加快,相关科技人员能够通过聚乙烯咔唑对图像进行识别,为后期三维体全息图存储奠定良好条件,同时促进光电信息存储的广泛应用。

2.2光电信息功能材料之半导体材料

半导体材料是导体材料和绝缘体材料之间的一种材料,能够实现电能和光能之间的相互转换。新时期,我国对半导体材料的研究相对较多,且该材料的应用范围较广。其研究进展主要表现在以下方面:首先,硅微电子技术材料。该材料是制成半导体集成电路、光伏太阳能电池的重要材料,属于我国新能源产业。随着硅材料技术的不断发展和应用,促进硅材料产业的快速发展。其次,对量子级联激光器材料的研究,该材料主要在光通信、移动通信等领域中有着广泛的应用,能够在一定程度上推动着人类工业化的发展进程。最后,对光子带隙材料的研究相对较多[3]。

2.3光电信息功能材料之纳米材料

纳米技术近年来比较热门的研究话题,而纳米光电材料是光电信息功能材料的重要组成部分。光能与电能、化学能等能源之间转换过程中,可以形成全新的纳米材料,在社会众多领域中的应用,具有一定的优势,如发展前景良好、性能优良等,尤其在光的通信、存储中有着更为深入的应用。现阶段,我国对纳米光电材料的研究相对较多,并取得良好的进展。在纳米电子器件的发展条件下,纳米光电子学得以快速发展,其研究领域主要表现在:一是关于纳米粉末在光电探测器中应用的系列研究,二者能够相互作用,且纳米粉末可以改善SOI的不良性能;二是对一维纳米材料应用的相关研究;三是对纳米硅薄膜应用的研究,其独特性质,能够充分发挥量子尺寸效应,有助于科技人员对纳米光电材料的深入研究。

3结论

随着社会的发展与进步,科学技术日新月异,造福于人类。近年来,光电信息功能材料的研究有较大进展,取得良好的成果,能够以光电为信息载体,促进人们对量子物理的深入研究。由于光电信息功能材料能够在人类社会生活众多领域中有着广泛的应用和充分发挥其积极作用。所以,相关人员有必要加强对光电信息功能材料研究进展问题的研究,能够为相关科技人员提供有力的参考依据,有助于推动光电信息功能材料的研发进程。

参考文献:

[1]王智玮,刘丽媛,陈润锋,等.基于芳香性聚酰亚胺的光电功能材料及器件研究进展[J].科学通报,2013(26):2690-2706.

[2]朱玉兰,杨艳杰,尹起范,等.四硫富瓦烯衍生物在有机光电功能材料方面的研究进展[J].有机化学,2005(10):22-30.

高分子材料研究进展范文1篇12

[关键词]科技创新;锂离子电池正极材料

[中图分类号]F274[文献标识码]A[文章编号]1005-6432(2014)31-0044-02

1概述

随着信息的飞速发展,电子产品发展迅速,各种高功率、高比容量、循环性能优的锂离子电池产品将不断冲击消费者的体验,锂电池需求将继续保持增长。对于锂离子电池正极材料产业链上的企业既是机遇也是挑战。目前,日本和韩国是锂离子电池生产大国,日韩企业通过不断推动技术进步与开发新材料来提高锂离子电池性能,始终保持着在锂离子电池行业中与中国产品的性价比优势,占据着高端锂离子电池行业的引领地位。我国与日韩等国家尚存在较大差距,并缺乏自主知识产权的技术支撑且尚未形成产业规模。因此,不断提高科技创新意识,技术提升和新品开发紧跟市场发展与需求的步伐,通过多方式、多渠道地促进技术成果的经济效应与经济效益转化,是企业发展的必经之路。

2电池正极材料市场中科技创新的核心方面

2.1“创新思维”与“市场思维”相结合

一项科研项目立项与否、立项时机、投入经费,是企业首先应考虑的问题。对于市场占有率低,市场不熟悉,还没有量产的产品,先建立基础的产品工艺,进行技术储备,一旦市场有需求就可以迅速投产,抢占市场先机。对于市场占有率高,市场相对认可的产品,做深入的研究与提升,再做深、做细,占领细分市场的绝对优势。当前在激烈的市场竞争中,“创新思维”与“市场思维”的分离是许多新产品失败的直接原因。未来一些年,随着电动汽车大规模的发展,正极材料的选择会随着电动汽车发展,多条路径共同前行。在市场快速发展的情况下,能紧随市场需求进行技术创新的电池正极材料企业从中突围,获得市场认可,而技术落后或脱离市场需求,没有竞争优势的企业在市场的浪潮中会遭到淘汰。

2.2“基础性研究”与“创新性研究”齐头并进

目前,越来越多的企业重视科技创新,保证充足的科研经费专项专用,有充足的经费支持科技创新项目,“基础性研究”与“创新性研究”,孰轻孰重,是企业首先考虑的问题。基础性研究在对现有产品的基础上进行提升、改进,市场占有率高,投入市场,直接可以生产、包装、销售,短时间取得可观的利润。而创新型研究则注重新品的开发与创新,走在市场的前沿,研发成果不一定很快投入市场,客户对研发成果也处于试用阶段,一旦市场成熟将迅速进入市场,抢占先机,占有市场绝对优势。基础性研究是实现公司经济效益的关键,而创新型研究是公司成为行业领跑者的关键,是抢占市场先机的利器,二者缺一不可。电池正极材料市场更新换代快,企业始终要站在研发的最前沿,研发一代、储备一代、推广一代,对产品不断进行优化升级,在变化无常、更新换代频繁的电池材料市场大环境下立于不败之地。

2.3知识产权的保护

知识经济时代,知识产权作为一个企业提高核心竞争力的战略资源,凸显出前所未有的重要地位。专利作为知识产权最重要的一部分,申请专利并获得专利权,既可以保护自己的发明成果,防止科研成果流失,获取垄断利润来弥补研发投入,同时也有利于科技进步和经济发展。锂电池确实迎来了全面的发展机遇,较高的专利壁垒成为阻碍中国锂电池行业飞速发展的障碍,我国锂电池产业的发展还需要经历技术研发和经验积累。加拿大和美国对磷酸铁锂实施专利保护,锰酸锂材料目前工艺技术和设备掌握在日本手里,美国3M公司掌握三元材料核心专利。2011年3M公司授权优美科对低钴元素的三元正极材料化合物进行生产,并可以出售给动力锂离子电池和家用电子消费品的生产商。2013年7月3M公司与湖南瑞翔新材料公司签订了专利许可协议,以扩大使用的镍、锰和钴(NMC)在锂离子电池中的应用。3M公司通过专利许可和授权进一步降低成本和减少材料成本的波动,扩大在中国的市场。

2.4与客户携手共同发展

科技研发不是单纯地埋头搞研发,而是通过上游客户了解市场、分析市场,进而确定研究方向,确保产品顺应发展潮流,适应市场变化。加强与客户的交流,联合开发、整合上游企业资源,可以更好地满足最终用户需求。电池材料制造商北大先行与电池制造商东莞新能德科技有限公司、北京汽车工业控股有限公司和北汽福田汽车股份有限公司共同投资建成北京普莱德新能源电池科技有限公司,通过与上下游技术交流与合作,北大先行成功地将其掌握的低电压电池正极材料磷酸铁锰锂LiFe06Mn04PO4技术应用在电动汽车电池上,普莱德公司锂离子动力电池模块、锂离子动力电池系统、电池管理系统配套应用在首都电动公交、电动环卫清洁车和电动出租车等近3400辆电动汽车上。四家公司的联合,促进新技术的市场导入,适应新能源汽车发展要求,标志着新材料电池的发展已进入车用动力电池时代。

2.5加强同行、同产业及高等院校间协作,联合创新

加强同行、同产业间技术协作,整合优势资源,展开联合创新,开发颠覆性的技术,进一步丰富产品种类,强化生产技术在同行业中的领先优势,增强产业核心竞争力,实现共赢。宁波杉杉新能源技术发展有限公司与日本某株式会社通过成立合资公司在锂电池正极材料领域展开合作,借助合资方的技术优势、管理经验和销售渠道,加快公司锂电池材料产业整合和优化升级,进一步发展、壮大杉杉锂离子电池材料产业,打造领先的锂离子电池正极材料供应商。同时,与具有很强研发能力的高等院校的合作也将在很大程度上促进产业技术市场化。如湖南杉杉与中南大学,北大先行与北京大学建立的合作,一方面,促进了高校前沿技术的市场化,另一方面,拓展企业的产品种类,壮大了企业的技术力量。

3结论

新经济时代将是一个创新的变革时代,唯有不变的科技创新,企业才有望获得持久的竞争优势。企业科技创新以市场需求为导向,技术创新与市场相整合,依靠公司技术实力,结合客户、同行及高等院校的技术、资源优势,加强知识产权的管理,强化企业―顾客―竞争者―市场互动的理念,方能确保企业在竞争激烈的锂离子电池材料市场上占有稳固且长久的领先地位。

参考文献: