隧道论文(6篇)
隧道论文篇1
关键词:隧道开挖千枚岩地质施工技术
1.工程概况
1)地理位置及设计概况.
乌鞘岭隧道位于既有兰新线兰武段打柴沟车站和龙沟车站之间,设计为两座单线隧道,隧道长20050m,隧道出口段线路位于半径为1200m的曲线上,右、左缓和曲线伸入隧道分别为68.84m及127.29m,隧道其余地段均位于直线上,线间距40m,两隧道线路纵坡相同,主要为11‰的单面下坡,右线隧道较左线隧道高0.56~0.73m,洞身最大埋深1100m左右。隧道左、右线均采用钻爆法施工,右线隧道先期开通。隧道辅助坑道共计15座,其中斜井13座,竖井1座,横洞1座。
乌鞘岭隧道地层岩性复杂,沉积岩、火成岩、变质岩三大岩类均有,且以沉积岩为主,其分布主要受区域断裂构造控制。区内出露地层主要有第四系、第三系、白垩系及三叠系沉积岩、志留系、奥陶系变质岩,并伴有加里东晚期闪长岩侵入体。隧道横穿祁连褶皱系的北祁连伏地褶皱带和走廊过渡带两个次级构造单元,褶皱及断裂构造发育。主要不良地质为有害气体,湿陷性黄土和膨胀岩。隧道预计最大涌水量为9621.81m3/d,施工中可能发生围岩失稳,突然涌水涌泥、岩爆、热害、含煤层有害气体等地质灾害情况。
乌鞘岭隧道九号斜井工程井口位于天祝县垛什乡龙沟村石头沟组,距312国道约12公里,洞口海拔高度2802米,常年气候寒冷、干燥,冬季及夏季多雨雪,最高峰终年积雪,雨雪天气约占40%,春季多风沙,最大阵风达到12级,历史记录最低气温为零下30度。
9号斜井井口标高2804.20米,井底标高2525.23米,高差278.97米,综合坡度11.9%,扣除会车道的影响,坡度达到13.5%,为尽量减少F7断层的影响,并便于在正洞开设两个工作面,经设计院勘查,斜井在1000米处转向,转向后斜井长达2429米,是乌鞘岭隧道无轨运输辅助导坑中坡度最大的斜井。
九号斜井所承担的区段是控制工期的重点。
2.千枚岩围岩的施工特点
1)地质情况
志留系板岩、千枚岩,以千枚岩为主,局部夹有石英脉,板岩薄层状,层理不明显,节理、裂隙发育,呈薄层状角砾结构,产状不稳定,围岩破碎,局部结构面充填泥质物,面光滑、稳定性较差;千枚岩挤压揉皱,松软破碎,其中石英脉多呈酥碎砂状,以散体结构为主。开挖后呈碎石、角砾状,掌子面无明显渗水,但开挖后有少量渗漏水、滴状及面状洇湿,量小,拱部有掉块、坍塌现象。围岩整体稳定性较差。为V级围岩。
本隧道内出露的千枚岩为黑色至深灰色,千枚状构造,显微鳞片变晶结构,含水量大时呈团块状,含水量少时为鳞片状,片理极其发育,层厚0.01~2mm,岩体破碎,片理面手感光滑,有丝绢光泽。千枚岩属副变质岩,主要由沉积岩中的页岩经区域变质作用形成,主要矿物成分是绢云母、石英、绿泥石等,基本已全部重结晶,软弱矿物成分较多,因而千枚岩硬度小,单轴抗压强度小于1MPa,膨胀率13%,易风化。挤压紧密的炭质千枚岩层具有弱透水性,是相对隔水层。
2)地下水的影响
地下水在隧道施工中,对围岩的稳定性起着很大的作用,特别是在软弱的千枚岩区,更是起着控制作用。
当洞身开挖以千枚岩为主时,开始时无地下水,但不久即出现滴水,甚至股水。究其原因,可能是因为洞身的千枚岩层上部实为板岩层(由于受开挖断面制约,开挖时未揭露出板岩层)。当含有层状板岩时,在构造应力作用下,岩性较硬的板岩中会产生不同方位的贯通裂隙,这样就为地下水的流动提供了通道。一般来说,围岩洞身为千枚岩时,当千枚岩厚度达到一定程度,洞身就不会出现地下水。在开挖时围岩产生应力重分布,发生变形,形成一定的松动区与塑性区。当塑性区的范围还未接近板岩区时,而这个范围不至于使板岩中的地下水由于渗透压力而进入塑性区时,这时洞身也不会出现地下水;当初期支护不及时或初期支护强度不足以抵抗千枚岩的变形时,塑性区的范围可能更大,当超过这一范围时,地下水进入塑性区,而千枚岩遇水即软化、泥化,使塑性区条件恶化,从而使塑性区加大,这又使地下水进一步发育。塑性区的加大与地下水的发育互相促进,互相作用,使围岩稳定性不断变差,变形不断发展,产生各种病害。这一点体现在千枚岩层中地下水的延迟性(即塑性区在地下水作用下逐渐加大的过程)。
乌鞘岭隧道千枚岩区施工难度较大,主要受变质岩的特征、地质构造、千枚岩的特性和地下水所决定。
3)隧道开挖
千枚岩与板岩互层区,软硬岩相间,爆破药量难以控制,一般来说,造成软岩部分超挖、硬岩部分欠挖,导致开挖成型差。这使围岩不同部位的应力释放产生差异,不利于应力重分布,因而产生不同程度的掉块或局部坍塌。
而在全千枚岩区,岩体相当破碎,呈团块状、片状、鳞片状。开挖时易于钻进,但易塌孔。千枚遇水后软化似弹簧土,泥化呈淤泥状。初期支护施作以后,围岩变形大,且长期不收敛,局部地段4~5个月不趋于稳定;开挖时无地下水,后期地下水增大。这些病害都危及到隧道施工安全与结构质量。
3、进行行之有效的各种技术参数的试验
一)、锚杆施工
1、打眼
通过施工现场记录用50mm的钻头打1根3m长的眼孔需要12分钟,同样的钻头4m的眼孔用时16分钟,而6m的眼孔则需用时30~40分钟,φ42的钢管3m和4m深的眼孔进管时间需用1~2分钟,而6m的钢管进管时间则需用2~3分钟,同时6m深的眼孔会有部分钢管不能完全进到围岩里,外露部分长约40~60cm,比例为10%。
2、注浆
注浆用的材料为甘肃永登水泥厂生产的祁连山牌普通硅酸盐水泥P·032.5R水泥净浆,水灰比W/C为0.6
3、张拉
3m长的φ42锚管注浆前的锚杆拉拔力为10.2KN,为1.04t,注好浆后的拉拔力为1.04t,注浆后1天的锚管拉拔力为51KN为5.2t
4m长的φ42锚管注浆前的锚杆拉拔力为12.2KN,为1.24t,注好浆的锚杆拉拔力为12.8KN为1.31t,注浆后1天的锚管拉拔力为51KN为5.2t
6m长的φ42锚管注浆前的锚杆拉拔力为28.6KN,为2.92t,注好浆的锚杆拉拔力为29.1KN为2.97t,注浆后1天的锚管拉拔力为61.2KN为6.24t
3m长的锚杆28天的拉拔力为6~8t。
4、2004年7月2日,在武威方向YDK175+375~+380段边墙部位对φ32的锚管进行试验,其中4m深的眼孔3根,6m深的眼孔3根,注浆浆液配比不变,36h后张拉,4m长的锚管张拉力为81.6KN、81.6KN、96.9KN,平均拉拔力为86.7KN,为8.85t,6m长的锚管张拉力为96.9KN、96.9KN、102.2KN,平均拉拔力为98.6KN,为10.1t。
通过以上试验结果并对比,得出:在施工中采用φ32的锚管可以达到设计要求。
二)、水泥浆液的试配与配比选择
1、2004年7月5日,对浙江金华华夏注浆材料有限公司生产的MC型注浆材料(以下简称超细水泥)掺水玻璃双液浆进行试验试拌
试验条件:水玻璃S=30Be’,W/C=0.8,胶凝时间为24s,室温17℃水温11℃,双液浆W/C=0.8C:S=1:1
试验结果:
时间
4h
6h
8h
1d
2d
3d
强度值(MPa)
1.8
4.8
6.3
8.5
7.0
12.5
超细水泥掺水玻璃:
时间
1d
2d
3d
强度值(MPa)
掺量0%
1.6
1.6
掺量2%
4.1
3.1
掺量3%
3.1
4.1
4.7
2、2004年7月9日,对普通水泥掺早强剂与超细水泥掺早强剂进行强度对比试验试拌
试验条件:室温17℃,水温14℃,
试验结果:
普通水泥
超细水泥
掺量
3d强度值(MPa)
掺量
3d强度值MPa
水灰比0.8
水灰比0.6
水灰比0.8
水灰比0.6
0%
5.5
8.7
0%
10.3
11.0
2%
15.1
2%
13.2
13.1
4%
15.8
4%
10.1
17.0
6%
14.1
6%
7.0
17.5
8%
19.5
8%
7.0
10%
19.5
10%
13.2
15.6
3、2004年7月13日晚,对普通水泥不掺早强剂与超细水泥不掺早强剂进行强度对比试验
试验条件:室温15℃,水温13℃,
试验结果:
普通水泥
超细水泥
时间(h)
强度值(MPa)
时间(h)
强度值(MPa)
水灰比0.8
水灰比0.6
水灰比0.8
水灰比0.6
12
0.07
0.16
12
0.07
0.13
24
0.68
1.53
24
0.81
1.6
36
2.01
3.37
36
1.58
3.29
48
3.2
2.84
48
2.4
4.4
4、2004年7月14日晚,对HSC浆液与硫铝酸盐水泥加外加剂注浆强度对比
试验条件:室温15℃,水温13℃,
试验结果:
HSC
硫铝酸盐水泥(掺3%外加剂)
时间(h)
强度值(MPa)
时间(h)
强度值(MPa)
水灰比0.8
水灰比0.6
水灰比0.8
水灰比0.6
2
无
无
2
无
0.13
4
1.025
0.28
4
2.1
4.5
8
1.5
4.6
8
3.51
6.04
1d
4.2
8.5
1d
8.57
11.55
3d
5.20
9.45
3d
8.21
12.5
5、2004年7月15日,HSC掺1%封口外加剂强度
试验条件:室温17℃,水温14℃,
试验结果:
时间
强度值(MPa)
水灰比0.8
水灰比0.6
2h
1.00
3.75
4h
2.93
7.05
8h
4.55
8.17
1d
4.61
9.82
6、2004年7月16日,各种水泥强度对比(试件放在养护箱养护)
试验结果:
普通水泥
硫铝酸盐水泥
硫铝酸盐水泥
掺3%外加剂
硫铝酸盐水泥
HSC
时间
强度值(MPa)
水灰比0.6
水灰比0.8
水灰比0.8
水灰比0.7
水灰比0.8
8h
无
3.42
4.67
5.87
4.18
24h
2.16
4.83
6.34.
7.82
7.54
48h
3.28
4.68
6.56
9.17
6.82
72h
8.1
5.51
6.62
9.60
9.12
三)、锚索施工
2004年6月29日在B通道开始进行锚索试验,由于风钻的原因直到2004年7月4日才开始锚索注浆工作,7月6日下午锚索注浆后33h进行锚索张拉试验,锚索长度为10m,锚固段长度为2米,张拉结果为16.5t,千斤顶伸长值为34mm。2004年7月8日上午进行第2根锚索张拉试验此时为注浆后3天,锚索长度为10m,锚固段长度为2米,张拉结果为6.4t,千斤顶伸长值为24mm试验失败。与此同时,在正洞YDK175+380~+395段进行锚索钻孔施工,于7月8日打好6m长的眼孔6根,进行锚索下锚并注浆工作,其中锚固段长度为2m,7月11日锚索注浆3天后进行张拉试验,试验结果为锚索张拉力为15t,千斤顶伸长值为18~24mm,试验成功,7月9日,在正洞YDK175+380~+400.5段又进行锚索打眼施工,眼深为9m、10m长度不等,7月12日进行下锚注浆工作,其中锚固段分别为2m、3m、4m和5m,2004年7月15日进行张拉,张拉结果为15t,千斤顶伸长值为17~20mm,通过量测资料表明,在锚索张拉后,正洞变形明显下降,于是把锚索当作一种工序进行推广,截止到目前在武威方面已经试做锚索45根,张拉30根,张拉力为3t,千斤顶伸长值为9~14mm,兰州方向在横通道拱顶及对面边墙施做锚索16根已张拉。
4、采取动态的施工技术
主要施工方法
1、超前支护
超前支护采用Φ42小导管,拱部设置,间距25cm,数量40根。超前注浆排管长度4.0m,排距控制在2.0m以内(每循环进行一次),注水泥水玻璃双液浆。
2、开挖
开挖采用微震光面爆破,辅以人工风镐开挖。
3、扒碴、装碴运输
上断面松碴采用挖掘机扒碴,装碴采用312挖装机,自卸汽车运输。
4、初期支护
4.1立拱挂网
钢支撑采用I20或H175型钢;纵向连接钢筋设双层,为Φ22螺纹钢筋,每层钢筋的间距为1.0m;钢筋网设双层,采用Φ8圆钢焊制而成,网片网格间距20х20cm。
钢支撑架立后,立即打设锁脚锚杆,锁脚锚杆为φ42管式注浆锚杆,长度4.0m。每榀设置,上断面8根,设置在拱脚和两节拱架连接板0.5m范围内,下断面4根,设置在拱脚上1.0~1.3m范围内。
4.2喷射混凝土
喷射混凝土采用钢纤维混凝土,混凝土标号C20。9号斜井位于富水区,临时支护喷砼中可添加微纤维,封闭毛洞壁、增加抗渗性,改善施工作业环境,加快进度。
4.3系统锚杆
系统锚杆采用φ32管式注浆锚杆,间距80х80cm,梅花形布置,拱部长度4.0m,数量16根,边墙长度6.0m,数量10根。
管式注浆锚杆采用硫铝酸盐水泥浆液注浆,注浆结束36h以后安装垫板和螺母。
4.4锚锁
锚锁采用单股钢绞线,截面积15.2cm2,一般地段采用6m长的锚索,特殊地段采用10m长的锚索,锚固长度3m,剩余为自由段长度。注硫铝酸盐水泥注浆,注浆36小时以后开始张拉,初始预应力3t。
4.5回填注浆
对喷射混凝土背后可能存在空洞的地方进行注浆,注浆材料为普通水泥浆或水泥砂浆。位置为拱顶和上断面拱脚。
5、仰拱施工
仰拱采用挖掘机开挖人工配合清碴,必要时进行弱爆破。开挖前加临时横撑,开挖后及时进行封闭,每次的开挖长度2~3m。
5.结论
乌鞘岭隧道在千枚岩地段施工,必须值得引起足够重视的是地下水的影响,在硬岩中裂隙发育,地下水的影响相对较小,而在软弱的千枚岩段,地下水的作用加速了围岩的变形,使围岩稳定条件恶化,易形成大塌方。所以在开挖时如有地下水,就应该及时施作初期支护,而且变化超过正常水平时,应加强初期支护,抑制围岩的进一步变形,防止发生坍塌。
隧道论文篇2
关键词:隧道防排水注浆堵水防水布铺设
目前隧道衬砌渗漏水问题,尤其是施工缝处、隧道的接口处及管节之间的连接处等薄弱环节的渗、漏水更为严重。如何搞好隧道防排水设计及裂缝防水技术,是保证行车安全和隧道能否长期使用的重要条件。
一、进洞前防排水处理
首先,在隧道进洞前应对隧道轴线范围内的地表水进行了解,分析地表水的补给方式、来源情况,做好地表防排水工作:用分层夯实的粘土回填勘探用的坑洼、探坑;对通过隧道洞顶且底部岩层裂缝较多的沟谷,建议用浆砌片石铺砌沟底,必要时用水泥砂浆抹面;开沟疏导隧道附近封闭的积水洼地,不得积水;在地表有泉眼的地方,涌水处埋设导管进行泉水引排;在隧道洞口上方按设计要求做好天沟,并用浆砌片石砌筑,将地表水排到隧道穿过的地表外侧,防止地表水的下渗和对洞口仰坡冲刷,并与路基边沟顺接成排水系统;洞顶开挖的仰坡、边坡坡面可用喷射混凝土将其封闭,并对洞口上方及两侧挂网喷浆;若在洞顶设置高压水池时,应做好防渗防溢设施,且水池宜设在远离隧道轴线处等。
二、开挖过程中对涌水地段的防排水处理
(一)涌水地段的防排水处理原则。在隧道施工过程中,应对开挖面出现的涌水进行调查分析,找准原因,采取“以排为主,防、排、截、堵相结合”的综合治理原则,因地制宜地制定治理方案,达到排水通畅、防水可靠、经济合理和不留后患的目的。
(二)涌水地段的原因分析。造成隧道涌水现象一般是由于地下水发育,洞壁局部有水流涌出;碰到断层地带,岩石破碎,裂隙发育,出现涌水现象;洞顶覆盖层较薄,岩石裂隙发育,开挖地表水下渗等原因。施工中应对洞内的出水部位、水量大小、涌水情况、变化规律、补给来源及水质成分等做好观测和记录,并不断改善防排水措施。
(三)涌水地段的处理方法。对于洞内涌水或地下水位较高的地段,可采用超前钻孔排水、辅助坑道排水、超前小导管预注浆堵水、超前围岩预注浆堵水、井点降水及深井降水等辅助施工方法。当涌水较集中时,喷锚前可用打孔或开缝的摩擦锚杆进行排水;当涌水面积较大时,喷锚前可在围岩表面设置树枝状软式透水管,对涌水进行引排,然后再喷射混凝土;当涌水严重时,可在围岩表面设置汇水孔,边排水边喷射。
三、二次衬砌中防排水处理与控制
(一)防水层安装与控制
1.防水层进场时检查。除按必要的工作程序进行取样检查外,还应检查防水板表面是否存在变色、皱纹(厚薄不均)、斑点、撕裂、刀痕、小孔等缺陷,存在质量缺陷时,应及时处理。
2.防水层铺设前对初期支护的检查和处理。防水层铺挂前,应先对初期支护喷射混凝土进行量测,对欠挖部位加以凿除,对喷射混凝土表面凹凸显著部位应分层喷射找平。外露的锚杆头及钢筋网应头齐根切除,并用水泥砂浆抹平,使混凝土表面平顺。
3.防水层铺设好后检查和处理。防水层铺挂结束,监理工程师应对其焊接质量和防水层铺设质量进行检查。其检查方法有:(1)用手托起防水板,看其是否能与喷射混凝土密贴。(2)看防水板表面是否有被划破、扯破、扎破等破损现象。(3)看焊接或粘结宽度(焊接时,搭接宽度为10cm,两侧焊缝宽度应不小于2.5cm;粘结时,搭接宽度为10cm,粘结宽度不小于5cm)是否符合要求,且有无漏焊、假焊、烤焦等现象。(4)拱部及拱墙壁露的锚固点(钉子)是否有塑料片覆盖。(5)每铺设20延长米~30延长米,剪开焊缝2处~3处,每处0.5m。看是否有假焊、漏焊现象。(6)进行压水(气)试验,看其有无漏水(气)现象等,检查防水板铺挂质量。如果发现存在问题,除应详细记录外,并立即通知施工单位进行修补,不合格者应坚决要求返工。
(二)止水带安装与控制
防水混凝土施工缝是衬砌防水混凝土间隙灌注施工造成的,对于施工缝的防排水处理,在复合式衬砌中,一般采用塑料止水带或橡胶止水带。
1.二次衬砌端部的检查与处理。在浇筑二次衬砌混凝土前,可用钢丝刷将上层混凝土刷毛,或在衬砌混凝土浇筑完后4h-12h内,用高压水将混凝土表面冲洗干净,并检查止水带接头是否完好,止水带在混凝土浇筑过程中是否刺破,止水带是否发生偏移,如发现有割伤、破裂、接头松动及偏移现象,应及时修补和处理,以保证止水带防水功能。
2.止水带安装质量的检查与处理。检查是否有固定止水带和防止偏移的辅助设施、止水带接头宽度是否符合要求、止水带是否割伤破裂、止水带是否有卡环固定并伸入两端混凝土内等项目,做好详细检查记录,如存在问题时,应立即通知施工单位进行修补,不合格者应坚决要求返工。
(三)混凝土浇筑与控制
衬砌混凝土施工时,应督促施工单位加强商品砼的后仓管理,定期不定期的进行检查。混凝土振捣时必须专人负责,避免出现欠振、漏振、过振等现象。加强施工缝、变形缝等薄弱环节的混凝土振捣,排除止水带底部气泡和空隙,使止水带和混凝土紧密结合。
四、二次衬砌渗漏处理与控制
(一)引流堵漏。对于滴水及裂纹渗漏处,可采用凿槽引流堵漏施工方法。如在渗漏部位顺裂缝走向将衬砌混凝土凿出一定宽度和深度(如宽20mm,深30mm)的沟槽,埋设直径略大于沟槽宽度或与沟槽宽度相当的半圆胶管将水引入边墙排水沟内,再用无纺布覆盖半圆胶管或防水堵漏剂封堵,然后用颜色相当的防水混凝土封堵或抹面。
(二)注浆堵漏。对于渗漏严重部位,可采用注浆堵漏施工方法。如在渗漏部位凿出一定宽度和深度(如直径80mm,深40mm)的凹坑,清理混凝土渣,并检查表面混凝土密实性,从渗漏部位向衬砌钻孔,其深度建议控制在衬砌厚度范围内,埋管注浆,其注浆浆液通过设计确定。注浆结束后,其凹坑可按文中上述4.1方法做防水堵漏处理。
五、结语
每道工序的施工质量都对隧道防排水效果产生很大的影响,施工中的每一点疏忽都可能造成渗漏水隐患。因此,应加强对每道工序的施工质量控制,严格按规范施工确保施工达到设计效果,使隧道防排水工程质量有保证。
参考文献:
隧道论文篇3
在解决这些问题时,首先在施工当中,要在思想观念上做到重视起来,通过管理的强化,来做到对后期施工组织设计要求的有效开展。其次,要做到对各种先进、优良技术手段的综合应用,隧道工程实施当中,存在各类的土建工程,因此在施工组织设计当中,不但需要做到对工序交替及工程交替的思考,还应当做到对同一时间、地点立体交叉施工的考虑,从而满足资金、物资、人力、时间等各项条件的满足。第三,要依据施工的具体情况来进行施工组织设计,对建筑施工中的危险控制、应急求援、水文地质条件做到科学有效的安排。最后,要做到对先进施工组织设计思路的学习及引起,并根据实际相关管理,融入其中,做到对施工组织设计指导作用及效果的有效发挥。
2隧道施工管理的相关策略
2.1隧道施工的安全管理
不论是隧道工程还是其它工程,安全问题都是施工中的首要问题,因而需要在施工当中做到重点重视。首先,要做好对施工人员的安全教育与培训,使员工能够具体一定的安全素养,在隧道施工当中,能够起到安全防范作用,利用宣传及教育的方式,能将安全管理落实在隧道施工的各个环节当中,做到对员工安全意识的提高。其次,对于项目管理部门及施工企业来说,也需要做到对隧道安全管理工作的重视,采用相关措施,将安全培训工作纳入到管理与培训计划当中,进而能够做到对安全管理工作目标及需求的满足,为隧道施工项目的安全管理提供有效保障。
2.2隧道施工的成本管理
成本管理是隧道工程质量、进度、物资等因素得以控制的前提,同时也能做到对隧道工程效益的有效提升。具体来说,应从四个方面,做好隧道施工的成本管理。首先,要做到对成本控制责任体系的有效建立,通过制定相应的规范及责任,来使隧道施工项目成本能够达到既定目标。其次,预算编制之前,应当做好资料收集及材料价格、现场施工的调查工作,并做到对施工方案的有效拟定。第三,对施工所用到的材料费用等信息,要做好公开工作,保障价格信息能够得到共享及公开。最后,运用新型的技术、工艺及材料,来做到对人工成本、机械成本、设备成本费用的有效控制,并通过合理的库存,来做到对材料储备费用的有效降低。
2.3隧道施工的进度管理
隧道工程进度管理需要做好三个方面工作。首先,施工前应当对施工需求的预测,包含对生产需求量、时间、结构的预测分析,进而在财务及管理方法来采取相应的措施,保证各项工作达到平衡发展。其次,可以对施工进度进行分析,以年度、季度、月度等时间阶段进行划分,从而能够使项目管理者与施工者做到对项目进度的了解,方便施工单位的实施及监督部门的监督。最后,需根据隧道施工的实际情况,来做到对施工时间、施工计划的有效安排,并在施工当中做到严格实行,从而能够做到对隧道施工项目进度要求的满足。
2.4隧道施工的质量管理
隧道施工质量管理也需要做好三方面工作。首先,要做到对质量检验内容、标准做到明确规范,保证各项质量检测能够程序化、正规化及规范化进行。通过对隧道施工材料特性的检测,从而使其质量能够满足施工要求,避免安全事故的出现。其次,运用多项检测、定期检测、重点检测等方式,做到对隧道工程质量的系统化、综合化管理。最后,不断完成与建设质量检验体系,提升质量检测人员的专业素质,从而全面做好隧道工程质量检测工作。
3总结
隧道论文篇4
1.1钢筋加工隧道衬砌用钢筋采用合格的大厂钢筋,所有钢筋均根据设计图纸在钢筋加工棚进行加工,完成后运至使用部位进行安装。
1.2钢筋施工放样现场用全站仪五点定位法定出钢筋的位置,即:以衬砌圆心为原点建立平面坐标系,通过控制拱部台车模板中心点、拱部衬砌台车外模板同边墙部模板的两个交接点、两墙部模板的底脚点来控制钢筋的位置。
1.3仰拱钢筋的施工仰拱钢筋在模筑混凝土浇筑完毕之后进行。边墙上埋设定位钢筋,仰拱底部利用定位钢筋与环向、横向钢筋可靠焊接,环向钢筋要求接头错开1m以上。
1.4拱部衬砌钢筋施工为确保二衬钢筋定位准确,钢筋保护层厚度符合要求。具体做法:(1)先由测量人员放样定出台车范围内前后两根钢筋的中心点,确定好法线方向,钢筋绑扎的垂直度采用三点吊垂球的方法确定。(2)测量调平层上定位钢筋中心点标高,定出圆心位置(自制三角架如图2所示)。(3)圆心确定后,检验定位钢筋的尺寸是否满足设计要求,全部符合要求后再固定钢筋。(4)定位钢筋固定好后,在支撑杆上标出环向主筋布设位置,在定位钢筋上标出纵向分布筋安装位置,然后开始绑扎此范围内的钢筋,各钢筋交叉处均应绑扎,钢筋接头采用双面焊接,搭接长度不小于5d。为了使二衬结构满足设计的耐久性和安全性要求,二衬钢筋保护层厚度偏差必须满足要求。该隧道二衬设计厚度有40cm、45cm、60cm三种,为提高隧道二衬混凝土钢筋保护层厚度质量,特制订以下施工措施。(1)提高隧道开挖质量,严格控制欠挖,开挖轮廓圆顺,保证开挖断面符合设计要求。(2)仰拱钢筋的加工及安装:加工前根据设计图纸计算钢筋下料长度;安装前时测量仰拱开挖后基坑尺寸,有不满足图纸的地方人工进行修整,铺设时,外层钢筋放在5cm厚高标号砂浆垫块上,其间距<1m,呈梅花形布置,外层钢筋铺设好后,根据设计钢筋层厚度加工焊接架立筋,并拉线进行控制内层钢筋铺设位置。仰拱钢筋铺设好后,全面检查层厚,保证预留钢筋的位置符合图纸要求。(3)拱墙二衬施工前对初支凹凸不平的地方进行修整,直到断面符合图纸要求方可进行钢筋安装。(4)拱墙二衬钢筋加工及安装:加工前根据设计图纸进行下料,加工好后在特制弯曲机上进行弯曲,钢筋堆放时按编号分开堆放,以免使用时混淆;安装时先安装外层钢筋和仰拱预留钢筋进行搭接时焊接牢固,在外层钢筋和防水层之间放置5cm厚高标号砂浆垫块,其间距≯1m,呈梅花形布置。外层钢筋铺设好后,沿轮廓线每隔2m焊定位筋,根据设计钢筋层厚预先加工好定位筋,并拉线进行控制内层钢筋铺设位置,铺设好外层钢筋后,绑扎5cm厚高标号砂浆垫块,其间距≯1m,呈梅花形布置。(5)模板台车定位:钢筋及预留预埋件安装好后,对钢筋层厚进行全面检查,有不够的地方及时调整。(6)混凝土浇筑:加强对现场工人技术交底,在用振捣棒振捣过程中尽量避免接触钢筋,以防止钢筋错位。(7)钢筋安装实测项目偏差须满足下列要求。
2衬砌台车及模板安装
[5]衬砌台车采用厂制轨行式钢结构定型大模板台车,主门架尺寸构造须便于出渣车辆的出入,台车长度为9m。在衬砌台车端头,用木槽制作挡头板,在挡头板上要设置固定止水带和止水条的设施。台车由专业台车机械厂制作好后运至现场安装:(1)二衬台车在隧道洞口平整的场地上组装,试拼消除潜在的不平整和错台,台车模板安装牢固,接缝严密,确保不漏浆,浇筑中不变形、不位移;(2)安装完成后对液压系统和各设备行程及能力等进行严格的调试检验,确保满足施工需要,边墙与拱部模板应预留混凝土灌注及振捣孔口;(3)调试结束以后,对调试过程中发现的问题逐一进行解决,使之能达到设计要求及满足施工需要,对受力大、易对台车稳固性造成影响的地方及时进行补焊加强;(4)调试加固以后,对照图纸,认真核对量测,对台车中心线、模板的平整度、模板接口的联接、弧形模板的开合、液压系统的开启与关闭及工作行程等关键部位、关键项目进行认真检核,确保台车结构、材料、整体安装质量和细部处理满足要求,验收合格再投入使用。同时,在使用过程中加强维护,确保二次衬砌质量。铺设防水层:铺设防水层前,对喷射混凝土表面凹凸显著部位应分层喷射找平,外露的锚杆头及钢筋网应齐根切除,并用水泥砂浆抹平,使混凝土表面平顺。台车就位:台车轨道采用60cm×20cm×16cm枕木、间距为45cm,钢轨采用43kg/m,轨道中心与隧道中心线允许偏差≯3cm,左右轨允许高差≯2cm。走形轨面的高程应符合规范要求。台车就位后,要校正模板外轮廓与设计净空相吻合并锁定台车。校正模板外轮廓时,应注意复核台车中线是否与隧道中线重合,台车拱顶高程是否考虑预留沉落量(该隧道二衬台车拱部模板预留沉落量为10~30mm、其高程允许偏差为设计高程加预留沉落量(+10mm,0mm)),矮边墙与拱墙混凝土接茬处的隧道净宽是否符合设计要求,并且调整模板中心线尽量同台车大梁中心重合,使台车在混凝土灌注过程中处于良好的受力状态。
3二衬混凝土施工
[6]为确保洞身混凝土质量,二衬混凝土采用衬砌台车全断面浇筑成型,其混凝土采用自拌混凝土,输送方式采用混凝土罐车及混凝土输送泵泵送入模。附着式振捣器配插入式振捣棒捣固,衬砌循环长度为9m。为解决铺底施工与出碴的干扰,分左右侧两次浇筑铺底混凝土,铺底混凝土达到70%强度后方能通过施工车辆。
3.1混凝土的拌制与运输(1)严格控制原材料进场质量,做到每种材料必检,检测频率和质量必须满足要求。(2)严格控制混凝土配合比设计:在试验监理工程师、中心试验室的具体指导下,由工地试验室按有关技术规范进行计算和试验,完成配合比设计,并在施工过程中经常检查。(3)拌合站原材料计量的控制:施工前,拌合站的电子计量装置经过了计量部门的核准和标定,并进行了计量测试(即试拌),确保计量精度。(4)严格控制混凝土坍落度:坍落度控制在墙体100~150mm,拱部160~180mm,在拌合地点和浇筑现场均进行坍落度检测,不符合要求时,及时调整配合比。(5)混凝土的运输采用混凝土混凝土罐车。运输要点:ⅰ)混凝土在运输中应保持其匀质性,做到不分层、不离析、不漏浆。运到灌注点时,要满足坍落度的要求;ⅱ)混凝土罐车使用前清除容器内的残渣及湿润,装料要适当,防止过满溢出;ⅲ)从搅拌机卸出到浇灌完毕的延续时间不超过2h;ⅳ)运输道路保持平坦,以免造成混凝土分层离析,并根据浇灌结构情况,合理调度车辆,保持道路畅通。
3.2混凝土的浇筑与振捣二衬混凝土采用混凝土输送泵、输送管,末端采用软管连接入模,混凝土入模的自由倾落高度保证其不发生离析,现场施工中不超过2m。输送管严禁接触模板,以免混凝土压出时对管口产生的强烈冲击使模板发生小位移及局部变形;防止振捣器直接冲击防水层、钢筋、模板和预埋件,以免造成防水层、模板损坏和钢筋、预埋件位移。衬砌混凝土在浇筑时,为防止台车偏移,应从两侧拱脚向拱顶对称分层浇筑,并加强钢边橡胶止水带处混凝土捣固,两侧灌筑高差最大不超过100cm,且需连续灌注,灌注速度不宜太快,以10m3/h为宜,若必须终止则不应超过混凝土初凝时间,否则应作施工缝处理,衬砌不留施工平缝,纵向工作缝都必须竖直,相邻段浇筑时,先对已浇混凝土端头凿毛冲洗干净后再浇筑混凝土。变形缝及垂直施工缝端头模板应支立垂直、牢固。混凝土灌注至墙拱交界处,应间歇1~1.5h后方可继续灌注;边墙及墙顶部分采用插入式振捣器振捣,拱顶部分采用附着式振捣器振捣。采用插入式振捣器振捣时,分层厚度30cm,振捣时间宜为10~30s。拱顶部分振捣时附着式振捣器应单个启动,使用时,应根据需振捣的部位开启振捣器振动约30~50s。混凝土振捣应确保密实。插入式振捣棒需变换其在混凝土中的位置时,应竖向缓慢拔出,不得用插入式振捣棒平拖以驱赶下料口处堆积的拌合物振捣,待混凝土充分下沉后再浇筑拱部,以防因边墙混凝土下沉而造成拱部开裂。
3.3封顶(1)当拱部混凝土浇筑至台车最上层窗口时,应将泵送管接至拱顶圆形进浆口。从圆形进浆口泵送混凝土进入衬砌台车时,应从已衬砌段向末衬砌段进行,混凝土充填满拱部后继续泵送混凝土,直到混凝土浇筑至台车挡头约2m处。(2)在台车拱部挡头处预留环向长约2m的空间,先不安设挡头板,以便进行封顶作业。当混凝土浇筑至台车挡头约2m处时,将泵送管接至台车挡头处,通过软管从未安设挡头板处向拱顶浇筑混凝土:将软管出口端设置于模板上预封顶处,待输送出的混凝土充满封顶部分并将软管埋入混凝土约30cm时,将软管拔出约40cm,振捣后连续输送混凝土。待其埋入约30cm后,再拔出一次并振捣,直至混凝土浇筑至台车挡头。(3)当混凝土处浇筑至台车挡头时,一边安设挡头板,一边浇筑混凝土,并采用插入式振捣棒振捣密实,直至封顶完毕。(4)为保证拱部混凝土的密实性,在拱部预埋Φ20mm压浆管,待衬砌混凝土强度达到设计强度的70%后再进行压浆处理。
3.4拆模该隧道二衬是在初期支护变形稳定后施作的,承重模板拆除时,二衬混凝土强度须达到20.0MPa时以上;拆除非承重模板时,按施工规范采用最后一盘封顶混凝土试件现场抗压达到的强度来控制拆模,混凝土强度不得低于5MPa,并应保证其表面及棱角不受损伤。
3.5混凝土养护[7]拆模前用水冲洗模板外表面,拆模后用水喷淋混凝土表面,以降低水化热。(1)应在浇筑完毕后的12h以内对混凝土保湿养护;(2)混凝土浇水养护的时间:养护期不少于14d;(3)浇水次数应能保证混凝土处于湿润状态;(4)混凝土强度达到5MPa前,不得拆除堵头模板;(5)衬砌混凝土实测项目偏差须满足下列要求。
4二衬施工注意事项
(1)检查接缝模板、堵头板是否安装牢固,检查灌注部位的作业窗是否关闭,检查输送管接头是否牢靠。(2)灌注混凝土前,必须用水将基底冲洗干净,灌注时必须两侧同时进行,否则造成偏压导致跑模,灌注部位的作业窗两侧必须用销子插上。(3)混凝土材料的选用、配合、搅拌、运输、灌注、振捣等要求按混凝土施工技术规则进行。
5保证衬砌背部密实的措施
(1)加强光面爆破控制,提高围岩基面平整度。(2)严格施工过程控制,对初支平整度不满足要求的不予验收,直至补喷合格后才允许进入下一道工序的施工,确保初支基面平整。(3)加强防水板铺设质量控制,特别是防水板固定后的松紧度控制,预防太紧防水板崩裂,太松形成褶皱导致空洞的出现。(4)加强二衬混凝土浇筑过程的振捣质量。(5)加强各工序作业人员的质量意识和责任心,把好每道工序质量。
6结束语
隧道论文篇5
1.1工程概况
岗厦站为深圳市地铁一期工程一号线上的一座车站,它位于福华路与彩田路交汇处地下,车站在福华路下方,横穿彩田路,呈东西向布置。车站有效站台长度中心里程为CK7+194.951.
车站周围建筑物和人口密集,福华路与彩田路交通十分繁忙。在福华路与彩田路交汇处的四角为高层建筑,车站西部南北两侧为结构较差的八层民房。站区范围地下管线众多,计有雨水、污水、给水、煤气、电力电缆等30多条,其田路东西两侧雨、污水管埋深4m多,特别是彩田路东侧11万伏电缆埋设于车站上方。在车站西南侧14m处有较大断面的电缆隧道。
车站主体结构为地下两层三跨框架结构,长220.1m,宽21.9m,高12.8m,埋深16m多。车站及周围环境详见图1车站总平面图。
1.2车站结构设计要求
岗厦站结构设计除满足一般地铁车站设计要求外,在车站投标、初步设计期间以及随后的施工图设计中,深圳市交管局、供电局、国土规划局、业主和专家对车站设计分别提出了一些特殊的要求,涉及结构上的主要有下面几点;
(1)在车站8个月施工期间,要求彩田路半幅施工、半幅通车,并在8个月后全幅通车。
(2)11万伏电缆改迁费用大,且无处迁移,要求车站施工中采取原地保护措施,保证正常供电。
(3)彩田路范围内车站顶板要落低至地面下4.5m,以满足彩田路雨、污水管的埋设要求。由此带来中部站厅层层高降低,业主要求该处设中庭,以便站厅层和站台层连成一体,增加视觉高度效果。
(4)车站围护结构不采用地下连续墙,建议采用造价较低的矩形人工挖孔桩。
1.3工程地质与水文地质条件
站区范围内上覆第四系全新统人工堆积层(Q4ml)、冲积层(Q4al)及第四系残积层(Q4el),下伏燕山期花岗岩(r53),各地层分布详见图2车站地质纵断面图。
1.3.1工程地质条件
(1)人工堆积层
①素填土(粉质粘土):主要为坚硬状态,局部为硬塑,含砂砾及少量碎石,为中压缩土,层厚0~8.0m.为Ⅱ类土,Ⅰ类围岩。
②素填土(粘土):主要为坚硬状态,局部为硬塑、可塑,为中压缩土,层厚0~7.5m,为Ⅱ类土,Ⅰ类围岩。
(2)冲积层
①粘土:主要为坚硬状态,局部为硬塑、可塑,局部含砂砾,层厚0~5.9m.为Ⅱ类土,Ⅱ类围岩。
②粉质粉土:主要为硬塑状态,局部为软塑、坚硬,含砂砾,为高压缩土,层厚0~6.8m.为Ⅱ类土,Ⅱ类围岩。
③粉砂:松散,很湿~饱和,局部含粉粒、粘粒及少量有机质,层厚0~4.1m.为Ⅰ类土,Ⅰ类围岩。
④中砂:松散~中密,饱和,含粉粒、粘粒,层厚0~4.9m.为Ⅰ类土,Ⅰ类围岩。⑤粗砂:松散~稍密,饱和,含粉粒、粘粒,层厚0~3.4m.为Ⅰ类土,Ⅰ类围岩。上述砂层分布于车站西端与区间交界处。
(3)残积层
①砂质粘性土:主要为坚硬状态,局部为硬塑、可塑、软塑,为高压缩性土,层厚0~16.0m.为Ⅲ类土,Ⅱ类围岩。
②砾质粘性土:主要为坚硬状态,局部为硬塑、可塑,为高压缩性土,层厚0~17.7m。为Ⅲ类土,Ⅱ类围岩。
(4)花岗岩
①全风化花岗岩:呈土夹砂砾状,为中压缩性土,顶面埋深18.0~25.2m.为Ⅲ类土,Ⅱ类围岩。
②强风化花岗岩:呈砂砾状,顶面埋深20.0~28.0m.为Ⅳ类土,Ⅲ类围岩。
③中等风化花岗岩:呈碎块及短柱状,顶面埋深22.1~30,5m.为Ⅴ类土,Ⅲ类围岩。
④微风化花岗岩:呈柱状,节理裂隙发育,顶面埋深22.5~31.6m.为Ⅵ类土,Ⅴ类围岩。
1.3.2水文地质条件
本场地地下水按赋存介质为第四系孔隙潜水及基岩裂隙水。
第四系孔隙潜水主要赋存于砂类土、粘性土及残积土中,其中砂类土层具中等透水~强透水性,粘性土及残积层具弱透水性,为相对隔水层。
基岩裂隙水赋存于花岗岩风化层中,花岗岩全风化岩具弱透水性,为相对隔水层,强风化及中等风化岩具中等透水性。
勘探期间地下水埋深1.5~4.3m,高程4.27~1.19m,水位变幅0.5~1.5m.地下水对钢结构具弱腐蚀性,CK7+175~CK7+341.101段地下水对钢筋混凝土结构具弱溶解性、中等分解性腐蚀,综合评价其腐蚀等级为中等腐蚀。
2、车站结构设计特色
2.1车站围护结构采用矩形人工挖孔桩,并兼作车站主体结构侧墙
岗厦站设计招投标方案的围护结构为地下连续墙,后经专家评审,提出地下墙造价高,可采用造价较低的人工挖孔桩。我们根据岗厦站周围环境对车站基坑位移要求高的特点,采用1X1.5m的矩形榫接人工挖孔桩,其整体性和防水效果较好,在侧压力作用下桩水平位移较小。为加强桩的整体刚度和防水性能,设计了榫接的凹桩和凸桩,在榫接处设钢板丁基橡胶腻子止水带及遇水膨胀橡胶止水条,并在凹桩两侧水平钢筋端部预埋与凸桩水平钢筋连接的钢筋连接器,使矩形挖孔桩整体性类似于地下连续墙。
由于彩田路要求尽快恢复全幅通车,车站顶板采取逆筑的施工方法,相应车站结构板与桩通过预埋在桩内的钢筋连接器实现连接,逆筑时侧墙采用单层墙比双层墙施工方便,也节省了内衬,同时矩形挖孔桩1m的厚度能满足车站结构设计的要求。防水增加内防水层,即用水泥基渗透结晶型防水涂料涂抹矩形挖孔桩内侧,高度自顶板面至底板底,并在顶板、底板与桩结合面的纵向设遇水膨胀腻子止水条。因此岗厦站矩形人工挖孔桩既作车站的围护结构,又作为车站主体结构侧墙。
2.2车站中部半幅施工、半幅通车的结构措施
根据彩田路东半幅车站先施工的要求,为了在车站中部8个月施工期间保证彩田路半幅施工、半幅通车,我们在彩田路中线附近设车站东部基坑封头桩,封头桩采用φ800钻孔灌注桩,自地面深至基坑底下8m,并设三道角撑,使东部基坑开挖时,彩田路西半幅继续通车。彩田路东半幅车站逆筑顶板浇筑的同时,在封头桩边和彩田路东侧的顶板上筑两道0.5m厚的钢筋混凝土挡墙,以便彩田路东半幅恢复通车后,挡墙承受车辆和道路下土层的侧压力。彩田路东半幅通车后,可进行西半幅开挖、支撑和逆筑顶板的施工,并在彩田路西侧的顶板上筑一道0.5m厚的钢筋混凝土挡墙,在顶板上覆土后可实现彩田路全幅通车。
2.3车站中部半逆筑法施工,其它顺筑法施工
施工期间为了彩田路尽快实现全幅通车,车站中部顶板采用逆筑施工方法。顶板及顶板梁支承在钢管混凝土柱和挖孔桩上。钢管混凝土柱强度高,承载力大,并先行施工。由于顶板上覆土4.5m,每根钢管混凝土柱承载超过1000t.钢管混凝土柱采用外径为0.6m的16Mn钢制成的厚20mm的钢管,钢管内浇筑C40混凝土。柱下基础为φ1600人工挖孔桩,桩底扩大为φ2600,支承在中风化花岗岩上。为了钢管混凝土柱与站厅板纵梁、底板纵梁连接,在钢管相应部位上焊接抗拉、抗剪钢板,部分纵梁受拉钢筋焊接在抗拉钢板上,抗剪钢板则将纵梁剪力传递到钢管混凝土柱。
逆筑顶板底土层承载力大部分高于100kPa,小于100kPa的土层需换填后筑土模,浇筑顶板。
除车站中部顶板逆筑外,其它部分均为顺作,方便了逆筑顶板下的出土。
2.4车站中部设中庭
车站中部站厅板在两个自动扶梯、楼梯处开两个17.93m×8.26m的大孔,为承受孔两侧站厅板垂直荷载,除车站侧墙外,孔周设纵向梁、横向梁和钢吊杆。横向梁分别支承在车站中立柱和站厅板纵梁上,纵向梁支承在挑出的横向梁和锚固在顶板暗梁内50钢吊杆上。孔两侧站厅板自身作为水平梁承受车站侧墙外的水平向水土侧压力,并支承在孔两端的站厅板上。中庭内无站厅板纵梁,中立柱为中庭柱。
2.511万伏电缆支托保护方案设计
岗厦站11万伏电缆位于彩田路东侧,距彩田路中心线的30m处横穿车站基坑。该电缆预埋在9根φ200PVC管内,PVC管用890×1700的C15混凝土固定后埋于道路下。
我们采用钢栈桥支托方案来保护11万伏电缆混凝土保护块,钢栈桥两端支承在车站外侧5m的承台上,承台下为两根φ1000的钻孔灌注桩作基础,钻孔灌注桩底至中风化花岗岩。
钢栈桥为角钢组成的空间桁架,高3.5m,宽2.8m,长30m.为避免挖开电缆混凝土保护块下土层浇筑承台梁,钢栈桥采用下沉式,承台梁底高于电缆保护块顶部。钢栈桥先制作的侧面两榀桁架分别吊装在承台梁上,并用桁架顶部杆件加以连接。混凝土保护块下采用人工间隔挖土,每隔1m挖土后,马上用一根工25的工字钢支托保护块,工字钢两端用高强度螺栓固定在栈桥侧面桁架的下弦节点板上。钢栈桥底部斜杆和内腹加劲杆,待支托工字钢安装后连接,以形成完整的空间桁架结构。车站施工完毕后,顶板覆土时,在顶板上砌砖墙支承栈桥底部支托的混凝土保护块,并在砖墙间保护块下回填砂垫层后,拆除钢栈桥。
隧道论文篇6
隧道区碳酸岩分布广泛,寒武系除大陈岭组外均可见露头,隧道区主要穿过中统杨柳岗组和上统华严寺组。从地表调查来看,岩溶主要形式有溶纹、溶沟、溶槽等,在上寒武统含泥质条带的泥晶灰岩中,由于差异性溶蚀作用,在断面上见到鱼鳞状或波纹状溶蚀沟纹。区内溶沟、溶槽等发育较浅。溶蚀裂隙主要沿层面及一组与层面正交的节理面发育,外部宽度可达15cm,但溶隙规模受构造面控制,延展性有限,发育深度较浅,对大气降雨的导入作用不甚明显。总体来说,野外调查表明芹源岭地区地表溶蚀现象并不明显,多为溶隙和顺构造面方向的小溶洞,规模和深度都十分有限,唯一发现的一处大规模溶洞并不能说明该区域具备发育群发性大规模溶洞的条件。
2涌水量计算
2.1涌水量预测分段确定根据隧道区段地下水补、径、排特点及含水岩组富水性、岩溶发育特征,对隧道区进行分区段涌水量预测,各分段控制面积确定以1∶1万地形图为基础,结合野外调查并考虑隧道区高程的影响程度而圈定。
2.2涌水量预测方法选择及参数选取隧道涌水具有季节性变化,预测隧道涌水量时应分别计算正常涌水量与雨季最大涌水量值。涌水量预测正确性,主要取决对隧道充水条件的正确分析及计算参数和计算方法的合理选用。由于目前所获取的本区水文地质资料有限,拟采取降水入渗系数法整体上预测涌水量。降水入渗系数法:Qy=ηQa=1000ηαAF/365式中:a-入渗系数;η-涌水系数;A-年均降水量(mm);F-各区段汇水面积(km2);Qa-采用大气降水渗入法计算的渗入补给量(m3/d);Qy-采用大气降水渗入法计算的涌水量(m3/d)。区内降水量数据通过开化县气象资料获取。对涌水系数来说,本区内含水岩层均为弱富水性,且岩溶水主要运移于岩溶裂隙中,η取值空间应在0.1到0.4之间。对入渗系数来说,以区域水文地质报告已有参数为基础,同时参考各分区段入渗特征,确定最终参数取值。
2.3涌水量计算根据涌水量计算结果,隧道区年最大涌水量444.8573m3/d,年最小涌水量202.6685m3/d,年正常涌水量304.8472m3/d。按开化县历年监测的日最大降雨量预测,可能产生的最大涌水量为13007.1m3/d。
3隧道岩溶问题综合分析
3.1地层岩性对岩溶发育的控制碳酸盐岩是岩溶发育的物质基础,碳酸盐岩中的CaO含量越高时,则其可溶性就越强,反之,则越弱,即白云岩类、泥灰岩类、硅质泥质炭质石灰岩类岩溶发育较弱,纯灰岩类则岩溶发育最强。从岩性角度来看,工作区上覆地层为寒武系华严寺组、杨柳岗组,本地区寒武系岩层总体特点是泥质含量较高,且碳酸盐岩常与非碳酸盐岩互层发育,因此从岩性基础上分析,本区岩溶并不发育。从实际野外调查来看,除高峰洞附近出现一较大溶洞外,也未见有其他群发性大型溶洞或地下暗河存在。
3.2地形地貌对汇水条件的控制在不同地貌条件下,岩溶发育过程是不同的。因为岩溶发育在很大程度上受地表水和渗透条件的影响,而这两者又常受地貌条件的影响,如地面坡度、切割密度和深度、水系分布等。因此,岩溶发育过程常和地貌发育过程联系在一起。地面坡度的大小直接影响渗透量的大小。在比较平缓的地方,地面径流流速缓慢,渗透量就较大,岩滚较发育。反之,地面坡度愈大,径流流速愈快,渗透量就愈小,岩溶发育就较差。从地形地貌来看,由于隧道穿过两大流域分水岭,地形坡度陡,使得补给区面积较小,径流速度较快,不利于地下水补给。
3.3地质构造与岩溶发育关系从构造角度来看,主要影响在于张性节理发育且张开度较好,主要分为顺层节理和倾向节理,其中顺层节理发育占主导,为入渗提供了良好的通道,而倾向节理沟通了多个层面的顺层节理,在其交汇地带,地下水循环活跃,往往为岩溶较发育提供了有利条件,调查中高峰洞附近的溶洞就是地下水顺着倾向节理垂直下渗,在顺层节理面处发育的一个较大的溶洞,其规模大小与此处节理大小密切相关。
4结束语