无人机光电探测技术范例(3篇)
无人机光电探测技术范文篇1
【关键词】机载同步;激光测距机;可靠性设计;分析和探究
1引言
新形势下,随着科学技术的蓬勃发展,机载同步激光测距机的开发和应用也日益受到人们的广泛关注和重视。机载同步激光测距机,主要通过发送和接收激光回波信号来判断被测目标的具置距离,被广泛应用于高压电网架设、石油开采、道路建设及军事部门等多个领域。通过对机载同步激光测距机可靠性设计的分析和探讨,解决机载同步激光测距机关键技术中存在的问题,能够进一步推动机载同步激光测距机的普及应用,并发挥出更为重要的作用。
2机载同步激光测距机的可靠性设计
2.1机载同步激光测距机的设计要求
根据火控总体的主要技术指标规定,机载同步激光测距机的工作波长应该保持在1.06um,测程在200m~10km,并在最大测程时,能见度必须达到15km,测距精度为±10m,重复的频率最好设定在1Hz左右。机载同步激光测距机的连续工作时间,要求每工作10s,间隔30s,总共循环5次。在通讯方式上,可以选用RS422,工作温度稳定在-30℃~﹢55℃之间,并保证重量在2.5kg左右,MTBF达500h。
2.2机载同步激光测距机的组成、功能及设计特点
机载同步激光测距机的功能组成,主要有激光器件、激光发射电源、激光接收放大器、距离信息处理器和光学系统,以及低压电源等几个部分。且在系统结构上,具有结构一体化、分舱隔离的设计特点,在系统电路上,具有高低压、强弱信号和信号与电源彼此之间相互隔离的设计特点。
(1)激光器件
激光器件是产生1.06um激光辐射的核心器件,通过在性能指标、刚性和绝缘性,以及体积、重量上,对激光器件实行优化设计,要求激光器件通过自然冷却的方式,选择非金属材料作为聚光腔的设计材料,选择染料片作为调Q元件,避免调Q软件的干扰。
(2)激光发射电源
包括工作时序控制电路、主高压形成电路和氙灯触发电路,以及放电电路等在电路内的激光发射电源的主要功能,是为激光器件提供电源,保证激光器件正常工作,除此之外,激光发射电源还能够提供复位信号给信息处理器。
(3)激光接收放大器
在探测到激光回波信号时,激光接收放大器还能够将其进行放大和处理,从而发出关门信号,在距离信息处理器接收后,按要求完成操作。激光接收放大器在集成对数放大器技术的应用基础上,不但促使其体积仅为常用电路1/4,同时也促使激光接收放大器的可靠性和抗干扰能力得到有效提高。
(4)距离信息处理器
距离信息处理器包括光取样电路、门控电路、计数电路和晶振电路等电路在内,主要用于处理和发送距离信息。在AMD可编程逻辑技术的基础上,距离信息处理器的高集成性、抗干扰性有了进一步提高,而且在功耗方面,也有所降低。
(5)光学系统
光学系统,包括发射和接收光学系统两个部分。发射光学系统主要用于压窄激光器件发射激光脉冲的发散角,促使机载同步测距机的能量密度得到提高,而接收光学系统,则能够通过会聚的形式,将反射回来的光束聚集在雪崩光电探测器的光敏面上。
(6)低压电源
低压电源主要由两个部分组成,即变压器和±12V直流电压与±5V直流电压形成的电路共同组成。通过低压电源,能够将单相电源、交流115V电源转换为机载同步激光测距机所需要的电源,维持激光测距机正常工作。
2.3机载同步激光测距机的工作原理
机载同步激光测距机的工作原理,主要包括发射光束、接收并转换光束、关门信号和开门信号等几个步骤,大概分析如下。
(1)发射光束
在激光发射电源的基础上,Nd:YAG固体激光器能够产生工作波长为1.06um单脉冲激光束,并接受发射光学系统对发散角进行压窄和扩展,由导向光学系统发射给目标。
(2)接收并转换光束
由接收光学系统接收反射回来的单脉冲激光束,并在通过滤波后,再将单脉冲激光束会聚到雪崩光电探测器上实现光回波脉冲向电脉冲的转换。
(3)关门信号
经由激光接收放大器放大、处理,将回波关门信号发送给距离信息处理器。
(4)开门信号
在距离信息处理器发射激光脉冲的同时,距离信息处理器会从光取样电路上接收到到开门信号,并通过激光发射电源获取同步复位信号,让数字电路处于等待执行状态。当开门信号被执行,电子门打开,计时器开始测量间隔脉冲,直到回波关门脉冲返回,电子门关闭,计时器同时停止工作。
2.4机载同步激光测距机的设计及关键技术
(1)电磁兼容性
电磁兼容性,是机载同步激光测距机可靠性设计中的关键技术之一。在1Hz激光测距机中,触发干扰经常出现,给整机其他电子线路造成了很大的电磁干扰。通过采取屏蔽触发变压器,控制辐射干扰范围,或是采取触发回路与其他电路电隔离,预防传导干扰,或是在布局上进行分区隔离、在易受干扰的元件上加设滤波等几种方式,能够有效降低触发干扰的发生。
(2)热设计
机载同步激光测距机是通过自然冷却的形式散发元件工作时产生的热量的,为了保证机载同步激光测距机能够长时间工作,防止温度过高损坏元件,在激光器件的通道设计上,需要注重其传导散热的良好性能。
(3)降额设计
在脉冲激光测距机的日常工作中,很多元件往往需要在超负荷的状态下工作,长此以往,很容易降低元件使用寿命,对元件造成损坏。为此,在进行可靠性设计时,应该注重元件的耐压、功耗及变化率等方面的设计。
(4)可靠性设计
根据《航空机载设备可靠性维修性工程应用手册》来看,有源器件与平均故障间隔时间主要呈曲线关系变化,激光测距机的平均无故障时间MTBF大概在900h,在手册的可靠性等级之中。
(5)连续无故障时间(MTBF)
机载同步激光测距机的可靠性设计,要求MTBF值达到500h。根据不同的情况,需要考虑分析的差异也不同。
例如:某激光测距机主要由A、B、C、D四个构件构成,连续无故障时间T=480h如下所示,现为提高该激光测距机的可靠性,要求将X材料换掉,由Y材料代替,预计改进后的连续无故障时间能否达到可靠性要求?
A.1100hB.2000hC.2050hD.6000h
根据分析,激光测距机主要是材料发生变化,对于只需对X、Y材料做抗拉试验、弹性模量、系统刚度、强度和热膨胀系数、导热系数,以及材料密度、伸长率等进行分析,得出Y材料可使D的T提高20%。因此,
新T(D)=6000×(1+20%)=7200h
改进后的整体产品T=1/(1/1000+1/2000+1/2050+1/6000)=504h
3结束语
通过对机载同步激光测距机的可靠性设计的研究,能够在加深人们对机载同步激光测距机的认识和了解的同时,帮助提高机载同步激光测距机的抗干扰能力,降低能耗,延长其使用寿命,从而进一步推动机载同步激光测距机的普及应用。
参考文献:
[1]魏炳鑫.机载激光测距机光学系统设计中的几个问题[J].机载火控,2004(01).
无人机光电探测技术范文
关键词:光电技术;深空探测;深空探测器;月球探测;有效载荷文献标识码:A
中图分类号:V476文章编号:1009-2374(2015)29-0050-02DOI:10.13535/ki.11-4406/n.2015.29.025
2004年初,我国开始“嫦娥一号”的工程,历时三年发射成功。对绕月探测的时间达到1年4个月之久,使我国深空探测的科学目标得以顺利完成,大量的科学数据也是通过这项工程获取来的。“嫦娥二号”工程是在“嫦娥一号”工程的基础上拓展的项目,其意义在于实现可控撞月。历时3年,“嫦娥二号”发射于2010年10月1日,在多项技术上能够完成突破,使预定的工程目标顺利完成,100km的全月球图像和15km的虹湾图像也是从这项技术中绘制的。无人月球探测工程的方针一共有三个步骤:绕、落、回。目前,“嫦娥三号”和“嫦娥四号”工程的研发正在致力于将月球软着陆。
1金星和火星的首次探测
在深空探测领域发展中,我国是位居前几名的,由于金星和火星的探测符合科学的发展,所以我国更应该致力于研究火星和金星的首次探测,以促进我国航天探测领域的发展。
探月技术和“嫦娥”卫星技术是首次火星探测方案理论实践的基础,我国应坚持自己在航天领域的科学探测目标,对长时间飞行的自主管理技术和远大的监控通信技术以及自主导航与控制在深空条件下的技术等问题进行解决。环火探测是最主要的探测方式,为期10个月的探测器地火转移阶段,1个火星年是环火工作初步拟定的时间。火星探测的主要目的是判断人类是否能够在火星上顺利生存,所以探测的内容包括大气圈演化和火星气候的变化、火星上是否有生命生存过的迹象、火星是怎样进行演化的、火星的各项能源等方面。
地球和太阳之间是金星存在的位置,地球到火星的距离要大于地球到金星的距离。基于此,我们对金星探测要比火星探测更容易一些,包括在测控通信、飞行的动力、能源需求等方面。金星探测的问题主要是对于太阳近距离产生热的问题,我国在控制热的技术上有良好的手段,基于此,我国金星探测工程直接衔接火星探测工程。金星探测主要的任务是,通过探测器围绕金星大气层外飞行,继而对大气特征及其金星表面金星探测,从大气层内进入,做漂浮探测。符合中国发展的深空探测项目不仅包括首次金星和火星探测、无人月球探测,还包括对载人登月的工程项目和月球外天体的探测项目。实现载人登月是人类走出地球的必然趋势,迄今为止,人类唯一到达地球之外的天体就是月球,所以在未来的20年内,根据深空探测技术的蓬勃发展,我国载人登月的愿望一定可以实现。
2光电技术在中国深空探测领域中的应用
深空探测器在轨道方面定义为:处于近地轨道对深空探测的一种飞行器,其对光电技术是有一定需求的。光电技术在中国深空领域能够起到确定的作用。探测器姿态敏感器主要能实现探测器的姿态测量。光学敏感器、陀螺仪、射频敏感器和磁敏感是姿态敏感器的主要部分。光学敏感器主要应用于太阳敏感器、星敏感器、红外地球敏感器、对月球和地球的紫外敏感器和图像敏感器等,应用是十分广泛的。飞行器本体坐标系与空间已知基准方向关系的确定需要通过光学敏感器实现。光电技术在中国深空领域能够起到导航的作用。探测器轨道参数是通过自主导航来确定的,对飞行和探测对象按照光学敏感器把其分为不同的阶段,这里的光学敏感器包括星跟踪器、红外地球敏感器、太阳敏感器、可见光CCD敏感器、空间六分仪、陆标敏感器和紫外敏感器等。探测器的运动参数是通过这些敏感器来测量的,运动参数包括速度、加速度和角速度等。深空探测巡视器的遥操作导航、自主导航、半自主导航都离不开光电技术。通过人工遥操作能够使巡视器进去自主或半自主的导航状态,这要求巡视器具备良好的执行任务和生存能力。其作用是对自身环境、位置和速度信息的获取。基于此,敏感器的多种结合技术能够赋予一定的航天导航功能。同时,光电技术在中国深空领域能够起到监视的作用。这能够真实地对关键部件的动作进行掌握,使地面随时接受图像。光电技术在中国深空领域的广泛应用是有效载荷的需要和空间飞行器交汇对接的需要。光电技术在中国深空领域能够起到测控通信的作用和满足探测器多方面需求的作用。
3我国深空探测器利用光电技术的应用展望
目前,我国“嫦娥一号”和“嫦娥二号”卫星的成功发射都离不开光电技术的支持,光电技术未来的探测活动也是最基本的一项技术。“嫦娥一号”卫星在光电技术的利用上主要包括:CCD立体相机设备,扫推方式是干涉成像光谱仪器采取的主要方式,元的点光图谱是经过数学处理得到的,同时为二维重构光谱图像提供了条件,从而得到月球表面物质分布信息和类型数据。半导体泵浦固体激光器是激光高度计采用的主要仪器,它能够向月球表面发射大功率的窄脉冲激光,同时将月球表面后散射的激光信号心理接收,继而计算出卫星与月球表面距离,这是利用测量光往返延迟时间作为依据计算的。星敏感器的卫星相对于惯性空间的姿态是通过星图识别和恒星的观测来获取的。月球的紫外谱段探测主要通过采取紫外敏感器进行,它能够将环月飞行时,基于月球中心,卫星的方向进行有效识别,以对卫星相对轨道参考系的姿态信息数据进行获取。未来的光电技术在“嫦娥二号”卫星的主要应用包括对具有更高的分辨率的CCD立体相机的更新设备等的使用。光电技术在“嫦娥三号”卫星的主要应用包括在相机的运用上采取的是地形地貌、降落、极紫外和全景相机,望远镜采用的是月基光学望远镜和空外成像光谱仪。
4光电技术在中国深空探测领域的发展方针
针对光电技术在深空探测领域中的广泛应用,本文阐述一些有效的发展方针。我国深空探测的今后发展需求和实践方面由于受到光电技术的影响,使探测器性能和功能上受到了一定的制约,所以提高光电技术就是我国深空探测领域有效发展的前提。提高光电技术首先要从器件入手,突破传统的结构部件,研发新型的、轻质的、高性能的光学部件;其次我国要进一步提高敏感器的设计水平和制造水平,在对GNC设计和探测器的总结设计中,要经过多种方案的权衡选择,对敏感器进行最合理的安排,增加系统性能,使器件不受到其他因素的影响。此外,对光电的有效电荷制造和设计水平一定要看作提高光电技术的重中之重,对一个设备的多种应用方法进行探索。“嫦娥二号”就是通过尝试紫外敏感器对敏感器功能和光学探测融为一体的方式,使其姿态确定功能的同时,又能够将月球紫外谱段图像进行绘制,除此之外,它还可以在导航中应用;最后在中国深空探测工作中还要对可能形成的项目预言工作建议进一步加强,这在一定程度可以使深空探测事业得到持续
发展。
5结语
综上所述,中国深空探测的发展离不开光电技术的支持。从事光电技术研发的技术人员对我国深空探测事业的发展具有很大程度的贡献,只有从根本上落实对光电技术的发展,才能够找到深空技术发展领域的切入点,从根本上为我国深空探测事业技术水平做出一定
贡献。
参考文献
[1]叶培建,饶炜.光电技术在中国深空探测中的应用[J].航天返回与遥感,2011,32(2).
[2]罗建将,李洪祚,唐雁峰,等.深空探测激光通信技术发展研究[J].航天器工程,2013,22(2).
无人机光电探测技术范文
关键词:公路;桥梁;检测;应用
随着经济的迅速发展,我国的公路桥梁检测技术现在已得到很大的发展,使国内交通运输状况有很大程度的改善,然而就目前的经济发展速度而言,仍然无法满足日益严峻的交通需要。近年来,公路桥梁负荷的重量在不断增加,导致大部分公路桥梁路面损伤情况日益加重,不断出现质量问题,因此,对公路桥梁的施工质量进行检测是保证质量的关键环节。
一、公路桥梁进行检测的必要性
进行公路桥梁检测主要是为了及时合理地对劣质公路桥梁工程进行处理,从而有效降低工程的养护管理成本,保证交通质量和运输畅通,避免出现不必要的财产损失和人员伤亡。但是在公路桥梁的施工和使用过程中,经常出现一些质量问题,引起了社会各界的广泛关注。公路桥梁出现缺陷或者质量问题的原因主要体现以下几个方面:一是公路桥梁在完成后质量与初始设计目标存在一定的差距,在施工过程中,没有严格按照施工方案图纸的设计要求进行建设;二是公路桥梁在使用和运行过程中会出现不可避免的安全隐患或者损害,这会对路桥的承载能力造成不利影响;三是随着交通行业的迅速发展,车辆越来越多,对公路桥梁的整体性能的要求也不断提高,在很大程度上就要不断提高公路桥梁建设施工的质量。因此要加强对公路桥梁的检测,保证万无一失。
二、公路桥梁检测技术
(一)公路桥梁机械检测技术
机械测试仪器一般有杠杆、齿轮、轴、弹簧、指针和度盘等部件构成,其传感机构的功能是直接感受被测量的构件变化,并把这种变化传到转换机构。在接触式机械量测仪器中,转换机构的功能是把传感机构传来的被量测构件的变化转化为长度的变化,并且把它放大或缩小,或者改变方向。
(二)公路桥梁射线检测技术
首先,对公路桥梁的检测就是当公路桥梁中有缝隙或损伤的时候,发出的红外线与周围的不一致,所以可以依靠红外线成像的原理来检测公路桥梁的损伤。简单的说红外热像检测技术就是依据物体的红外辐射、表面温度、材料特性三者间的内在关系,借助红外热像仪把来自目标的红外辐射转变为可见的热图像,红外热像仪检测技术,从而得以显现。其次,电磁波探器是利用超高频短脉冲电磁波探测地下介质分布的一种地球物理勘探方法。检测在公路桥梁无损中的典型应用,如混凝土中的钢筋和孔道的定位以及缺陷和疲劳探测等,电涡流的大小与分布受构件材料介质和表层缺陷的影响,根据所测电涡流的变化量,就可以判定材料表层的缺陷情况。对检测装置或设计的检测仪器的射线源一定要进行有效的防护,将射线对人体的影响控制在最低的程度。这是核子仪在设计时所必须考虑的关键问题。
三、公路桥梁检测技术应用
(一)光纤传感检测技术
这种应用的原理就是根据光纤对一些物体特定物理量的敏感度,将物理量转换成直接可以进行测量和丈量的光信号,因为光纤不仅可以作为传播媒介,还可以在光波穿过表征光波的特征参量受到外界条件的影响时发生不同程度的变化,这样就可以对各种物理量进行探测。在经过多年发展后,我国的光纤技术已经取得了巨大的成就,被广泛应用在军事、航空、工砍能源以及生物和制药等行业中。光纤传感检测技术在公路桥梁检测中的应用,主要表现对钢索的索力和预应力,混凝土梁内部的应力,公路桥梁应变特性的检测,形成光纤智能的公路桥梁,给公路桥梁健康监测和安全评价提供了新的活力和方法。与传统的传感器检测方法相比,具有以下优点:不会受到外界环境的限制,抗电磁干扰、耐腐蚀,可占体积比较小、重量轻,对测量的介质影响比较小,具有比较高的分辨率和灵敏度,实用性比较强,能够形成光纤传感网络。但是在实际的应用过程中,采用光纤传感技术的造价成本和投资,在很大程度上限制了这种技术在公路桥梁检测中的推广和应用。
(二)红外热像仪与雷达检测技术
在公路桥梁的质量检测中采用超声波、红外热像仪以及雷达检测技术,一天内可对几十种桥梁的桥面或是上千公里路面进行准确的测量。红外热像仪是通过红外摄影机而获取公路桥梁温度图。其中温度较高的点(热点)则是由于桥梁薄得仿佛充满空气的绝缘体般,因此热点部分的混凝土,其温度上升适度相比其他点更快些。雷达是借助电磁波对受测目标进行探测。其工作原理是向受测目标发射电磁脉冲使发射出的电脉冲形成电磁波并从混凝土的异质界面中反射回来,形成回波。回波对混凝土而言具有密切的关系,其交替变化的波形可将凝土中的损害情况以及裂缝情况检测出来。红外热像仪与雷达联合使用可有效检测公路桥梁现有的大部分病害种类。
(三)探地雷达检测技术
在进行公路桥梁检测过程中,探地雷达就是高频的电磁脉冲波利用宽频带短脉冲的形式把天线发射到地下,在传播过程中,遇到不同电介质时,雷达波的能量就能够被及时反射回地面,从而被天线接收,这样通过反射波确定地下介质的分布,在进行浅层或者超浅层的探测过程中,应用的比较广泛。探地雷达就会通过高频电磁波的反射、衰减、散射或者折射等进行地下的探测,以此确定介质的结构。为了获得更为精确的雷达探测结果要对雷达的记录进行分析研究,识别反射波的时间、振幅以及极性等特征,其中时间和振幅的确定比较简单,而极性的判断有很大的难度,同时也非常重要。从振幅和极性的反射中可以分析出电磁学性质差异越大,反射波就会越强,以此可以判断介质的性质和属性;当波从波高速进入到波低速的介质中时,反射的系数就会为负,振幅成反向,反之则与入射波同向。在实际探测过程中,不同的介质也就相应的巨涌不同的结构特征,反射波的振幅和方向是雷达波进行有效判断的依据。因此,根据雷达的特性,可以用于公路桥梁的结构检测,同时对相关的技术人员要求比较高,要采集大量实际的测量数据和丰富经验。
四、结束语
总而言之,随着交通量的持续增多,公路桥梁实际承载的压力也越来越大,路桥施工企业需不断研究更新的公路桥梁检测技术措施,不断优化检测技术,发现在用公路桥梁的现存问题,及早掌握处理公路桥梁中的病害,从而保持公路桥梁的质量,维护正常的交通运行。