光纤通信(6篇)
光纤通信篇1
1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham),预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代由此开始。光纤通信是以很高频率(1014Hz数量级)的光波作为载波、以光纤作为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年增加了近一万倍,传输速度在过去的10年中大约提高了100倍。
光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。
二、光纤通信技术发展的现状
(一)波分复用技术。波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
(二)光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
三、光纤通信技术的发展趋势
近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,以下在对光纤通信领域的主要发展热点作一简述与展望。
(一)向超高速系统的发展。从过去20多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%:因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了2000倍,比同期微电子技术的集成度增加速度还快得多。高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。
(二)向超大容量WDM系统的演进。采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。采用波分复用系统的主要好处是:1.可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;2.在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本:3.与信号速率及电调制方式无关,是引入宽带新业务的方便手段;4.利用WDM网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。
(三)实现光联网。上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用。实现光联网的基本目的是:1.实现超大容量光网络;2.实现网络扩展性,允许网络的节点数和业务量的不断增长;3.实现网络可重构性,达到灵活重组网络的目的;4.实现网络的透明性,允许互连任何系统和不同制式的信号;5.实现快速网络恢复,恢复时间可达100ms。鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研。光联网已经成为继SDH电联网以后的又一新的光通信发展高潮。
光纤通信篇2
1光纤通信是以光波作为载波,以光纤作为传输媒质所进行的通信。随着科学技术的发展,人们对通信的要求越来越高。为了扩大通信的容量,有线通信从明线到电缆,无线通信从短波到微波和毫米波,它们都是通过提高载波频率来扩大通信容量的。光波也是一种电磁波,频率在1014Hz数量级,比微波(1010Hz)高104~105倍,因此具有比微波大得多的通信容量。所以光纤通信一经问世,就以极快的速度发展,它将是未来信息社会中各种通信网的主要传输方式。2光纤的结构与分类光纤主要是由纤芯、包层、和涂敷层构成。纤芯是由高度透明的材料制成;包层的折射率略小于纤芯,从而造成一种波导效应,使大部分的电磁场被束缚在纤芯中传输;涂敷层的作用是保护光纤不受水汽的侵蚀和机械的擦伤,同时又增加光纤的柔韧性。在涂敷层外,往往加有塑料外套。光纤的基本分类有以下几种方式:首先,根据光纤横截面上折射率分布的情况来分类,光纤可以分为阶跃折射率型和渐变折射率型:(1)阶跃型光纤(SI)又称突变型光纤。它的纤芯和包层的折射率是均匀的,纤芯和包层的折射率呈阶跃形状(发生突变),如图3(a)所示。(2)渐变型光纤(GI)的纤芯折射率随着半径的增加而按一定的规律减少,到纤芯与包层的交界处为包层的折射率,即纤芯中折射率的变化呈抛物线型,如图3(b)所示。其次,根据光纤中的传输模式数量分类:(1)多模光纤:多模光纤是一种传输多个光波模式的光纤。按多模光纤截面折射率的分布可分为阶跃型多模光纤和渐变型多模光纤。其光射线轨迹如图4(a)和(b)所示。阶跃型多模光纤的纤芯直径一般为50~75mm,包层直径为100~200mm,由于其纤芯直径较大,所以传输模式较多。这种光纤的传输性能较差,带宽较窄,传输容量也较小。渐变型多模光纤的纤芯直径一般也为50~75mm,这种光纤频带较宽,容量较大,是20世纪80年代采用较多的一种光纤形式。所以一般多模光纤指的是这种渐变型多模光纤。(2)单模光纤:单模光纤是只能传输一种光波模式的光纤,基模(最低阶模式,基模是截止波长最长的模式。除基模外,截止波长较短的其它模式称为高次模。)。不存在模间时延差,具有比多模光纤大得多的带宽。单模光纤的直径很小,约为4~10mm,其带宽一般比渐变型多模光纤的带宽高一两个数量级,因此,它适合于大容量、长距离通信,其光射线轨迹如图4(c)。最后,按照光纤的原材料的不同,光纤可以分为以下几种类型:石英系光纤:石英玻璃光纤主要材料是SiO2,并添加GeO2、B2O3、P2O3等。这种光纤有很低的损耗和中等程度的色散,目前通信用光纤绝大多数是石英玻璃光纤。多组分玻璃纤维:如用钠玻璃掺有适当杂质制成。损耗底,可靠性不高。塑料包层光纤:这种光纤的芯子是由石英制成的,包层是硅树脂。全塑光纤:这种光纤的芯子和包层都是由塑料制成。在光通信中主要用的是石英光纤。全塑光纤具有损耗大、纤芯直径大及制造成本低等特点,目前全塑光纤适合于较短距离的应用,如室内计算机连网等。3光纤通信系统基本结构与特点实用光纤通信系统一般都是双向的,因此其系统的组成包含了正反两个方向的基本组成,并且每一端的发射机和接收机做在一起,称为光端机。同样,光中继器也有正反两个方向,如图5所示。光发射机:将电端机送来的电信号变换为光信号,并耦合进光纤中进行传输。内有光源如半导体激光器。光接收机:将光纤传输后的幅度被衰减的、波形产生畸变的、微弱的光信号变为电信号,并对电信号进行放大、整形、再生后,再生成与发送端相同的电信号,输入到电接收机。光接收机内有光电检测器如光电二极管。中继器:把经过衰减和畸变的光信号放大、整形、再生成一定强度的光信号,送入光纤继续传输,以保证整个系统的通信质量。4光纤通信系统的优点光纤通信系统和其他通信系统相比具有的优点:(1)频带宽,通信容量大(可达25000MHz);(2)传输损耗低,无中继距离长(低到0.15dB/km);(3)抗电磁干扰能力强;(4)光纤通信串话小,保密性强,使用安全;(5)体积小,重量轻,便于敷设;(6)材料资源丰富(SiO2)。
光纤通信篇3
一、光纤通信课程特点分析
《光纤通信》是高等学校通信专业的必修课,是一门理论与实践结合性较强的课程。理论部分主要介绍光纤通信系统的组成、光纤光缆的结构、通信用光器件的结构及特性,光端机的构成及工作原理等。除了繁杂的理论教学,该门课程还需要配上相应的实验课,让学生多接触光纤通信领域中的先进仪器和设备,多动手操作,才能达到好的教学效果。实验教学主要包括常用光纤通信设备的使用、光纤衰减及光纤长度的测试、光纤的熔接与冷接、接收灵敏度和动态范围的测试,光纤通信系统误码性能的测试等。从上面论述的课程内容中可以发现,该课程的研究对象和性质决定了其课程具有如下特点:第一,内容复杂,主要表现为理论多、公式多、表格多、图形多;第二,涉及的科目、知识较多,如场论、光学原理、模电、数电等;第三,与工程实际联系较为紧密;第四,应用定性理论的场合较多。此外,光纤通信还是一门飞速发展的学科。因此,该课程的教学还应该介绍该领域的新技术,同时注重教学的基础性、系统性。
二、光纤通信课程教学存在的问题
(一)教学过于理论化,启发性不足
受传统教学观念的影响,在《光纤通信》的授课上,许多教师采用的教学方式依然是单纯的书本教学法。课堂上,教师大多只是解释原理,讲解题目,演示现象,根据课本照本宣科地将知识讲授给学生,而没有让学生进行举一反三的发散思考,使学生完全处于一种被动接受前人研究成果的状态,严重遏制了学生的自主意识、创新能力和学习兴趣。
(二)教学形式单一,课堂气氛单调、沉闷
《光纤通信》课程包含大量的理论,如光的波导理论、激光器的激发原理、光电检测器工作原理、光放大器的放大原理等,对这些理论的讲解需要做大量的数学分析推导。因此,在授课过程中,许多教师进入了理论教学的误区,将整堂的光纤通信课程演变成了在黑板上做数学分析、定理证明、公式推导、手工绘图的过程,导致了课堂气氛沉闷。
(三)教学设备陈旧,难以激发学生学习兴趣
在实验教学环节中,由于条件制约,实验设备大多过于老旧,功能单一,实验室仅能做些简单的理论验证实验,这对学生自学能力的培养及设计能力的提高产生了很大的阻碍,也导致学生接触不到光纤通信的技术前沿,难以激发学生的学习兴趣。
三、光纤通信课程的教学改革思路
(一)引入新的教学方式,丰富教学形式
传统的教学方式主要有板书和多媒体PPT。板书的内容详尽、排版灵活,但形式单调、寡味枯燥;PPT的内容丰富、形式多样,但教学节奏过快,不利于学生理解。引入更多形式的教学方式有利于提高课程的趣味性。近年兴起的“微课”是一种新的教学方式,它能对二者作良好的补充[2]。在光纤通信的教学中,教师可以充分发挥“微课”的优势,将生涩难懂的重要理论以生动活泼的形式展示出来;将步骤繁杂的实验操作也以微课形式录制出来,一来增加学生的学习兴趣,二来可以让学生在课后反复观看,温习提高,既有利于理论知识的掌握,也能节约资源,促进实验教学的提高。
(二)理论结合实际,提高学生的创新能力
光纤通信篇4
关键词:光纤通信传输耗损
中图分类号:TN818文献标识码:A文章编号:1007-9416(2012)02-0054-01
光纤通信由于其自身的一些优点,因此得到了广泛的使用,因此,在光纤通信中产生的问题,也值得我们去认真思考并加以解决。光纤接续工作,技术复杂、工艺要求高,是对质量标准严格要求的精细工作,也是关系到光纤通信传输质量的重要工作,因此,在施工中,技术人员要充分重视光纤接续时产生的损耗,按照严格标准做好光纤的接续工作,从而降低光缆的附加损耗,提高光纤的传输质量。同时相关的技术人员也要不断的学习相关的专业知识,不断的提升自身的专业技能,在日常的施工工作中注意总结经验教训,不断的提高施工的质量,这也是提高光纤传输效果的一条有效的途径。
1、光纤通信的相关理论
光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信的应用在当前主要集中于各种信息的传输与控制上。以互联网的发展为例,传统互联网以电缆为传输工具,速度比较慢,随着90年代美国信息高速公路的建设,现代互联网传输的主体为光纤。去年,我国的有线电视实现了由模拟信号向数字信号的完全转变,有线电视信号的传输也是以光纤的应用为前提的。另外,随着信息化的普及,光纤通信基本已经深入到每个人的生活。除此之外,由于光纤通信具有保密性高、受干扰性能高的优点,其在军事与科技中的应用也十分广泛。当然光纤在实际应用中也有一些缺陷,比如玻璃的质地比较脆,比较容易折断,因此加工难度高,价格也较昂贵,要求的加工工艺与电缆相比也复杂很多。而且由于光纤通信自身存在着传输过程中的光能损耗等问题,因此,对于光纤通信要有全面的认识。
2、光纤传输损耗的种类及原因
光纤在传输中的损耗一般可分为接续损耗和非接续损耗。接续损耗包括由于光纤自身特性引起的固有损耗以及非自身因素(一般为工业加工下艺以及机械的设置)引起的的熔接损耗和活动接头的损耗。非接续损耗包括光纤自身的弯曲损耗和由于施工等因素造成的损耗,另外由于具体光纤应用环境对光纤传输带来的损耗也属于非接续损耗。除此之外,按照光纤传输过程中损耗产生的原因,可分为吸收损耗、散射损耗和其他损耗。
2.1吸收损耗
吸收损耗是指光波通过光纤材料时,一部分光能变成热能,造成光功率的损失。光在传输过程中会与介质发生作用,由于光含有能量,因此在传输过程中必然有一部分被介质所吸收,转化为自身的热能。比如太阳以光的形式向地球传输能量,在阳光经过大气层时,由于大气层具有吸收光的作用,因此造成海拔不同的地方,空气含量发生变化,温度也随之变化。这是吸收损耗的一个最典型的例子。
光纤的吸收损耗主要表现在光纤自身材料对光能的吸收。例如加工光纤的原料以石英为主,而石英中就含有铜、铁、铬等金属元素,这些金属元素在各自不同的离子状态下对光粒子都具有吸收作用。另外由于加工过程中,光纤中会含有许多不同的杂质。
2.2散射损耗
散射损耗是指由于光纤的形状、材料使折射率分布存在缺陷或者不均匀,导致光纤中传导的光与微小粒子相碰撞发生散射,由此引起的损耗。
散射作为一种光学现象在生活中十分常见。如在晴朗的早晨,太阳还没有升起时天空就是亮的,这就是由于空气中的杂质对太阳光的散射造成的。散射作用的本质是反射作用,即由于物体结构等的不同,造成物体对光的反射以不同的角度向周围无序地反射出去。同理,由于光纤制作工艺等原因,光纤的内部界面会对传输中的光进行散射,造成光传输的能量散失。另外光波的波长与散射有密切的关系。以瑞利散射为例,这种散射主要集中在短波长区域,由于散射对于波长较短的光作用小,因此光纤在长波长区的损耗比短波长区的要低。
2.3其他损耗
其他损耗,又称附加损耗,主要是指是由于光纤微弯以及光纤弯曲造成的损耗和连续损耗。
(1)光纤的弯曲损耗。由于光纤自身的性质比较柔软,可以弯曲,但是当光纤弯曲到一定程度后,虽然能够继续对光进行全反射,但此时光波传输的路径已经改变,因此在光纤中会有一部分光能渗透到包层中或穿过包层成为辐射模向外泄漏,从而产生损耗。因此光纤的弯曲损耗与光纤弯曲的曲率有着很大的关系。
(2)光纤的连续损耗。光纤的连续损耗指光纤在连接时由于融接等方面的原因对以后的光波传输带来的能量损耗,主要是接头损耗。两根光纤在进行连接时,光纤的纤芯与包层同心率、光纤直径、模场直径、椭圆度、光纤弯曲度等自身的物理性质决定了其接头损耗的大小。日常的操作和实验表明,光纤的纤芯与包层同心率对接头损耗的影响最大,其次是光纤弯曲度。
3、降低光纤损耗的对策
由于光纤的吸收损耗和散射损耗受光纤自身物理特性的影响较大,因此主要讨论其他几种降低损耗的办法。
首先,应选用特性一致的优质光纤,在同一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配。其次,光缆施工时应严格按规程和要求进行,尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。最后,要保证光纤的应用与施工的环境符合要求,严禁在多尘及潮湿的环境中露天操作,切割后光纤不得长时间暴露在空气,尤其是在多尘潮湿的环境中。环境温度过低时,应采取必要的升温措施。
光纤通信篇5
通信技术近年来发展之快,应用面之广,在通信发展史中是非常罕见的,部分通信用户还没有从2G时代过度到3G时代,以TD—LTE和FDD-LTE为标准的4G时代已全面到来。光纤通信在通信行业发展中发挥着极其重要的力量。光纤通信课程涉及内容覆盖面广,要求理论与实践紧密结合,概念多而抽象。
(1)理论和实践脱离日益严重。目前,光纤通信教学仍然以原理讲解为主要教学方法,实验实训环节可以看作是光纤通信中的局部功能体验和仿真。因为光纤通信设备昂贵,更新换代快,很多高校的实验实训基本上有一个实验箱来实现,无法和现行主流的光纤通信接轨,理论和实践脱离严重。
(2)光纤通信考核方式单调。理论和实践的脱离,也降低了光纤通信在部分高校的核心地位,甚至沦为“副科”。一般的课程设计为理论授课和期末考试结合,考核方式为学生理论课程的表现和期末考试,方式单调,无法体现学生思维的创新和理论的实践。
(3)学生缺乏对光纤通信系统的有机认识。高校光纤通信教学和实践脱离日益严重的同时,伴随着学生对现行主流的技术只是存在于认知状态,无法把所学知识串成有机的整体,对不断发展的4G乃至5G缺乏了解和研究,学生的光纤通信学习游离于通信专业和通信行业之外。
2光纤通信项目实践教学改革研究和主要措施
光纤通信实践教学改革应该充分考虑通信行业的发展和市场人才需求的发展趋势,是教学内容和教学手段与时俱进,实现理论和实践的无缝接轨。基于此原则,光纤通信课程应整合好课程体系,将一些基础的理论知识进行增加、删减、合并、更新,建立以面向项目实践的教学手段和过程。
(1)利用现有的实验实训资源,增加案例教学。利用好实验实训设备,作为光纤通信课程的基础入门,巩固学生课程学习根基。在此基础上,对某个重要的知识点进行讲解的时候,尽可能地找出具体的项目实践案例,结合多媒体,将光纤通信中应用到的设备、材料和技术展现给学生。比如在讲解光缆敷设技术的时候,可以塑料子管敷设、光缆配盘、钢管引上及封堵、光缆接头、预留及绑扎、光缆端口标识、ODF架标识、子管布放、各个工序以项目实践的案例出现,让学生了解光缆敷设的质量控制点和检查要求。光缆敷设中,要求敷放子管内径为光缆外径的1.5倍,多根子管的等效总外径宜小于塑料管孔内径的85%。这些因为通信设备资源不足无法现场操作的,可以通过多媒体的方式展示。
(2)应用过程性考核考查方式,适当增加讨论式教学。光纤通信是通信类专业教学计划中的重要组成部分,是通信类专业学生学习中最重要的实践性教学课程之一。光纤通信的学习,主要是使学生充分认识到面向项目实践的重要性,传统的考核方式已经不适合,过程性考核应成为主流的考查方式。在课程的改革设计中,学生平时考核项目占20%,重点考查学生能否提高自身热爱专业、吃苦耐劳的专业素养;项目实践考核占60%,考查学生理论联系实际的动手操作能力,项目考核又分为了光纤接续、光功率测试、光缆敷设、光纤通信线路设计与检查等6个考查项目;期末考试占20%,重视过程考查而不是考试考核。光纤接入技术知识点讲授过程中,也通过项目实践的方式开展。因其运用PON技术可以与多种技术相结合,比如ATM\SDH和以太网等。课程设计中设置了学生小组讨论分析的环节,在巩固专业知识的同时提高学生沟通表达、研究分析能力。
(3)以通信行业发展为导向,结合市场人才需求开展项目实践课程;随着时代的发展,高校培养的是具备项目实践的高素质复合型人才,通信技术专业的学生毕业后大部分是到通信企业就业,从事电子通信设备操作,参与电子通信产业的研发和测试。光纤通信教学中,可以将该课程按照面向项目实践的原则细分方向,结合TD-LTE和FDD-LTE标准,划分为光缆线路规划、光纤到户、光缆熔接、通信线路工程设计等项目进行实践。这种以项目的形式进行光纤通信学习的方式可以有针对性地对学生进行专业技能培养。通信企业代表着通信行业的发展趋势,探究通信市场人才需求就是通信企业的需求。以广东轻工职业技术学院电子通信工程系为例,该系与广东达安工程项目管理股份有限公司建立校企合作关系,定期邀请企业专家到学校给学生做通信行业的讲座。随着学习的深入,穿插相关知识环节的参观和实践。比如光纤的敷设过程、光纤到户配线、光纤设备安装,学生可以到实际的工程现场进行项目实践,让学生了解光纤通信设备应用最前线,提高就业竞争力。
3结语
光纤通信篇6
为了观察信号组播所产生的拷贝性能,我们在10GHzRF信号上加载1Gb/s的PRBS序列,将ASK信号作为初始源信号。仿真中使用100m的HNLF。在零色散波长1550nm处色散斜率是0.03ps/(nm2•km),非线性系数是11/(W•km)。按照图1所示的原理,我们在仿真软件中搭建仿真系统。仿真中两个泵浦激光器频率分别为193.699THz、192.701THz,功率均设为600mW,线宽为10MHz;信号功率为1mW,光频率设为192.9505THz,线宽同样为10MHz。图2(a)所示为三路光耦合之后进入HNLF前的光谱。为了使组播后的信号拷贝其相邻间隔相同,两个泵浦光源与信号光源的波长要满足图1中所示关系(信号光与其中一个泵浦光的频率间隔是两个泵浦光的频率间隔的1/4)。图2(b)所示为HNLF后的输出光谱。对比进入光纤前后的光谱,可以看出三路光在HNLF中发生了四波混频。
这里我们对191~195.5THz范围内的其中7个拷贝进行分析,各个信号拷贝的功率在3.5dB范围内波动。其中信号拷贝C6与过纤后的信号光功率最低。我们利用带通滤波器(BPF)分别将每一个信号拷贝滤出,然后对其进行ASK解调,观察解调之后的眼图,如图3所示。与图3(a)所示背靠背情况下所得眼图相比,过纤后产生的信号拷贝C1、C6以及信号光所对应的眼图虽然稍显劣化,但“眼睛”仍张开较大,信号传输质量满足系统传输要求。
2系统互调失真分析
在Optisystem中搭建系统。系统输入RF信号分别为10GHz、9GHz;两路泵浦光频率分别为193.2THz、193.6THz,功率均为28.45dBm;信号光频率为193.3THz,功率为12dBm。所用HNLF参数与组播仿真相同。本文对仿真采取到的动态散点作线性拟合,分别对加HNLF情况下获得的四路拷贝信号进行测量,求得其三阶互调输入截点。实验结果表明,在背靠背情况下测得的三阶互调截点与四路拷贝的三阶互调截点在较小范围内波动。之所以会有所波动,除了有拟合、取点等过程中可能出现的误差以外,各拷贝间的功率不完全均衡也是一个很重要的影响因素。
3结束语