当前位置: 首页 > 教育文档 > 教学总结

高二物理教案:电磁感应现象(精选4篇)

时间:

物理电磁感应教案 篇1

第四课时 电磁感应中的力学问题

【知识要点回顾】

1、基本思路

①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;

②求回路电流;

③分析导体受力情况(包含安培力,用左手定则确定其方向);

④列出动力学方程或平衡方程并求解。

2、 动态问题分析

(1)由于安培力和导体中的电流、运动速度均有关,所以对磁场中运动导体进行动态分析十分必要,当磁场中导体受安培力发生变化时,导致导体受到的合外力发生变化,进而导致加速度、速度等发生变化;反之,由于运动状态的变化又引起感应电流、安培力、合外力的变化,这样可能使导体达到稳定状态。

(2)思考路线:导体受力运动产生感应电动势感应电流通电导体受安培力合外力变化加速度变化速度变化最终明确导体达到何种稳定运动状态。分析时,要画好受力图,注意抓住a=0时速度v达到最值的特点。

【要点讲练】

[例1]如图所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。杆ef及线框中导线的电阻都可不计。开始时,给ef一个向右的初速度,则( )

A、ef将减速向右运动,但不是匀减速

B、ef将匀减速向右运动,最后停止

C、ef将匀速向右运动

D、ef将往返运动

[例2]如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为的绝缘斜面上,两导轨间距为L、M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下。导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。

(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;

(3)求在下滑过程中,ab杆可以达到的速度最大值。

[例3]如图所示,两条互相平行的光滑导轨位于水平面内,距离为l=0、2m,在导轨的一端接有阻值为R=0、5的电阻,在x0处有一水平面垂直的'均匀磁场,磁感应强度B=0、5T、一质量为m=0、1kg的金属直杆垂直放置在导轨上,并以v0=2m/s的初速度进入磁场,在安培力和一垂直于直杆的水平外力F的共同作用下做匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且连接良好。求:

(1)电流为零时金属杆所处的位置;

(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;

(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取得的关系。

[例4]如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0、5米,左端通过导线与阻值为2欧姆的电阻R连接,右端通过导线与阻值为4欧姆的小灯泡L连接;在CDEF矩形区域内有竖直向上均匀磁场,CE长为2米,CDEF区域内磁场的磁感应强度B如图所示随时间t变化;在t=0s时,一阻值为2欧姆的金属棒在恒力F作用下由静止从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化。求:

(1)通过的小灯泡的电流强度;

(2)恒力F的大小;

(3)金属棒的质量。

例5、如图所示,有两根和水平方向成。角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为及一根质量为m的金属杆从轨道上由静止滑下。经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则 ( )

A、如果B增大,vm将变大

B、如果变大,vm将变大

C、如果R变大,vm将变大

D、如果m变小,vm将变大

例6、如图所示,A线圈接一灵敏电流计,B线框放在匀强磁场中,B线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动,今用一恒力F向右拉CD由静止开始运动,B线框足够长,则通过电流计中的电流方向和大小变化是( )

A、G中电流向上,强度逐渐增强

B、G中电流向下,强度逐渐增强

C、G中电流向上,强度逐渐减弱,最后为零

D、G中电流向下,强度逐渐减弱,最后为零

例7、如图所示,一边长为L的正方形闭合导线框,下落中穿过一宽度为d(dL)的匀强磁场区,设导线框在穿过磁场区的过程中,不计空气阻力,它的上下两边保持水平,线框平面始终与磁场方向垂直做加速运动,若线框在位置Ⅰ、Ⅱ、Ⅲ时,其加速度a1,a2,a3的方向均竖直向下,则( )

A、a1=a3

B、a1=a3

C、a1

D、a3

例8、如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成=37o角,下端连接阻值为R的电阻,匀强磁场方向与导轨平面垂直,质量为0、2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0、25、

(1)求金属棒沿导轨由静止开始下滑时的加速度大小;

(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;

(3)在上问中,若R=2,金属棒中的电流方向由a到b,求磁感应强度的大小与方向。(g=10m/s2,sin37o=0、6,cos37o=0、8)

电磁感应 篇2

教学目标

1、知道电磁感应现象,知道产生感应电流的条件。

2、会运用楞次定律和左手定则判断感应电流的方向。

3、会计算感应电动势的大小(切割法、磁通量变化法)。

4、通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。

教学重点、难点分析

1、楞次定律、法拉第电磁感应定律是电磁感应一章的重点。另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。

2、在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。

3、电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。

4、电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系。但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。

5、楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,物理的思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点。

教学过程设计

1、产生感应电流的条件

感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。

2、感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。

3、关于磁通量变化

(1)在匀强磁场中,磁通量=B S sin(是B与S的夹角),磁通量的变化=1有多种形式,主要有:

①S、不变,B改变,这时=B Ssin

②B、不变,S改变,这时=S Bsin

③B、S不变,改变,这时=BS(sin2-sin1)

当B、S、中有两个或三个一起变化时,就要分别计算1、2,再求1了。

以上内容就是差异网为您提供的6篇《高二物理教案:电磁感应现象》,希望对您的写作有所帮助。

物理电磁感应教案 篇3

1、在___________________中产生的电动势叫感应电动势。

2、区别磁通量、磁通量的变化量Δ和磁通量的变化率Δ/Δt

3、 ①强磁铁和弱磁铁插入后不动。

②将磁铁以较快和较慢速度“同程度”插入线圈。

③将磁铁以较快和较慢速度“同程度”拔出线圈。

现象:______________________________________________。

结论:______________________________________________。

4、对比三个实验。

分析得出结论:

导线切割的快、磁铁插入的快、滑动变阻器滑片滑得快的实质是__________________________________。

感应电动势的大小与______________有关,即E与______有关。

4、法拉第电磁感应定律。

精确的实验表明:电路中感应电动势的大小,跟穿过这一电路的_________________成正比,这就是法拉第电磁感应定律。公式E=__________。

四、练习。

1、关于电磁感应,下述说法中正确的是( )

A、穿过线圈的磁通量越大,感应电动势越大。

B、穿过线圈的磁通量为零,感应电动势一定为零。

C、穿过线圈的磁通量的变化越大,感应电动势越大。

D、穿过线圈的磁通量的变化越快,感应电动势越大。

2、有一个1000匝的线圈,在0、4S内穿过它的磁通量从0、01Wb均匀增加到0、09Wb,求线圈中的感应电动势。

___________________________________________________________________。

电磁感应 篇4

1、[感应电动势的大小计算公式]

1、e=nδφ/δt(普适公式){法拉第电磁感应定律,e:感应电动势(v),n:感应线圈匝数,δφ/δt:磁通量的变化率}

2、e=blv垂(切割磁感线运动) {l:有效长度(m)}

3、em=nbsω(交流发电机最大的感应电动势){em:感应电动势峰值}

4、e=bl2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),v:速度(m/s)}

2、磁通量φ=bs {φ:磁通量(wb),b:匀强磁场的磁感应强度(t),s:正对面积(m2)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4、自感电动势e自=nδφ/δt=lδi/δt{l:自感系数(h)(线圈l有铁芯比无铁芯时要大),

δi:变化电流,δt:所用时间,δi/δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1h=103mh=106μh。

(4)其它相关内容:自感〔见第二册p178〕/日光灯。