一次函数教案优秀(精选8篇)
重、难点与关键 篇1
1.重点:一次函数的概念.
2.难点:从实际生活中建立一次函数的模型.
3.关键:把握好实际问题中的。两个变量之间的相等关系,建立模型
读书破万卷下笔如有神,以上就是虎知道为大家整理的9篇《一次函数教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
一次函数的概念优秀教学设计 篇2
一、常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)。用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:
一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、函数值:
函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值
例如:在正方形的面积公式S=a2中,若a=2;则S=4;若a=3,则S=9,这说明4是当a=2时的函数值,9是当a=3时的函数值
六、函数有三种表示形式:
(1)列表法 (2)图像法 (3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数。其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例。
八、正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、一次函数与正比例函数的图象与性质
一次函数概念
如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数。当b=0时,一次函数y=kx(k≠0)也叫正比例函数。
图 像
一条直线
性 质
k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大)。
直线y=kx+b(k≠0)的位置与k、b符号之间的关系。
(1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
(5)k<0,b<0 (6)k<0,b=0
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可。
5、一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点
解方程组
从“形”的角度看,确定两直线交点的坐标。
十、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1、 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2、求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标
3、 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4、 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围
一次函数教案 篇3
一、教材分析
1、地位和作用
这一节内容是初中数学新教材八年级上册第十四章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
3、教学重点
(1).理解一元一次不等式与一次函数的转化关系及本质联系
(2).掌握用图象求解不等式的方法.
教学难点:图象法求解不等式中自变量取值范围的确定.
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”———学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”———引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”———本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”———在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
教学过程 篇4
教学目标
①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。
②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。
③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。
教学重点与难点
重点:一次函数与一元一次方程的关系的理解。
难点:一次函数与一元一次方程的关系的理解。
教学设计
导语
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。
注:点明学习本节内容的必要性:(1)函数与方程、方程组、不等式有着必然的联系;(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的。思想方法。给学生一个本节内容的大致框架。
引入新课
我们先来看下面的两个问题有什么关系:
(1)解方程2x+20=0、
(2)当自变量为何值时,函数y=2x+20的值为零?
问题:
①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?
②从问题本质上看,(1)和(2)有什么关系?
③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?
注:用具体问题作对比,帮助学生理解。
在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。
探讨归纳
从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?
学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)
师生共同归纳(教科书39页)(略)
让学生在探究过程中理解两个问题的同一性。
练习巩固
1、以下的一元一次方程问题与一次函数问题是同一个问题
序号
一元一次方程问题
一次函数问题
1解方程3x-2=0当x为何值时,y=3x-2的值为O?
2解方程8x+3=0
3当x为何值时,y=-7x+2的值为O?
4
解:(略)
注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等
2、根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?
解:5x=0的解是x=0;x+2=0的解是x=-2;-3x+6=0的解是x=2;
由图象可得函数关系式是y=x-1,从而得出x-1=0的解是x=1、
注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象
了解。
综合应用
教科书P、139 例1(略)
对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。
注:例1可看成是一次函数与一元一次方程关系的一个直接应用。
归纳提高
框图化小结:
从数的角度看:
求ax+b=0(a≠O)的解 x为何值时y=ax+b的值为0
从形的角度看:
求ax+b=0(a≠0)的解 确定直线y=ax+b与x轴的横坐标
从数和形两方面总结,帮助学生建立数形结合的观念。
布置作业
教科书P、145 习题11、3第1、2题。
八年级《一次函数》教学设计 篇5
本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。
一、有效的“复习回顾”
学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。
二、有效的“新知探究”
根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延伸”
设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题、并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。
四、有效的“感悟收获”
通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的“巩固提高”
通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。
六、有效的“作业布置”
根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家。
课堂练习 篇6
1、随堂练习
(1)解:y=2、2x,y是x的一次函数,也是x的正比例函数。
(2)解:y=100+8x,y是x有一次函数。
2、补充练习
课件显示6、2A 1、见下表:
x-2-1012…
y-5-2147…
根据上表写出y与x之间的关系式是:_,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0、6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。
[①y=0、6x,y=x-2、4,y是x的一次函数。②y=8-2、4=5、6(元)]
一次函数教案 篇7
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。
三、目标分析
1、教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法。
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力。
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
2、教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
3、教学难点
数形结合和数学转化的思想意识。
四、教法学法
1、教法学法
启发引导与自主探索相结合。
2、课前准备
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置。
第一环节: 设置问题情境,启发引导
内容:1、方程x+y=5的解有多少个? 是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3、在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程。
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。
第二环节 自主探索方程组的解与图像之间的关系
内容:1、解方程组
2、上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像。
3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 。
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。
第四环节 反馈练习
内容:1、已知一次函数 与 的图像的交点为 ,则 。
2、已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( )。
(A)4 (B)5 (C)6 (D)7
3、求两条直线 与 和 轴所围成的三角形面积。
4、如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况。
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3、解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法。 要强调的是由于作图的不准确性,由图像法求得的解是近似解。
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。
第六环节 作业布置
习题7、7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。
教学方法 篇8
采用“情境──探究”的方法,让学生在实际问题中感悟一次函数的概念