初中奥数题(精选6篇)
奥数题及答案 篇1
脚印:(中等难度)
夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走,小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印。那么这条小路长()米。
脚印答案:
爸爸走3步和小龙走4步距离一样长,也就是说他们一共走7步,但却只会留下6个脚印,也就是说每216厘米会有6个脚印,那么有60个脚印说明总长度是厘米,也就是21、6米。
四年级奥数题及答案 篇2
有红、黄、黑三色球共20xx只,按红球6只、黄球5只、黑球4只、红球6只、黄球5只、黑球4只……的顺序排列,问最后一只球是什么颜色?
解答:
20xx只球按红球6只、黄球5只、黑球4只的顺序排列,那么,周期为6+5+4=15。只要求出20xx除以15所得的余数,就可以知道最后一只球的颜色。20xx÷15=133L10,这说明20xx只球排到了133个周期还余10只球,所以最后一只球是第134个周期的第10个球,从排列顺序可知这个球是黄球。
五年级精选奥数题及答案 篇3
奥数的学习并没有我们想象的那么难,只要用心我们还是可以把奥数学习好的。我们一起来看一下这篇小学五年级奥数题及答案:平均数吧。
1,2,3,,,,999这999个数的平均数是多少?
答案与解析:这些数的和是:(1+2+3+……999)=1/2×(1+999)×999
平均数是1/2×(1+999)×999÷999
现在是不是觉得奥数很简单啊,希望这篇小学五年级奥数题及答案:平均数可以帮助到你。
五年级精选奥数题及答案 篇4
从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。
考点:整除问题、
分析:第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号、
解:第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121的倍数;
第三次报数后留下的同学最初编号都是1331的倍数;
所以最后留下的只有一位同学,他的最初编号是1331;
答:从左边数第一个人的最初编号是1331号、
点评:根据他们的报数11,得出每次留下的学生的最初编号都是11的倍数,是解决这个问题的关键、
五年级精选奥数题及答案 篇5
把一些图书分给六年级一班的男同学,平均分给每个男同学若干本后,还剩14本,如果每人分9本,这样最后一个男同学只能得6本,六(1)班的男生有多少人?
答案与解析:我们将题中的条件和问题组成的主要数量关系用式子摘录如下:
为了书写简便,我们用题中的关键字“书”和“男”分别表示“图书总数”和“男同学人数”,用□表示不知道的量。
从上面的两个数量关系式中找不到解题的突破口。不妨将两式变化,如下:
从这两个式子得到:
□×男+14=9×男-3
(9-□)×男=17
“9-□”得到的是图书的本数,应该是整数,“男”也必须是整数,而且不能为“1”。而17=17×1,因此“男”只能为17。六(1)班的男生为17人。
五年级精选奥数题及答案 篇6
行程:(高等难度)
甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?
行程答案:
小汽车出发遇到第一辆客车是在(300-60×1、5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9、6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。