量子力学概述(6篇)
量子力学概述篇1
物理概念准确地反映了物理现象及过程的本质属性,它是在大量的观察、实验基础上,获得感性认识,通过分析比较、归纳综合,区别个别与一般、现象与本质,然后把这些物理现象的共同特征集中起来加以概括而建立的,是物理事实本质在人脑中的反映。任何一个物理概念的学习又会与其他概念相联系,概念之间的这种关联着的逻辑关系,是构成物理规律和公式的理论基础。物理概念不仅是物理基础理论知识的一个重要组成部分,也是学生通过逻辑推理方法,构建知识体系的基本元素,学生学习物理知识的过程,就是要不断地建立物理概念,弄清物理规律。如果概念不清,就不可能真正掌握物理基础知识,不可能有效构建物理模型,不可能形成清晰的思维过程。在解决物理问题时,常常表现出选择题选不全,计算题审题时,由于对某些概念理解不到位,导致挖掘不出有效信息、不能快速建立未知量与已知量之间的联系,解题效率低下。因此,在中学物理教学中,概念教学是一个重点,也是一个难点,搞好物理概念的教学,使学生的认识能力在形成概念的过程中得到充分发展,是物理教学的重要任务。
二、影响高中物理概念学习的主要因素
1、教材因素
初中物理教材与高中教材相比较,对知识和思维能力的要求都有一个较大的跨越,存在一个较大的台阶。高中物理教材所讲述的知识不仅要求采用观察、实验,更多的要求具备分析归纳和综合等抽象思维能力,要求能熟练的应用数学知识解决物理问题。对于多个研究对象、多个状态、多个过程的复杂的问题,从物理现象到构建物理模型,从物理模型到数学化的描述,建立一系列的方程,学生接受难度大。初中、高中物理教材对知识的表述也有很大差别。初中物理教材文字叙述比较浅显通俗,学生容易看懂和理解,而高中物理教材对物理概念和规律的表述严谨简捷。对物理问题的分析、推理、论述科学严密,学生不易读懂、阅读难度大。另外,高中教材与所需数学知识的衔接不当,也对学生的物理学习造成了困难。如学生尚未学到极限的概念,在学习瞬时速度时就难以理解;高一新生没有三角函数知识,就不能灵活处理力的合成与分解;没有函数图像的知识,用图像法研究各种问题就会比较困难。由于学科之间的横向联系的失调,也加大了高一物理学习难度,使高一学生成绩分化。
2、学生因素
高中物理概念有些是从直观的实验直接得出的,有些概念则需要学生从已有的物理概念出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。虽然高中学生具有一定的认知能力及逻辑思维能力,但由于他们物理基础知识有限,物理思维方法不足,个别高中学生由于在以往的学习过程中形成了被动接受知识的习惯,积极主动思考问题的能力较差,不善于将陌生、复杂、困难的问题转化为熟悉、简单、容易的问题,不善于将实际问题转化为物理问题,不善于根据具体问题灵活选择方法,学习物理概念时习惯于机械记忆,盲目练习,往往被个别表面现象所迷惑,形成一些片面的、肤浅的概念。主要表现在解决物理问题时对于隐含条件的分析,临界状的把握,多过程的衔接等分析不完整,顾此失彼,答案不全面,条理不清楚。如个别学生不理解加速度及电阻率的概念,造成“加速度大速度就大;电阻率大电阻一定大”的错误认识。
3、教师因素
教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生自己一看就懂,没有必要花费时间去探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。为了更有效的搞好概念教学,需关注以下几个环节。
三、引入物理概念的常用方法
(1)实验法
物理学是一门实验学科,大多数物理概念是通过实验演示,让学生透过现象剖析揭示其本质而引入的,学生通过直观观察形成深刻印象,强化了对概念的理解和记忆。例如在引入弹力的概念时,通过演示实验:小车受拉伸或压缩弹簧的作用而运动;再演示:弯曲的弹性钢片能将粉笔头推出去。引导学生观察在这些实验过程中,弹簧及弹性钢片发生了什么形变,弹簧在恢复原状时要对与它接触的物体产生力的作用,让学生自己总结弹力产生的条件及弹力的概念。
(2)类比法
类比法是在科学研究中常用的方法,在物理学中不少的概念是用类比推理方法得出的,让学生借类比事物为“桥”,从形象思维顺利过渡到抽象思维,有助于接受理解新概念。例如:与重力势能类比,引入电势能的概念;与电场强度概念的建立类比,建立磁感应强度;将电流类比水流,建立电流概念;将电压类比水压,建立电压概念;把电磁振荡类比于弹簧振子或单摆,把电谐振类比于机械振动中的共振,建立电磁振荡概念。
(3)逻辑推理法
物理概念大多数是在已有认知结构的基础上建立起来的,新概念的建立主要依赖于认知结构中相关的概念,要充分发挥已有的旧知识的作用,通过新旧概念之间的逻辑关系引入新概念。例如引导学生复习初中学过的功的概念,指出物体能够对外做功,则物体具有能量。在此基础上,讨论运动物体能够对外做功,则运动物体就具有能量,这种能量叫动能,进一步用做功的多少来确定动能与那些量有关系,使学生真正理解动能的表达式。
总之,物理概念引入的方法很多,无论采用什么方法一定要注意:使学生明确一个概念的物理意义,知道这个概念到底有什么作用;根据学生认知结构中相应知识状况和新概念的不同特点,选择的感性材料要典型全面,要突出与概念有关的本质特征,尽量减少非本质特征的干扰,避免先入为主和消极的思维定势的影响;能起承前启后,建立知识联系的作用,选择的旧知识一定要与新知识有实质性联系,否则容易形成模糊或错误的概念,或在认知结构中形成不正确的联系,有碍于培养学生抽象与概括能力;引入概念时,要尽量能激发学生学习的兴趣,使其积极活动,充分体现学生的主体作用。
四、引导学生理解、深化物理概念的方法
1、细化物理概念对应的知识点
一般情况下,可以从以下几点细化一个概念(1)名称:记住物理量的名称是了解一个物理量的第一步,就像了解一个人就要先记住这个人的名字一样,教材上物理概念的名称,是用黑体字印刷的,这正是要引起同学们注意和重视。(2)定义及物理意义物理概念的定义是用科学严谨的叙述给出的,教材中常用加点字来表示,定义要熟练准确记忆,不能有半点差错。物理量所表示的物理意义不同于定义,如速度的物理意义是表示物体运动的快慢,其定义是位移跟发生这段位移所用时间的比值。(3)符号物理量的符号大多采用英语的第一个字母,一般情况,每个物理量都有特定的字母,要求学生记准物理量的符号,这样,有利于规范运算过程。(4)表达式一个物理概念的定义用数学语言来描述,就写出了对应的定义式,因为任何一个物理量往往会和其他量建立联系,它们之间的关系又会写出不同的表达式,这时就要弄清哪个是决定式,哪个是定义式。(5)单位物理量的定义式,既给出了物理量之间的数量关系,又决定了它们之间的单位关系,要分清国际单位和常用单位,并记准其单位符号及不同单位制之间的换算关系。在做题时要求同学们统一单位。(6)矢量和标量每讲一个物理概念,要求弄清它是失量还是标量。只有明确其特性,才能按相关规则进行运算。(7)状态量和过程量每讲一个物理概念,要求弄清它是状态量还是过程量,如何通过状态量的变化把状态量和过程量建立起联系。(8)最后还要提醒学生弄清物理表达式的适用范围。
2、突破难点
课本中的物理概念,文字叙述严谨、简洁,多数同学能够读懂字面意义,但不能把握准确深刻的含义,运用概念解决问题时就容易出现错误。如讲述超重与失重时,个别学生认为超重时物体重力增大,失重时物体重力减少,完全失重时物体重力为零。如果在学习这一概念时指导学生做下列实验:在弹簧秤下挂上钩码,静止时记下示数,然后提着弹簧加速上升,观察指针位置,记下示数,此时发现弹簧秤示数增大了,最后观察物体加速下降时弹簧秤指针位置,记下示数减小,此时发现弹簧秤示数减小了,分析实验结果,引导学生总结出超重和失重概念,这样既留下深刻的印象,又可以轻松地突破难点。再如,惯性这一概念,部分同学难以理解,老师必须通过举例说清,惯性与速度无关,与力无关。我是这样处理的……又如,磁通量这一概念,教材中的定义是这样叙述的:设在匀强磁场中有一个与磁场方向垂直的平面,磁感应强度为B,平面的面积为S,我们定义磁感应强度B与面积S的乘积叫穿过这个面积的磁通量,简称磁通。粗看这段话就是磁通量等于磁感应强度与面积的乘积,即Φ=BS,深入分析概念,应强调计算磁通量的两个重要条件:一是B与S垂直,不垂直要用投影面积;二是面积S必须是在磁场中的有效面积;三是若平面内有两个或多个磁场且方向不同,则必须用合磁感应强度;四是磁通量的物理意义直观形象地说是指穿过某面积的磁感线条数,故对于穿过线圈截面的磁通量,B越大,截面积S越大,穿过这个线圈截面的磁感线条数就越多,磁通量就越大,与缠绕线圈的匝数无关;五是磁通量是标量,但磁感线穿入同一面积时,却有不同的穿入方向,尤其在讨论磁场不变,平面反转时磁通量变化这一问题,必须弄清磁感线的穿入的方向,有的学生容易把磁通量当成矢量,这时,可以用水流、电流的概念去类比。
只有搞清物理概念的定义,才能有效建立不同量之间的联系。如热学中理解了温度是物体分子平均动能的量度,内能是物体内所有分子动能和势能的总和这两个概念及理想气体模型,知道做功和热传递是改变内能的两种方式,就能掌握一定量的理想气体内能只与温度有关,内能是温度的单值函数,与体积及压强无关,温度升高,内能增加,若体积也增大,则这个过程气体对外做功,必然吸收热量,但气体压强不一定改变;若温度不变,内能一定不变,此时体积增大,仍然是气体对外做功,必然吸收热量,气体压强减小;可见只要把体积与功、温度与内能联系起来,就能顺利解决热力学第一定律的有关问题。
3、矫正错误点
物理概念理解不清,在做题时很容易出现错误,只有深入挖掘其内涵,通过各种题型的反复强化,搞清楚一个物理量的特征,才能避免错误,提高做题准确率。例如,研究电源的电动势及内电阻实验中,对实验数据的处理常采用图像法,用纵轴表示外电压,横轴表示闭合电路的电流,画出了一条倾斜的直线,直线的斜率等于电源的内电阻,有的同学认为斜率是图线与横轴夹角的正切值,造成这种错误的原因是把数学中求直线斜率的方法照搬过来,没有考虑物理问题中纵横坐标的标度不同,纵横坐标交点也不一定是(0、0)等因素。再如,原子核物理中质能方程E=mc2,在计算核反应中释放的能量时,有的学生错误地认为质量亏损是质量消失了,消失的质量变成了能量,这时,要通过练习使学生明确核反应过程中不仅质量数守恒、电荷数守恒、动量守恒、能量守恒、而且质量也守恒。又如用功的表达式W=FS计算功时,有的同学把力的作用点的位移与物体的位移混到一块儿,出现如:人走路时摩擦力做了正功,上楼梯时楼梯做了正功等错误结论。
另外,洛仑兹力是带电粒子在磁场中受到的作用力,它的表达式是通过安培力的公式推导出来的,洛仑兹力是安培力的微观反映,安培力是洛仑兹力的宏观表现。带电粒子在磁场中运动时洛仑兹力对运动电荷始终不做功,有些学生就不清楚既然安培力是洛仑兹力的宏观表现,为什么通电导体在磁场中运动时,安培力做功?出现这个问题的原因是学生不明白,只有通电导体静止时,安培力才是导体内所有粒子所受洛仑兹力的合力;当通电导体在磁场中运动时,洛仑兹力分力的合力才与安培力等效。洛仑兹力不做功,但洛仑兹力的分力都做功,所以安培力做功。
4、辨析易混点
物理上有许多相近的概念,它们既相互联系又有区别,学生学习时容易理不清其关系,混到一块。因此在进行物理概念教学时,要从不同的角度进行比较、辨析,突出概念的差异,明确概念的内涵和外延,加深理解,避免混淆。如物理量的变化量与变化率,一字之差,含义不同,要讲清变化率和时间建立了联系,是变化量与时间的比值,体现了这个物理量的变化快慢,这个比值常常定义了一个新的物理量。位置的变化率是速度;速度的变化率是加速度;动量的变化率是物体所受的合外力;磁通量的变化率反应了电动势。再如电阻和电阻率、自感和自感系数、冲量与动量、动能与动量及热学中热量与温度、分子力随分子间距离变化的图像与分子势能随距离变化的图象等都容易分不清。电学中表征交流电的几个物理量电流、电压、电动势,它们的最大值、瞬时值、有效值、平均值,只有弄清其定义、决定因素及表达式,才能理解为什么计算电热、热功率、电功、电功率及电表示数时用有效值,计算某段时间内流过导体的电量时用平均值。学习时要深入比较这些相近物理量的异同点及联系,避免死记硬背公式,做题时乱套公式,不能快速有效选择公式,解题效率低下。另外不清楚物理量正负号的含义,易造成矢量和标量的混淆。实际上研究同一直线上矢量问题时,在规定正方向之后,正值表示该量方向与正方向相同,负号表示其方向与正方向相反,若多个矢量不在同一条直线上,取正负号就没有意义;对于势能这种标量正负号不仅可以表示大小,也反应了这个位置比零势能面的势能高还是低。
五、设计思考题是应用概念建立知识网络的有效途径
学习物理概念是为了能运用概念进行思维,运用概念解决问题。通过练习巩固概念,形成良好的思维品质,提高学生分析问题、解决问题的能力。如何在课堂教学中,指导学生快速准确地把概念、定律用于解答具体的物理习题,教师的分析示范和归纳总结很重要,选择典型习题,引导学生对问题的分析主要集中于“已知信息是什么?”“要达到的目的是什么?即求什么物理量?”在解决问题的过程中,概念和原理就是建立未知量与已知量联系的桥梁。教师先带着学生分析问题,深入挖掘题目的隐含条件、临界条件、多过程结合点等,再引导学生分析、领会、思维过程,然后和学生一起分析问题,最后让学生独立分析问题,并且自己独立总结出解决这一类问题的思路和方法,提高解决问题的能力,避免陷入题海,浪费时间精力。
如讲摩擦力概念时,为了使学生对摩擦力有正确的理解,能对各种情况下物体所受的摩擦力作出准确的分析,在课堂上提出了十个问题让学生讨论判断:
①静止的物体只能受静摩擦力,运动的物体只能受滑动摩擦力,对吗?
②摩擦力的方向是否总是与物体运动的方向相反,对吗?
③在粗糙水平面上滑动的物体一定受摩擦力作用,对吗?
④摩擦力的方向总是与物体运动的方向在同一直线上,对吗?
⑤摩擦力总是阻力或者总是阻碍物体运动的吗?
⑥压力越大,摩擦力一定越大吗?
⑦计算滑动摩擦力公式F=μ中的等于物体重力,对吗?能否与重力无关?
⑧物体间接触面积越大,滑动摩擦力也越大?
⑨滑动摩擦力与物体运动的速度大小有关吗?
⑩最大静摩擦力与滑动摩擦力有什么关系呢?
每个概念讲完以后,引导学生仿照上面列出问题的模式,提出与这个概念相联系的各种问题,讨论解答的过程中进一步巩固概念,加深理解。
在复习课上,为了使各个概念建立联系,形成知识“网络”,把相关的知识编成一个知识集成块,以题目的形式展现出来(用多媒体展示),让学生在解题时,大脑高度集中反复回忆、搜索头脑中储存的知识、概念,通过发散思维与聚合思维,达到重温概念,重组知识,形成更科学有用的知识模块。
如矩形线圈绕垂直于匀强磁场的轴匀速转动的交流发电机模型,可以把力、热、电磁、光学和原子物理学方面的知识贯穿其中,编织成知识“网络”。如图所示:在磁感应强度大小为B的匀强磁场中,匝数为N的矩形线圈,ab、ad边长为L1、L2,线圈绕垂直于磁场的中心轴匀速转动,角速度为ω,线圈通过滑环与阻值为R的外电路相连,若线圈电阻忽略不计,则:
1、ad边、bc边匀速圆周运动的线速度为多少?
2、线圈转动过程中,磁通量最大,磁通量变化率最大的位置分别在哪里?
3、线圈转动过程中,ad边、bc边产生的感应电动势的瞬间表达式怎样?
4、线圈转动时,为什么会产生按正弦规律变化的交变电流?线圈在如图所示的位置开始计时,试写出其感应电动势的瞬时表达式?画出感应电动势的瞬时值随时间变化的图象。
5、写出流过电阻R的交变电流的瞬时值的表达式。
6、线圈转动过程中,通过电阻R的交变电流的周期、频率、最大值和有效值各是多少?
7、电阻R在t秒钟内放出了多少热量?
8、线圈从图中位置转过角的过程中,流过电阻的电量有多少?流过电阻R的电流每秒钟变化几次?
9、从线圈位于图中位置开始计时,t=时刻,线圈所受的磁力矩为多大?
10、线圈匀速转动过程中,发电机的输出功率是多少?
11、线圈匀速转动过程中,跟电阻R并联的伏特表的示数是多少?
12、线圈匀速转动一周的过程中,外力对发电机做功消耗的能量为多少?
13、若该发电机用柴油机来带动,已知柴油的燃烧值为q,柴油机及发电机的效率为η1和η2,则t秒内柴油机消耗了多少柴油?
14若该交流发电机用核动力来驱动,使用的核燃料为铀U235,其核反应式为+6+10,设中子()质量为mn,原子质量为mu,原子质量为mx,原子质量为ms,设核发电机析效率为η,求t秒内消耗的核燃料的质量是多少?
15、若用水轮机带动该发电机,设水轮机的效率为η1发电机的效率为η2,则水轮机的输入功率为多少?
16、若上题中的水轮靠从h高处由静止流下的水来驱动,则水轮机的输入功率为多少?
17、在保持发电机转速不变的条件下,用该交流发电机对某学校直接供电,已知该发电机的输出电压大于u0,要使电灯正常发光,应选用横截面积为多大的铜导线(铜的电阻率为ρ0)输电?这时发电机的输出功率是多少?
18、若学校与发电机间的距离L较大,需要采用高压输电,现设计的升压变压器和降压变压器的匝数分别为1:nB和nB:1,则要使学校的n0盏白炽灯全部发光,应选用面积为多大的铜导线输电?这时发电机的输出功率是多少?
19、若上面的白炽灯正常发光时,发出波长为λ的光,电灯的发光效率为η,则每盏灯在t秒钟内辐射出多少个光子?
20、发电机从发电到输电至用户的整个过程中,能量是怎样转化的?
量子力学概述篇2
关键词:初中数学概念教学
数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。[1]数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体。正确理解数学概念,是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。因此,抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。在教学过程中,一些教师不注意结合学生心理发展特点去分析事物的本质特征,只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。
一、利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识。再如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向。这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念。这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示;测量和计算有时不能得到整数的结果,这就用像,等这样的分数。②观察两个温度计,零上3度,记作+3°,零下3度,记作-3°,这里出现了一种新的数――负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。
三、深入剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延,也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如,“一般地,式子(a≥0)叫做二次根式”这是一个描述性的概念,式子(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”――说明变量的存在性;②“在某个变化过程中有两个变量x和y”――说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”――说明变量x的取值是有范围限制的,即允许值范围;④“y有唯一确定的值和它对应”――说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。
四、通过变式,突出比较,巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。[2]巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“与”、“π与3.14159”、“与3.030030003…(每两个3之间一次多一个0)”等,通过这样的变式训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
五、注重应用,加深对概念的理解,培养学生的数学能力
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念,完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量。
参考文献:
[1]李祖选.初中数学概念教学探微[J].宁波教育学院学报,2006,(6).
[2]黄惠娟.在概念教学中培养学生的探究意识[J].教学研究,2005,(4).
量子力学概述篇3
数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体。正确理解数学概念,是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。因此。抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。在教学过程中,一些教师不注意结合学生心理发展特点去分析事物的本质特征。只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。
一、利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识。再如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向,这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念。这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示:测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度。记作+3°,零下3度,记作-3°,这里出现了一种新的数——负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。
三、深入剖析。揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如。“一般地,式子(a≥0)叫做二次根式”这是一个描述性的概念。式子(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”——说明变量的存在性;②“在某个变化过程中有两个变量x和v”——说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”——说明变量x的取值是有范围限制的,即允许值范围;④“v有唯一确定的值和它对应”——说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。
四、通过变式。突出比较。巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“π与3.14159”为例,通过这样的训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
五、注重应用。加深对概念的理解,培养学生的数学能力
量子力学概述篇4
关键词:认知同化;物质的量;先行组织者
一
“物质的量”作为基本物理量,是高中必须学习的概念,它广泛应用于工农业生产和科学研究的各个领域,更贯穿于化学教学和科研的始终。在新课改下,所有版本的教材都将其安排在必修I的第一部分,把“物质的量”概念作为引领学生学习高中化学的开始,成为学生学习物质性质前最先接触的重要概念。但在教学实践中,师生普遍感到“物质的量”难教、难学。笔者认为有以下几方面的原因:
第一,“物质的量”是用来计量原子、离子、分子等微观粒子的物理量,它把人们的研究视野从宏观引入微观。在微观的世界里,需要人们更多地使用发达的抽象逻辑思维来重新认识事物的本质,但刚刚进入高中的学生抽象逻辑思维和演绎能力不强,善于从宏观的角度思考所要解决的问题。
第二,由于物质的量这个概念与日常生活基本无联系,实验室又没有相应的测量仪器,因此缺乏感性经验的直接支持,造成学生在接触之后感觉天方夜谭般难以接受。
第三,三套教材在“物质的量”的概念引入时无一例外地先介绍“物质的量”与“阿伏加德罗常数”。如此安排对学生而言,没有初中化学知识的铺垫,总是太过突兀与深奥。
基于上述因素,导致学生不易从心里真正体会物质的量的系统给解决问题带来的方便,反而使畏难情绪、抵触情绪占了上风,测查成绩总是很不理想。
二
在教学实践中,许多化学教师都针对以上问题对这一章的教学改革做过有益的尝试,而本文就是一例。利用认知同化论,从学生熟悉的初中化学知识及日常生活中的概念出发,突破物质的量教学的重难点,并取得了较好的教学效果。
认知同化理论是当代美国认知心理学家奥苏贝尔提出的,其理论核心可以用他所著书的扉页中的一句话概括:如果我不得不把全部教育心理学归纳为一条原则的话,我将会说,影响学生唯一的最重要的因素是学习者已经知道了什么,并且根据学生原有知识进行教学。由此他提出了重要的学习理论——认知同化论,即意义学习论。他认为学生能否获得新信息,主要决定于他们认知结构中已有的有关概念;意义学习是通过新信息与学生认知结构中已有的有关概念的相互作用才得以发生的;由于这种相互作用的结果导致了新旧知识的意义的同化。
那么在教学中如何协调与整合学生学习的内容,使新旧知识很好地联系起来呢?奥苏贝尔提出了认知同化的具体策略——先行组织者。组织者的主要功能是在学生能够有意义地学习新内容之前,在他们“已经知道的”与“需要知道的”知识之间架设起桥梁,同时还可以在促进学生建立学习心向方面起到积极作用。
【展示】国际单位制中的基本物理量
物理量名称长度质量时间电流物质的量
单位名称米千克千克安培摩尔
目的是通过将新概念与已有概念建立联系,初步理解新概念的涵义。但是对大部分学生而言,这种概念“抽象”的特点并不是通过一次简单是类比就能理解的。任何学生都有其丰富的生活经验,在这种经验中蕴藏着已有的认知结构,教师要善于从学生这种已有的认知经验出发,帮助其形成对新的学习知识的同化,从而达到对新知识的结构化,即学习者必须对新知识与原有知识进行精细分化。
【过渡】物理量一般都会有其物理意义,像长度可以描述物体的长短,温度可以描述它的冷热程度,那么物质的量的物理意义又是什么呢?
【展示】两只烧杯,里面盛水,一多一少。
【讲解】描述物质的多少,人们一般会想到比较它们的质量、体积。其实还可以从另外一个侧面去描述它,那就是从微观的角度来比较这两杯水中水分子数目的多少。假设A杯水是2万个水分子,B杯水是1万个,显而易见装2万个水分子的烧杯的水要多。所以物质的量的物理意义在于它可以像质量、体积一样来描述物质的多少,而且它侧重于描述物质所含微观粒子数目的多少。
【设置情景】微观世界里的粒子数目是非常庞大的。通过测定,一滴水中含有1.67×1021个水分子,所以用物质的量直接来计量分子数是很不方便的,那么物质的量应怎样来计量分子数目才是切实可行的呢?
设置问题,促使学生积极地搜索已有认知结构中的知识,激发了学知识的愿望,使学生建立较强的学习心向,这是有意义获得新知识的必要条件。
【引导】生活中,我们如何购买面粉?为什么不买一颗或几粒面粉?
【讲述】“买面粉”的记数思路是“将微小的不可直接称量的物体(面粉)‘集合’成大量可称的质量”,这个思想就可以用来解决前面遇到的问题。我们可以这样来理解摩尔:将规定数目的微观粒子堆在一起,将这个集合作为一个单位,用以计量物质的粒子的多少。
从感性的原有生活经验出发,并由已知的物理量引入物质的量的概念,实现宏观世界向微观世界的过渡,很快就可以建立起对物质的量这个抽象的物理量的认识。
【设疑】用什么样的微粒集体作为标准来联系宏观与微观世界最为适合,它的具体数目是多少?
【解析】对于这一难点,通常教学设计中认为由于摩尔概念本身缺乏具有统摄性上位概念,难以寻求有效的先行组织者,后续学习中阿伏加德罗常数总是以已知条件的形式出现等原因,教学往往由学生自行从教材中寻找现成陈述,教材这样的处理方式试图将教材结构作为定论形式加入学生的认知结构,必然造成学生机械学习,从概念同化角度看是不适合的。所以,笔者通过设计平行的比较性组织者以期用同化方式完成“摩尔的规定”的教学。
【展示】“相对原子质量规定”的短片。
【讨论】“微粒集体”应该如何规定。
【解析】学生应用原有的相似概念学习新概念的同化方式,无疑有助于新旧知识的综合与巩固,从而在有意义学习中形成、完善自身的认知结构。将新概念与原有概念进行精确类比,这是新旧概念间建立联系的过程,是同化策略的关键。学习心理学认为正面的、相似的概念有利于形成概括的信息,而反面的、相异的信息则有利于提供辨别的信息。“物质的量”概念和其他概念(如物质质量、数量等)具有较多相似属性,下一步应将教学重点集中在相似概念的比较上,并适当通过简单计算找出“物质的量”、“微粒数目”之间的关系。
【讨论】1.一盒粉笔50支粉笔;一打羽毛球12支羽毛球;一箱啤酒24瓶啤酒;一摩尔微粒个微粒。
2.以下说法正确吗:1mol大米约含有6.02×1023个大米,试计算1mol大米平均分给10亿人,则每人可得多少斤大米。
总之,正如奥苏贝尔所说的:“影响学习的最重要的因素是学生已知的内容。因此在概念教学实践中,要关注学生原有的认知结构,并采用多种方法,提供各种直观的、具体的范例,为新学的概念找到固定点;帮助学生将新学概念融入原有的认知结构中,使之相互作用,构建新的完善的认知体系。
参考文献:
量子力学概述篇5
量子力学是当代科学发展中最成功、也是最神秘的理论之一。其成功之处在于,它以独特的形式体系与特有的算法规则,对原子物理学、化学、固体物理学等学科中的许多物理效应和物理现象作出了说明与预言,已经成为科学家认识与描述微观现象的一种普遍有效的概念与语言工具,同时也是日新月异的信息技术革命的理论基础;其神秘之处在于,与其形式体系的这种普遍应用的有效性恰好相反,量子物理学家在表述、传播和交流他们对量子理论的基本概念的意义的理解时,至今仍未达成共识。量子物理学家在理解和解释量子力学的基本概念的过程中所存在的分歧,不是关于原子世界是否具有本体论地位的分歧,而是能否仍然像经典物理学理论那样,把量子理论理解成是对客观存在的原子世界的正确描述之间的分歧。
在量子力学诞生的早期岁月里,这些分歧的产生主要源于对量子理论中的波函数的统计性质的理解。因为量子力学的创始人把量子力学理解成是一种完备的理论,把量子统计理解成是不同于经典统计的观点,在根本意义上,带来了量子力学描述中的统计决定性特征。而理论描述的统计决定性与物理学家长期信奉的因果决定论的实在论研究传统相冲突。在当时的背景下,对于那些在经典物理学的熏陶下成长起来的许多传统物理学家而言,对量子力学的这种理解是难以容忍的。这些物理学家仍然坚持以经典实在观为前提,希望重建对原子对象的因果决定论的描述。这种观点认为,现有的量子力学只是临时的现象学的理论,是不完备的,将来总会被一个拥有确定值的能够解决量子悖论的新理论所取代。量子哲学家普遍地把这种实在论称之为定域实在论,或者称为非语境论的实在论。从epr悖论到贝尔定理的提出正是沿着这一思路发展的。这种观点把量子论中的统计决定论与经典实在论之间的矛盾,理解成是量子论与传统实在论之间的矛盾。
但是,自从1982年阿斯佩克特等到人完成的一系列实验,没有支持定域隐变量理论的预言,而是给出了与量子力学的预言相一致的实验结果以来,量子论与传统实在论之间的矛盾焦点,由对量子理论中的统计决定性特征的质疑,转向了对更加基本的量子测量过程中的“波包塌缩”现象的理解。因为量子测量问题是量子理论中最深层次的概念问题。冯•诺意曼在本体论意义上引入量子态的概念来表征量子实在的作法,直接导致了至今难以解决的量子测量难题。到目前为止,所有的量子测量理论都是试图站在传统实在论的立场上,对量子测量过程作出新的解释。玻姆的本体论解释在承认量子力学的统计性特征,把量子世界看成是由客观的不确定性、随机性和量子纠缠所支配的世界的前提下,通过假设非定域的隐变量的存在,寻找对量子测量过程的因果性解释。量子哲学家把这种实在论称为非定域的实在论。[1]多世界解释在承认现有的量子力学的形式体系和基本特征是完全正确的前提下,通过多元本体论的假设来对具有整体性特征的量子测量过程作出整体论的解释。量子哲学家把这种实在论称为非分离的实在论。[1]
量子测量现象的非定域性和非分离性所反映的是量子测量过程的整体性特征。问题是,相对于科学哲学研究而言,如果把量子测量系统理解成是一个包括观察者在内的整体,我们将永远不可能在观察者与被观察系统之间作出任何形式的分割。而观察者与被观察系统之间的分界线的消失,将会使我们在不考虑观察者的情况下,对物理实在进行客观描述的梦想彻底地破灭。这是因为,一方面,如果我们认为量子力学的形式体系是正确而完备的理论,那么,就能够用量子力学的术语描述包括观察者在内的整个测量过程。这时,观察者成为整个测量系统中的一个组成部分参与了测量中的相互作用;另一方面,如果我们仍然渴望像以可分离性假设为基础的经典测量那样,在以整体性假设为基础的量子测量系统中,也能够得到确定而纯客观的测量结果,那么,他们必须要在观察者与被观察的量子系统之间作出某种分割,观察者才有可能站在整个测量系统之外进行观察。然而,在量子测量的具体实践中,这个重要的“阿基米德点”是永远不可能得到的。因为对量子测量系统进行的任何一种形式的分割,都必然会导致像“薛定谔猫”那样的悖论。这样,关于量子论与实在论之间的矛盾事实上转化为,在承认量子力学的统计性特征的前提下,如何解决量子测量的整体性与传统实在论之间的矛盾。
以玻尔为代表的传统量子物理学家在创立了量子力学的形式体系之后,并不追求从量子测量现象到量子本体论的超越中提供一种本体论的理解。而是在认识论和现象学的意义上做文章。玻尔认为,观察的“客观性”概念的含义,在原子物理学的领域内已经发生了语义上的变化。在这里,客观性不再是指对客体在观察之前的内在特性的揭示,而是具有了“在主体间性的意义上是有效的”这一新的含义。这种把“客观性”理解成是“主体间性”的观点,在认识论意义上,所隐藏的直接后果是,使“客观性”概念失去了与“主观性”概念相对立的基本含义,从而使量子力学成为支持科学的反实在论解释的一个重要的立论依据。与此相反,近几十年发展起来的多世界解释,试图以多元本体论的假设为前提,恢复对客观性概念的传统理解;玻姆的本体论解释则是以粒子轨道与真实波的二元论假设为代价,把测量过程中的整体性特征归结为是量子势的性质。这两种解释虽然在理解量子测量现象时坚持了传统实在论的立场。但是,这些立场的坚持是以在量子力学中增加某些额外的假设为代价的。这正是为什么近几十年来,反思与研究量子力学与量子测量的概念基础问题,成为不计其数的论著和论文所讨论的中心论题的主要原因所在。
到目前为止,在量子物理学家的心目中,微观客体的非定域性特征和量子测量的非分离性特征已经成为不争的事实。如果我们站在科学哲学的立场上,像当初接受量子统计性一样,也接受量子力学描述的微观系统的这种整体性特征。那么,量子测量过程中被测量的系统与测量仪器(包括观察者在内)之间的整体性关系将会意味着,在微观领域内,我们所得到的知识,事实上,总是与观察者密切相关的知识。这个结论显然与长期以来我们所坚持的真理符合论的客观标准不相容。因此,接受量子力学的整体性特征,就意味着放弃真理符合论的标准,需要对传统实在论的核心概念——理论和真理的性质与意义——进行重新理解。这样,现在的问题就变成是,能否在接受量子力学的统计性和整体性特征的前提下,阐述一种新的实在论观点呢?如果答案是否定的,那么,科学实在论将永远不可能得到辩护;如果答案是肯定的,那么,与理论的整体性特征相协调的实在论是一种什么样的实在论呢?这正是本文所关注的主要问题所在。
2.认识论教益:隐喻思考与模型化方法的突现
自近代自然科学产生以来,公认的传统实在论的观点是建立在宏观科学知识基础之上的一种镜像实在论。在宏观科学的研究领域内,观察者总是能够站在整个测量系统之外,客观地获得测量信息。在有效的测量过程中,测量仪器对测量结果的干扰通常可以忽略不计。测量结果为理论命题的真假提供了直接的评判标准,使命题和概念拥有字面表达的意义(literalmeaning)或非隐喻的意义和指称。因此,镜像实在论是以观察命题的真理符合论为前提的。
真理符合论的最实质性的内容是,坚持命题与概念同实际的事实相符合。长期以来,科学家一直把这种观点视为是科学研究活动的价值基础。
维特根斯坦在其著名的《逻辑哲学导论》一书中,把真理的这种符合论观点表述为:就像唱片是声音的画像并具有声音的某些结构一样,命题所描述是事实的画像,并具有与事实一致的结构。因为用语言来思考和说话,就是用语言来对事实作逻辑的模写,它类似于画家用线条、色彩、图案来描绘世界上的事物。所以,用语言描述的图象与世界的实际图象之间具有同构性。1933年,塔尔斯基对这种真理观进行了定义。在当前科学哲学的文献中,人们习惯于用“雪是白的”这一命题为例,把塔尔斯基对真理的定义形象地表述为:“雪是白的”是真的,当且仅当,雪是白的。
普特南把塔尔斯基对真理的这种定义概括为“去掉引号的真理论”。塔尔斯基认为,要想使“‘雪是白的’是真的”,这个句子本身成真,当且仅当,“雪是白的”这个事实是真实的,即我们能够得到“雪是白的”这一经验事实。这个看似简单的句子隐含着两层与常识相一致的符合关系:第一层的相符合关系是,语言表达的命题与实际事实相符合;第二层的相符合关系是,观察得到的事实与真实世界相符合。在日常生活中,像“雪是白的”这样的经验事实是非常直观的,只要是一个正常的人,都有可能看到“雪确实是白色的”这个实际存在的事实。因此,人们对它的客观性不会产生任何怀疑,能够作为“‘雪是白的’是真的”这个句子的成真条件。
然而,量子力学揭示出的微观测量系统中的整体性特征,既限制了我们对这种理想知识的追求,也向传统的客观真理标准的价值观提出了挑战。这是因为,在量子测量的过程中,对命题的这种理想的描述方式和对对象的如此单纯的观察活动,已经不再可能。以玻尔为代表的许多物理学家虽然在量子力学诞生的早期就已经意识到这一点。但是,在科学哲学的意义上,他们在抛弃了真理符合论之后,却走向了认识论的反实在论;冯•诺意曼的测量理论以真理符合论为基础,要求在观察者与测量仪器之间进行分割的做法,直接导致了量子测量中的“观察者悖论”;现存的非分离与非定域的实在论解释,也是以真理符合论为基础,在量子力学的形式体系中增加了某些难以令人接受的额外假设,来解决量子测量难题。从哲学意义上看,这种借助于额外假设来使量子力学与实在论相一致的作法并没有唯一性。它不过是借助于各种哲学的想象力来解决量子测量难题而已。
由此可见,量子测量难题的产生,实际上是以真理符合论为基础的传统实在论的观点,来理解量子测量过程的整体性特征所导致的。现在,如果我们像放弃经典的绝对时空观,接受相对论一样,也放弃真理符合论的实在论,接受现有的量子力学。那么,在当代科学哲学的研究中,我们需要以成功的量子力学带给我们的认识论教益为出发点,对理论、概念和真理的性质与意义作出新的阐述。量子力学所揭示的微观世界与宏观世界之间的最大差异在于,我们对微观世界的内在结构的认知,不可能像对宏观世界的认知那样,使观察者能够站在整个测量语境的外面来进行。
这就像盲人摸象的故事一样,不同的盲人从大象的不同部位开始摸起,最初,他们所得到的对大象的认识是不相同的,因为每个人根据自己的触摸活动都只能说出大象的某一个部分。只有当他们摸完了整个大象时,他们才有可能对大象的形状作出客观的描述。然而,虽然他们对大象的描述始终是从自己的视角为起点的,并建立在个人理解的基础之上。但是,不可否认的是,他们的触摸活动总是以真实的大象为本体的。在微观领域内,量子世界如同是一头大象,物理学家如同是一群盲人,有所区别的是,物理学家对微观世界的认识不可能是直接的触摸活动,而只能借助于自己设计的测量仪器与对象进行相互作用来进行。在这个相互作用的过程中,包括观察者在内的测量语境成为联系微观世界与理论描述之间的一个不可分割的纽带。
如果把这种量子力学的这种整体性思想延伸外推到一般的科学哲学研究中,那么,可以认为,科学家所阐述的理论事实上是一个产生信念的系统。科学家借助于模型化的理论,把他们对世界的认知模拟出来。理论模型所描述出的世界与真实世界之间的关系是一种内在的、整体性的相似关系。这种相似分为两个不同的层次:其一,在特定的语境中,模型与被模拟的世界在现象学意义上的初级相似。这种相似是指,在这个层次上,我们只是能够通过某些关系把现象描述出来,但是,对现象之所以发生的原因给不出明确的说明;其二,在特定的语境中,模型与被模拟的世界在认识论意义上的高级相似。这种相似是指,理论模型达到了与真实世界的内在结构与关系之间的相似。所以,现象学意义上的相似最后会被成熟理论所描述的认识论意义上的结构相似所包容或修正。
这两个层次之间的相似关系是建立在经验基础之上的,而不是建立在逻辑或先验的基础之上。这样,虽然科学家在建构理论模型的过程中,总是不可避免地存在着许多非理性的因素。但是,在根本的意义上,他们的建构活动是以最终达到使理论描述的可能世界与真实世界之间的结构与关系相似为目的的。因此,测量语境的存在成为科学家建构活动的一个最基本的制约前提。建构理论模型的活动是一种对世界的认知活动。建构活动中的虚构性将会在与公认的实验事实的比较中不断地得到矫正,直至达到与真实世界完全一致为止。或者说,在一定的语境中,当从理论模型作出的预言在经验意义上不断地得到了证实的时候,类比的相似性程度将随之不断地得以提高;当科学共同体能够依据理论模型所描述的可能世界的结构来理解真实世界时,相似性关系将逐渐地趋向模型与世界之间的一致性关系。
在这种理解方式中,真理是物理模型与真实世界之间的相似关系的一种极限,是在一定的语境中完善与发展理论的一个最终结果。这样,在科学研究中,真理成为科学研究追求的一个最终目标,而不是科学研究的逻辑起点。或者说,把真理理解成是在科学的探索过程中,成熟的物理模型与世界结构之间达成的一致性关系。对真理的这种理解,使过去追求的客观真理变成了与语境密切相关的一个概念。超出理论成真的语境范围,真理也就失去了存在的前提和价值。这样,与玻尔把理论的客观性理解成是主体间性的观点所不同,本文是通过改变对真理意义的理解方式,挽救了理论的客观性。
如果把科学活动理解成是对世界的模拟活动,那么,在理论的建构活动中,科学理论的概念与术语所描述出的可能世界,只在一定的语境中与真实世界具有相似性。所以,相对于不可能被观察到的真实世界而言,科学的话语(scientificdiscourses)将不再具有按字面所理解的意义,而是只具有隐喻的意义。只有当理论与世界之间的关系趋向于一致性关系时,对某些概念的隐喻性理解才有可能变成字面语言的理解。所以,在科学研究的活动中,研究对象越远离日常经验,科学话语中的隐喻成份就越多。这也许是为什么在量子理论产生的早期年代,物理学家在理解微观现象时,不可能在微观对象的粒子性和波动性之间作出任何选择的原因所在。实际上,微观粒子的波——粒二象性概念只是在现象学意义上的一种典型的隐喻概念,它们并不拥有概念的字面意义,而只具有隐喻的意义。因此,它们不是对真实世界的基本结构的实际描述。正如惠勒的“延迟实验”所揭示的那样,物理学家不可能选择用其中的一类图象来解释另一类图象。只有当关于微观世界的内在结构在可能世界的模型中得到全部模拟时,原来的波——粒二象性的概念才被一个更具有普遍意义的新的量子态概念所取代。
如果科学语言只具有隐喻的意义,科学理论所描述的是可能世界,那么,物理学家对测量现象的描述,也只是一种隐喻描述,而不是非隐喻的按照字义所理解的描述。这种描述既依赖于观察者的背景知识,也依赖于当时的技术发展的水平。就像格式塔心理学所阐述的那样,同样的图形、同一个对象,不同的观察者会得出不同的结论。在这个意义上,测量与观察不再是纯粹地揭示对象属性的一种再现活动,而是观察者与对象发生相互作用之后,受到测量语境约束的一种生成活动。在这个活动中,就现象本身而言,至少包含有两类信息:一是来自对象自身的信息;二是包括观察者在内的测量系统内部发生相互作用时新生成的信息。
从这个意义上看,微观粒子在测量过程中表现出的波——粒二象性只是一种现象学意义上的相似,而不是微观粒子的真实存在。在大多数情况下,现象还不等于是证据,把现象作为一种证据表述出来,还要受到物理学家的背景知识和社会条件的制约,甚至受到已接受的可能世界的基本理念的制约。按照对理论、真理和测量的这种理解方式,由“波包塌缩”现象所反映的问题,就变成了提醒物理学家有必要对过去所忽视的物理测量过程的各个细节,对宏观与微观之间的过渡环节,进行更细致的理论研究的一个信号,成为进一步推动物理学发展的一个技术性的物理学问题,而不再是观念性的与实在论相矛盾的哲学问题。
玻姆的量子论是试图用非隐喻的字面语言对真实的量子世界进行描述,而现有的量子力学在它的产生初期则是用隐喻的语言对量子世界的一种模拟描述。正是由于理论模型具有的相似性,才使得薛定谔的波动力学与海森堡等人的矩阵力学能够得出完全相同的结果,并最终证明两者在数学上是等价的。在量子力学的语境中,不论是波动图象,还是粒子图象都只是理论与世界之间的现象学意义上的初级相似。在以后的发展中,量子力学所描述的可能世界的预言与真实世界的实验现象相一致的事实说明,当冯•诺意曼在希尔伯特空间以量子态为基本概念建立了量子力学的公理化体系之后,这些现象学意义上的相似已经上升到认识论意义上的结构相似,说明量子力学描述的可能世界与真实世界在微观领域内是一致的。这时,以波——粒二象性为基础的隐喻图象被整体论的世界图象所取代。这也许正是物理学家可以在抛开哲学争论的前提下,只注重量子物理学的技术性发展的一个原因所在。而相比之下,玻姆的理论不过是追求传统意义上的非隐喻的字面图象和传统哲学观念的一种理想产物。
在对理论、概念和真理的意义的这种理解方式中,理论与世界之间的一致性关系不是建立在命题与概念的层次上,而是以测量语境为本体,建立在物理模型与真实世界之间从现象学意义上的初级相似到认识论意义上的结构相似的基础之上的。测量语境的本体性,成为我们在认识论意义上承认科学理论是一个信念系统的同时,拒绝后现代主义者把理论理解成是可以随意解读的社会文本的极端观点的根本保证。所以,真理的意义不是取决于词、概念和命题与世界之间的直接符合,而是在于理论整体与世界整体之间在逼真意义上的一致性。由于可能世界与真实世界之间的这种一致性关系在一定程度上是依赖于社会技术条件的动态关系。因此,以一致性为基础的真理是依赖于语境的真理,它永远是一个动态的和可变的概念,而不是静止的和不变的概念。这显然是对“把科学研究的目的理解为是追求真理”这句话的最好解答。
3.从思维方式的变革到语境实在论的基本原理
当我们把对理论、真理和意义的这种理解方式应用于对真实世界的认识时,也可以在测量语境的基础上,对理论进行实在论的解释。所不同的是,这种实在论不再是把科学理论理解成是提供关于世界的某种镜象图景的、以强调语言与命题的真理符合论为基础的那种实在论,而是把科学理论理解成是通过先对世界的模拟,然后,与真实世界趋于一致的、依赖于测量语境的实在论。不同的理论模型和测量语境可以提供对世界的不同描述。但是,通过进一步的观察或实验,我们可以判断哪一个模型能够更好地与世界相一致。在这里,理论模型与世界之间的关系是一种相似关系,而不再是相符合的关系;测量结果与对象之间的关系是在特定条件下的一种境遇性关系,而不再是一种纯粹的再现关系。我们把这种与量子力学的整体性特征相一致的量子实在论称为“语境实在论”。用语境实在论的观点取代传统实在论的观点,必然带来思维方式的根本转变。需要以整体性的语境论的思维观取代传统思维观。这种思维方式的逆转主要通过下列几个方面体现出来:
首先,在本体论意义上,用普遍的本体论的关系论(global-ontologicalrelationalism)的观点取代传统的本体论的原子论(ontologicalatomism)的观点。承认关系属性或倾向性属性的存在,承认概率的实在性,承认世界中的实体、属性与关系之间的整体性。传统的原子本体论总是把世界理解成是由可以进行任意分割的部分所组成,整体等于部分之和,牛顿力学是这种本体论的一个典型范例;关系本体论则把世界理解成是一个不可分割的整体,整体大于部分之和,量子力学是这种本体论的一个典型范例。与原子本体论中认为实体可以独立地拥有自身的属性所不同,在关系本体论中,实体及其属性总是在一定的关系中体现出来。这里存在着两层关系:一层是实体之间的内在关系属性;另一层是实体固有属性表现的外在关系条件。前者具有潜存性,后者为潜存性向现实性的转变创造了有利条件。
其次,在认识论意义上,用理论模型的隐喻论的观点取论模型的镜象论的观点。传统的模型镜象论观点把理论理解成是命题的集合,命题与概念的指称和意义是由对象决定的,它们的集合构成了对对象的完备描述;而模型隐喻论的观点虽然也认为理论能够以命题的形式表示出来,但是,理论不是命题的集合,而是包含有模仿世界的内在机理的模型集合。理论与世界之间的关系不是传统的相符合关系,而是在一定的语境中,理论描述的可能世界与真实世界之间以相似为基础的一致性关系。理论系统的模型与真实系统之间的相似程度决定理论的逼真性。这样,真理不再是命题与世界之间的符合,而是成为理论的逼真性的一种极限情况。或者说,当理论所描述的可能世界与真实世界相一致的时候,理论的真理才能出现。这是对基本的认识论概念的倒转:传统的逼真性理论是用命题或命题集合的真理作为基本单元,来衡量理论距真理的距离,即理论的逼真度;而现在正好反过来,是通过对逼真性概念的理解来达到对真理的理解。
第三,在方法论意义上,用语义学方法取代传统的认识论方法。在传统的认识论方法中,是用命题的真理或图象与世界之间的逼真度的术语来表达科学实在论的一般论点。然而,这种方法使我们从开始就需要清楚地辨别对一些解释性描述的理解。例如,在相同的研究领域内,我们为什么能够说,一个理论比与它相竞争的另一个理论更逼近真理或更远离真理?对于诸如此类的问题,如果没有一个明确的和可辩护的回答方式,那么,逼真性概念要么是空洞的;要么就是不一致的。结果,对理论的逼真性的论证反而成为对“认识的谬误(epistemicfallacy)”的证明,并在某程度上支持了认识论的怀疑论观点。但是,如果我们在语义学的语境中,通过对逼真性概念的分析与辩护,然后,衍生出理论的真理,对上述问题的理解方式将不会陷入如此的认识论困境。并且从认识论的怀疑论也不会推论出语义学的怀疑论。
第四,在经验的意义上,用现象生成论的测量观取代现象再现论的测量观。所谓现象再现论的测量观是指,把物理测量结果理解成是对对象固有属性的一种再现,测量仪器的使用不会对对象属性的揭示产生实质性的干扰,它扮演着一个单纯意义上的工具角色。理论术语能够对这些观察证据进行精确的表述。观察证据的这种纯粹客观性成为建构与判别理论的逻辑起点;而现象生成论的测量观则认为,测量是对世界的一种透视,测量结果是在对象与测量环境相互作用的过程中生成的。测量结果所表达的经验事实,不是纯粹对世界状态的反映,因为经验事实存在于我们的信念系统之中,而不是独立于观察者的意识或论述之外与世界的纯粹符合,只是在特定的测量语境中的一种相对表现,是相互作用的结果。或者说,测量语境构成了对象属性有可能被认识的必要条件。
所以,理论的逼真度与科学进步之间的联系,应该在经验的意义上来确立。科学进步的记录并不是真命题的积累,而是从模型系统与真实系统之间的相似性出发,用逼真度的概念衡量科学研究纲领接近真理的程度。在这里,相似性不是一个命题,也不是两个世界之间的一种固定不变的关系,而是依赖于语境的一个程度性的概念。它的内容将会随着我们对世界的不断深入的理解而发生变化。所以,科学进步不是真命题积累的问题,而是理论的成功预言与经验事实的函数。
第五,在语义学的意义上,用整体论或依赖于语境的隐喻语言范式取代非隐喻的字面真理范式(literal-truthparadigm)。从17世纪开始,非隐喻的字面真理的范式就已经被科学家广泛地接受为是理想的语言。其动机是期望把理论模型的言语和论证,建立在优美而简洁的数学和几何的基础之上。当时的理性论者和经验论者把科学语言当成是理想的合乎理性的语言,或者说,把科学的经验和知识看成是人类经验和知识的典范。这种观点认为,所有的知识与真实世界之间的关系是根据表征知识的命题方式来讨论的,科学语言与概念的意义由它所表征的世界来确定,它们不仅在本质上具有固有的字义,而且语言本身的字面意义就是使用词语的标准。语言的意义不仅与语言的用法无关,而被认为是客观地对应于世界的各个方面。科学的话语总是关于自然界的现象、内在结构和原因的话语。
然而,在整体论的隐喻语言范式中,理论所讨论的是由科学共同体提出的关于世界的因果结构的信念,知识与真实世界之间的关系是根据可能世界与真实世界之间的相似关系来讨论的。在这里,两个世界之间的相似程度的提高是它们共有属性的函数。在隐喻的意义上,语言与概念的意义是极其模糊的和语境化的,隐喻的表达通常并不直接对应于世界中的实体或事件:即,按照字面的意义理解隐喻的陈述常常是错误的。例如,在理解量子测量现象时,实验已经证明,或者强调使用粒子语言,或者强调波动语言都是失败的。这也是玻尔的互补性原理在量子力学的时期岁月里容易被人们所接受的高明之处。从本文的观点来看,关于微观世界的粒子图象或波动图象只不过是传统思维惯性的一种最显著的表现而已。事实上,这两种图象都只是一种隐喻意义上的图象,而不代表微观世界的真实图象。隐喻与其它非字面的言词是依赖于语境的。正如后期维特根斯所言,语言与概念的意义依赖于活动,使用一个符号的充分必要条件必须包括对活动的描述。
在这种整体论的思维方式的基础上,我们可以把语境实在论的主要观点,总结为下列六个基本原理:
本体论原理:在物理测量的过程中,物理学家所观察到的现象是由不可能被直接观察到的过程因果性地引起的。这些不可能被直接观察到的过程是独立于人心而自在自为地存在着的。
方法论原理:对一个真实过程的理论模型的建构,是对不可能被观察到的真实世界的机理和结构的模拟。对于真实世界而言,它在现象学意义上的表现与它的内在结构或机理在定性的意义上具有一致性。即,理论模型具有经验的适当性。
认识论原理:理论描述的可能世界与真实世界只具有的相似性,它们之间的相似程度是它们具有的共同特性的函数。这些共性是在实验与测量语境中找到的。
语义学原理:在一定的语境中,理论模型与真实系统之间的相似关系决定理论的逼真性。在理想的情况下,真理是理论描述的可能世界逼近真实世界的一种极限。
价值论原理:科学理论的建构在最终意义上总要受到实验证据的制约,科学理论的发展总是向着越来越接近真实世界机理的方向发展的。
伦理学原理:包括人类在内的自然界具有不可分割的整体性,关于人类行为的评价标准应该建立在人与自然的整体性关系上。
4.科学进步的语境生成论模式
探讨科学进步的模式问题一直是科学哲学研究中的重大理论问题之一。不同的学派提出了不同的观点。逻辑实证主义者继承了自培根以来的哲学传统,认为科学的发展在于对经验证实的真命题的积累。理论所包括的真命题越多,它就越逼近真理。波普尔把理论逼近真理的这种性质称为“逼真性”,逼真性的程度称为“逼真度”。他认为,理论是真内容与假内容的统一,理论的逼真度等于理论中的真内容与假内容之差。而真内容由理论中那些得到经验确认的真命题所组成。真命题越多,理论的逼真度就越高。在所有这些观点中,逼真性的主要特性是用命题与事实的符合作为近似真理的基本单元。换言之,是用命题真理的术语来理解理论的逼真性。在这里“符合”没有程度上的差别;逼真性与真理之间的关系是部分与整体之间的关系。这种“符合”或“与事实相符”包含着四个方面的关系:其一,句子的主语与谓词之间处于相互联系的状态;其二,事态(thestateofaffairs)与主语之间的指称关系;其三,谓词表达与被选择的事态之间的指称关系;其四,说话者所选择的对象与事态之间的相适合关系。[1]
然而,这种以真命题的多少来衡量理论的逼真度的方法,似乎没有办法回答诸如下面的那些问题:如果一个理论最后被证明是与事实不相符,那么,这个理论怎么可能接近真理呢?比如说,在当前的情况下,量子场论还是一个不成熟的理论,它在未来一定会被加以修改,那么,我们能够说,量子场论不如牛顿力学与事实更相符吗?此外,“符合事实”这个概念也会遇到同样的问题:如果某个理论根本就是错误的,我们又怎能说,它与事实符合的更好或更糟呢?也许有些在表面上曾经显示出具有某种逼真性的理论,实际上,它却在根本意义上就是错的。例如,化学中的“燃素说”、物理学中的“地心说”,等等,这些理论都曾经在科学家的实际工作中,起到过积极的作用。但是,后来的发展证明,它们都是错误的假说。另一方面,这种方法还无法解释为什么在前后相继的理论中使用的同一个概念,却具有不同的内涵这样的问题。例如,经典物理学中的质量概念不同于相对论力学中的质量概念;量子力学的中微观粒子概念也比经典物理学中的粒子概念拥有更丰富的内涵。库恩在阐述他的科学进步的范式论模式时,为了避免上述问题的出现,走向了彻底的相对主义。
如果我们用强调理论描述的物理模型与世界之间的相似性比较,取论中包含的真命题的比较来理解理论的逼真性,那么,上述问题就很容易得到解决。在特定的语境中,并存着的相互竞争的理论,分别描绘出几个相互竞争的可能世界,这些可能世界与真实世界之间的相似程度决定理论的逼真性。逼真度越高的理论,将会越客观、越接近于真理。真理是理论的逼真度等于1时的一种极限情况。例如,牛顿力学比伽里略的力学更接近真理的真正理由是,因为牛顿物理学所描绘的世界模型比伽里略物理学所描绘的世界模型与真实世界更相似。而不应该把这个结论替换成是,在每一个方法中通过真命题的计数来使它们与精确地说明真实世界的真命题的总数进行比较后作出的选择。前后相继的理论中所使用的共同概念的意义也是依赖于可能世界的。不同层次的可能世界虽然赋予同一个概念以不同的内涵。但是,由于更深层的可能世界更接近真实世界的内在结构,所以,对为什么同一个概念会有不同内涵的问题就容易理解了。
我们把由理论描绘的可能世界逼近真实世界的过程,以及前后相继的理论之间的更替关系总结为:
前语境阶段——语境确立阶段——语境扩张阶段——语境转换阶段
——新的语境确立阶段……
在科学进步的这个模式中,前语境阶段是指,当科学进入一个新的研究领域时,面对不可能被旧理论所解释的有限数量的实验证据和存在的重要问题,科学家首先是进行大胆的创新和积极地猜测,提出可能与证据相一致的相互竞争的理论或假说。这些理论或假说分别描绘出了相互竞争的各种可能世界的图象。这个时期,科学家在建构理论时,通过模型与现象的比较来约束他们的想象。或者说,他们的富有创造性的想象力是一种意向性的想象,而不是完全随意的想象。这种意向性的信息直接来自不可能被直接观察到的对象本身。科学家在相互竞争的理论中作出选择时,依赖于两个主要的归纳根据:其一,相信任何一个理论模型的建构都是为了尽可能准确地模拟真实世界的结构和机理;其二,依据模型所产生的信念能够作为成为设计新的实验方案的基础,这个实验方案的设计是为了探索世界,和检验模型与它所表征的世界之间的类似程度。在特定领域内和一定的历史条件下,根据一个理论的信念所设计的实验越新颖,在得到应用之后,越能够证明理论的成功性。同时,理论的调整总是向着与新的实验结果相一致的方向进行的。而新的实验结果是由自然界中某种未知的因果机理引起的。
然而,说明的成功(explanatorysuccess)只是理论逼近真理的一个象征或一个结果,或者说,说明的成功只是理论逼近真理的一个必要条件。凡是逼真的理论都必定能够对实验现象作出成功的说明。但是,并不是每一个拥有成功说明的理论都是逼真的理论。在理论的说明中,理论的逼真性与不断增加的成功之间的联系应该是一个认识论问题,而不是一个语义学问题。一个完整的科学理论从产生到成熟通常要经过三个阶段:其一,对现象的描述阶段,这个阶段得到了在经验上恰当的模型。例如,在量子力学之前,玻尔等人提出的各种原子模型;第二个阶段是建立一个理论的说明模型。例如,现有的量子力学的数学形式体系。第三个阶段是为成功的说明模型寻找一种可理解的机理,或者说,对说明模型提供语义学的基础。相对于一个成熟的科学理论而言,现象——模型——机理三者之间的相互关系具有内在的不可分割的整体性。这也就是为什么原子物理学家在理解量子力学的内在机理的问题上没有达成共识时,产生了量子力学的解释问题的原因所在。
在这里,我们所说的模型是指物理模型而不是仅仅指数学模型。物理模型除了包括数学模型之外,还包括理解世界的构成机理的模型。物理模型是为数学模型提供一个语义学基础。例如,分子运动论模型是解释压强公式的语义学基础;场的观点是理解引力理论的语义学基础。所以,物理学中的模型是指真实物理系统的替代物,它既具有解释的作用,也能够把抽象的数学系统翻译为一个可理解的论述。正是在这个意义上,物理学模型是指一个模型簇。由这些模型簇所描绘的可能世界的结构与真实世界的结构之间的相似关系,在选择理论时是很重要的。一方面,它能够使理论在科学实践中被不断地修改和扩展以适应新的现象,而不是静止的和孤立的;另一方面,它使相互竞争的理论之间的选择在科学实践的规则与活动之内自然地得到了求解。这时,被淘汰掉的理论并非必须要被证伪(尽管证伪也是因素之一),而是如同生物进化那样是自然选择的结果。
在这里,把逼真度作为选择理论的标准,与要么强调经验证实,要么强调经验证伪的标准不同,它永远是动态的和依赖于研究语境的概念。它既有助于把淘汰掉的理论中的某些合理化因素进行再语境化,也能够确保科学描述和与此相关的实验技巧与独立于人心的世界之间建立起一种物理联结,从而坚持了存在着一个不可能被观察到的独立于人心的世界的本体论的实在论观点。大体上,衡量可能世界与真实世界之间的结构或机理的相似程度可以通过它们之间的共有属性(或共同特征)来进行。如果用s(a,b)表示两个世界之间的基本特征的相似关系,用a∩b表示共有属性,a–b和b-a表示它们之间的差异,那么,在定性的意义上,这些量之间的关系可以定性地表示为:[1]
s(a,b)=c1f(a∩b)-c2f(a-b)-c3f(b-a)
这个公式说明,两个世界之间的相似关系是它们的共性与差异的函数。当c1远远大于c2和c3时,两个系统之间的共性将比差异处于更重要的支配地位。其中,三个系数c1、c2和c3的值是通过实验来确定的。这样,我们就有可能在经验的意义上来研究相似关系。在经验的意义上,如果相互竞争的理论中的某个理论的描述和说明模型能够完全依据当前的实验结果和本体论概念被加以校准,那么,我们就可以认为,这个理论是似真的(plausible)。理论越拟真,它就越逼真。
在一个特定的语境中,当一个理论的说明与理解模型能够完全经得起经验的考验时,科学共同体将认为理论描绘的可能世界与真实世界之间达到了某种一致性。这时,科学的发展进入了语境确立的阶段。这个阶段相当于库恩的常规科学时期或范式形成时期。这时,科学家不仅拥有共同的信念和共同的语言,而且拥有对真实世界的共同图象。他们相信,理论描绘的可能世界代表了真实世界的内在机理;理论描绘的图象就是不可观察的真实世界的图象。为了进一步探索真实世界的精细结构,科学家常常会根据现有理论提供的信念和约定,设计新的实验规划,预言新的实验现象,特别是运用成熟理论中的理论实体进行实验操作,从而形成了一个相对稳定的语境阶段。但是,这个相对稳定的语境边界是非常不确定的。
当科学家把成熟理论所揭示的世界机理作为一个范式和信念的基础,延伸推广到解释其它相关领域的现象时,科学的发展进入到语境的扩张阶段。其中,既包括理论研究的信念与方法的扩张,也包括以它的基本原理为基础的技术与实验的扩张。例如,在牛顿理论确立之后,不论是物理学还是化学家,他们都用牛顿力学的基本思想解释他们所面临的其它领域内的新的实验现象,并且成功地制造出了许多测量仪器;同样,现代技术的崛起和分子生物学、量子化学等学科的产生都是量子力学的基本原理成功应用的结果。所以,语境扩张的过程实际上是已有语境膨胀的过程。当科学共同体在语境扩张的过程中,遇到了与理论信念相矛盾的而且是他们料想不到的实验事实时,他们才有可能开始对理论的信念产生怀疑,这时,理论的应用边界,或者说,语境扩张的边界逐渐地变得明确起来,科学的发展开始进入语境转换阶段。在这个阶段,旧语境的扩张受到了限制,新的语境处于形成与培育当中。新的理论竞争也就随之开始了。随着新理论竞争的开始,科学共同体的信念也在不断地发生着改变,直到一个全新的语境形成为止。
当新的语境确立之后,不仅科学家确立了新的信念,而且他们对问题的求解值域也随之发生了改变。这时,原来前语境中的一些不合理的偏见,在新语境中得到了纠正。在前语境中是真理的理论,在后语境中失去了它的真理性。后语境的形成是伴随着新理论的确立而完成的。由于新语境比旧语境揭示出了更深层次的世界结构或机理。所以,它在理论信念、方法和技术层次的扩张与渗透力将会比旧语境更强、更彻底。这也就是,为什么量子力学的产生所带来的理论、方法与技术革命会比牛顿力学更深刻、更广泛的原因所在。但是,前后语境之间的界线是连续的。这时,就像新理论是对旧理论的一种超越一样,新语境也是对旧语境的一种超越。由于语境的变迁和运动是不断地向着揭示世界的真实机理的方向发展的。因此,在语境中生成的理论也使得科学的发展与进步向着不断地逼近真理的方向进行。本文把科学发展的这种模式称为“语境生成论模式”。
这里包括两个层次的生成,其一,理论的形成与完善是在特定的语境中进行的;其二,科学进步也是在语境的变更中完成的。但是,值得注意的是,强调语境化并不意味着使科学进步成为无规则的游戏。把理论系统放置于特定的语境当中,强调了系统的开放性和连续性。在这个意义上,语境论的事实也是一种客观事实。运用语境论的隐喻思考与模型化方法,不仅能够使科学进步过程中的微观的逻辑结构与宏观的历史背景有机地结合起来,而且能够使基本的内在逻辑的东西在历史的发展中内化到新的语境当中,从而使得语境在自然更替的同时,一方面,完成了理论知识的积累与继承的任务;另一方面,揭示出更深层次的世界机理。所以,语境生成论的科学进步模式既不会像库恩的范式论那样,走向相对主义,也不会像普特南那样,走向多元真理论。科学进步的语境生成论模式,既能够包容相对主义的某些合理成份,又能够坚持实在论的立场。
5.结语
从量子力学的认识论教益中抽象出的语境实在论的观点,是一种具有更广泛的解释力,并且有可能把许多观点有机地融合在一起的实在论观点。它不仅能够赋予量子力学以实在论的解释,而且为解决科学实在论面临的许多责难,理清上世纪末围绕“索卡尔事件”所发生的一场震惊西方学坛的科学大战,[1]提供了一条可能的思路。法因曾经在《掷骰子游戏:爱因斯坦与量子论》一书中断言“实在论已经死了”。[2]然而,我们通过对量子力学与实在论的分析,在放弃了传统的真理符合论之后,运用隐喻思考与模型化方法所得出的结论则是,“实在论还活着,而且活的很好”。
[1]d.bohmandb.j.hiley,theundivideduniverse:anontologicalinterpretationofquantumtheory,routledgeandkeganpaul,london(1993).
[1]jeffreyalanbarrett,thequantummechanicsofmindsandworlds,oxforduniversitypress(1999).
[1]jerroldl.aronson,romharré&eileencornellway,realismrescued:howscientificprogressofpossible,geraldduckworth&co.ltd(1994):136-137.
[1]jerroldl.aronson,romharré&eileencornellway,realismrescued:howscientificprogressofpossible,geraldduckworth&co.ltd(1994):133.
量子力学概述篇6
摘要:凝聚态物理学作为物理学的一大分支,其研究前景十分广泛。凝聚态物理学是研究凝聚态物质的物理性质以及它们的微观结构的学科。其通过分析构成凝聚态物质的电子、离子、原子、分子的运动形态和运动规律,从而对凝聚态物质的物理性质进行认知。凝聚态物质是固体物理学的一个拓展方面,研究的物质的典型特征之一是其具有多种形态。同时,凝聚态物理学也为材料研究引入了新的体系。本文就目前凝聚态物理学发展情况,对其中的基本概念的产生、含义及其发展进行阐述。
关键词:凝聚态物理学;基本概念;特点阐述
凝聚态物理学的基本概念需根据物质世界的层次化进行阐述效果会更加明了。作为一门至今仍然拥有丰富生命力的研究学问,凝聚态物理学时时刻刻影响着我们生活的方方面面。例如,液态金属、溶胶、高分子聚合物等等物质的研究都和凝聚态物理学有着密不可分的联系。凝聚态物理学发展历史和其理论支撑,是对凝聚态物理学的基本概念进行阐述的基础。
一、凝聚态物理学发展历史
1、物质世界层次化
为了对凝聚态物理学基本概念进行阐述,首先就需要提到物质世界层次化的研究方式。纵观二十世纪的物理学发展,在二十世纪初,两大划时代的物理理论突破的出现,拉开了宇观物理学和微观物理学的探究序幕。两大理论即是相对论和量子论,相对论和量子理论是对传统物理学的质疑和挑战。其中,狭义相对论修正了经典物理学当中的电磁学和力学之间存在的矛盾;广义相对论则是为近代物理学当中的天体运行研究做出了巨大的贡献。量子论的建立正式拉开了现代物理学对于微观世界的研究,使得基于原子乃至更小系统的探究成为可能。现代物理学的研究方式正是基于这一种将物质世界进行分层的观点进行的,因为物理学当中的理论使用范围都有区别。例如,在宏观世界当中,牛顿力学成立;在微观世界当中,牛顿力学就难以支撑实验事实了。
2、凝聚B物理学的步步发展
从科学家开始探索微观世界开始,凝聚态物理学就悄然发展开来。科学家从原子物理出发,深入到原子核内外空间的研究,为了探索微观世界粒子的基本特性,建立了多代高能粒子加速器,使得近代微观物理学探索出中子、夸克、轻子类的微观粒子。同时,近代物理学的一条研究途径也是将原子物理作为基本主线。在这条研究主线当中,量子力学和统计物理学向结合,奠定了固定物理学的基础。固定物理学的逐渐发展扩大,演变为了凝聚态物理学。凝聚态物理学的研究发展从简单到复杂,从宏观到微观。其结合到其他学科(材料学、化学、生物学等)共同创新,取得了巨大成果。
二、凝聚态物理学的基本概念阐述
1、基本理论
凝聚态物理学基本概念中最重要的基础则是构建这门学科的理论支撑。其基本理论当中的核心即是量子物理和经典物理。根据凝聚态物理学的发展历史来看,量子物理理论推动了凝聚态物理学的发展,使其对众多实验研究成为可能。经典物理理论在凝聚态物理学中并非一无是处,仍在一些研究方面起着不可忽视的作用。两种理论知识在凝聚态物理学当中的应用都存在着自身的适用范围,下面对其进行比较说明。在中学物理中我们初步了解到,物质粒子具有二象性――粒子与波。在粒子的二象性当中,粒子所具有的波动性使得量子力学有别与经典力学。二者的适用范围的界限通常是一些临界温度、直径、场(电场、磁场)强等方面。
2、凝聚现象
凝聚态物理学的基础概念即是凝聚现象,然而凝聚现象在我们日常生活当中是随处可见的。大家都知道,气体可以凝结成固体或者是液体,液体和固体之间最明显的区别是液体的流动性。根据量子力学等理论分析,在某些临界温度附近,物质之间就发生凝聚现象。发生凝聚现象的物质往往具备一些新的物理性质。例如物质原有的沸点、导电性、光敏性等发生改变。
3、凝聚态物质的有序化
根据中学物理和化学的知识可知,物质反应在平衡状态时,其系统能量内能与熵等因素的影响。系统物质内能的上升使得系统趋于不稳定性,使得熵值增加。当温度下降时,凝聚态物质则趋于熵值下降和系统稳定,研究发现,凝聚态物质往往是某一种有序结构的物相。大量物质粒子所组成的系统表现出来的直观特征即是位置序,这也说明不同的粒子直接是存在着相互联系的。当然,也存在着粒子相互作用较弱的情况,其宏观表现即是粒子无序分布。在经典粒子系统当中,使得系统有序化的物理基础则是粒子和粒子之间的相互作用,这可当作是量子力学当中的一个问题处理。根据中学知识我们知道,在量子力学当中,物质粒子存在着位置不确定性和动量不确定性。根据上述进行总结,凝聚态物质是空间当中的凝聚体,而相对空间往往是分为两个方面。一方面是位置形态空间,另外的一方面是抽象的动量空间。凝聚态物质的有序化在这两个空间当中的存在形态极为丰富。
三、研究概念阐述
凝聚态物理学当中基本的研究概念在于以下几个方面。第一是固体电子论。对固定系统当中电子的行为研究是凝聚态物理学一直在努力的方向,按照电子行为的相互作用的大小,又将其分为三个小的区域。首先是弱关联区,这个区域的研究已经取得了巨大进展,也是构成半导体物理学的理论基础。其次是中等关联区域,主要研究对象包括的是一般的金属和强磁性的物质,其构成了磁铁学的物理基础。强关联区受能带理论发展的影响,目前其研究还有待开拓。第二是宏观量子态。宏观量子态研究当中对某些物质的超导现象的研究是一个重点,一些非常规的超导体研究也是目前科学家所努力的方向。第三是纳米结构与介观物理,凝聚态物理学对于一些简单物质的研究已经较为清楚。按照不同物质材料的结构尺度进行探究是凝聚态物理学研究的新方向之一,纳米结构和介观物理需要量子理论进行支撑,研究目的主要是为了获取材料和器件的复合体,同时创造出一些具有优良性能的物理材料。
四、总结
凝聚态物理学的理论基础是量子力学,目前量子力学的发展已经趋于完备。由于凝聚态物理学设计大量微观粒子的研究,其复杂程度较高,需要研究者从实验、计算、推演等方面开展研究。凝聚态物理学作为一门高新技术,其研究前景十分广阔。只要充分结合其他相关学科知识,加以探究,一定会取得更加丰硕的研究成果。
参考文献
[1]冯端,金国钧.凝聚态物理学中的基本概念[J].物理学进展,2000,20(1):1-21.
