当前位置: 首页 > 教育文档 > 教学设计

梯形的面积教案(精选5篇)

时间:

小学五年级上册数学《梯形面积的计算》教案 篇1

《梯形面积的计算》是人教版数学第九册内容。听过学区本节公开课,确有可借鉴之处,同时也存在一些问题,值得深思。

教学成功之处主要体现在以下几点:

一、首尾照应实现数学价值。

由实际事件“帮工人师傅计算花坛面积”引出探究主题——梯形面积的计算,得出结论后,运用公式解决这一实践问题。教师创造性使用教材,改变例题为学生身边常见事物,始终将数学置于生活背景之中,充分体现数学“来源于生活,回归于生活”的理念,实现数学的应用价值。

二、转化推理蕴涵思想方法。

“梯形面积的计算”是在平行四边形、三角形面积计算的学习基础之上提出的。教师首先请学生回忆了三角形面积的推导方法,使学生意识到梯形也可与学过的其他图形产生联系,从而计算出面积。让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想,也落实了“数学要在学生已有的知识背景下学习”这一教学理念。

三、合作探究促进创造思维。

在学生独立思考、自主探索的基础上组织合作交流是本节课的重点环节。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”面对同样的问题,学生会出现不同的思维方式。利用梯形与其他图形的联系求梯形面积,学生有着不同的做法:有的利用等腰梯形、有的利用直角梯形、有的利用普通梯形,有的拼成了长方形,有的拼成普通的平行四边形;有的把梯形分割为平行四边形与三角形……自由的探讨交流带来的是思维的充分扩展,是质的飞跃。在独立思考的基础上进行合作交流,能满足学生展示自我的心理需要;通过师生互动、生生互动,促使学生从不同角度去思考问题,对自己和他人的观点进行反思与批判,在各种观点相互碰撞的过程中迸发创造性思维的火花。

考问教学细节,又发现一些问题:

镜头一:利用公式求梯形面积的练习中,一同学列式为(3、5+2)×8÷2,而原图中,3、5为下底,2为上底。教师强调:“这样做不对,应为上底加下底,也就是(2+3、5)”。

“上底加下底”与“下底加上底”,对于求梯形面积而言,究竟有何区别呢?教师本不宜如此“循规蹈矩、照本宣科”。倘若该同学反问:“把这个梯形倒过来,面积是不变的。那么我的算式是否正确?”教师该如何应答?可惜,没有一个同学提出质疑。教师强依公式而下的结论显然并不合适,为什么却无人指出?“公式是不可不依的”、“老师的结论是不可推翻的”……“一言堂”教学的印痕桎梏着师生的思维,使“探究”有时不免流于形式。对学习而言,这是可怕的。“学起于思,思起于疑。”“学贵有疑,疑则进也。”要真正发挥学生的主体作用,必须鼓励学生善疑、敢疑。当然,这需要教师的能力与勇气——自我质疑的能力、承认错误的勇气。

镜头二:学生在练习本上完成了习题,在教师示意下走上讲台,利用投影把答案展示给大家。第一次展示,同学们趣味盎然;二次、三次过后,变得兴味索然。几声简单的“对”、“同意”,使课堂气氛趋于沉闷。

作为教学辅助手段,多媒体愈来愈受到师生青睐。但是,多媒体的运用必须把握好“度”。不是所有环节都适合使用多媒体,不是任何步骤的实施都需要多媒体。学生练习的是几道非常简单的基础性题目,正确率相当高,教师巡视时也能发现这点,那么,以口答的形式订正不仅简单明了,更节省了宝贵的课堂时间。对于稍有难度的题目,则可以利用多媒体展示的方式,组织学生进行短时间交流,使学生知其然亦知其所以然,而不是简单地回答“对”或者“错”。

《梯形的面积》教案 篇2

教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:

一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。

三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。

介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。

应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。

《梯形的面积》教案 篇3

教学目标:

1、探索并掌握梯形的计算面积公式,能应用公式正确计算梯形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

教学重、难点:

重点是探索并掌握梯形的面积公式,能正确计算形梯的面积。难点是理解梯形面积公式的推导过程。

教学过程

一、提出学习目标

1、创设情境:出示几个梯形,问,“这是什么图形?”并举生活实例。

师:你能用学过的方法推导出梯形的面积计算公式吗?这就是我们要研究的数学问题。(出示课题)

2、提出学习目标:

(1)小组合作、探究推导梯形面积的计算方法。

(2)应用公式解决实际问题。

二、展示学习成果

1、猜想:可以把梯形转化成已学过的平面图形吗?

2、小组内个人展示

学生先在小组内互相交流,探究方法。(完成后在小组内按学困生→中等生→优生的顺序进行展示,)

3、全班展示(以小组为单位),

⑴推导方法的展示:学生将学具贴在黑板上演示,然后说一说自己的发现。

①倍拼法。用两个完全一样的梯形拼成一个平行四边形。(质疑:梯形与平行四边形有什么关系?)得到:s=(a+b)h÷2

②割补法。沿着梯形两腰中点的连线剪开,拼成一个平行四边形。(质疑:随便剪吗?梯形和平行四边形有什么关系?)得到:s=(a+b)h÷2

③师介绍其他方法,让学生进行推导。得到: s=(a+b)h÷2

4、小结,质疑:为什么要“÷2”?完成板书。

(2)应用公式解决实际问题。(例3及“做一做”、练习十七的第1、2题)

讲解“横截面”,小组内完成。

三、拓展知识外延

1、请你辩一辩。

①两个面积相等的梯形一定可以拼成一个平行四边形。()

②梯形的面积是平行四边形面积的一半。 ( )

③梯形的上下底都扩大两倍,高不变,面积也随着扩大两倍。( )

2、生活中的数学。练习十七的第6题。

四、总结完善

这节课同学们又有什么新的收获?

五、作业

1、练习十七的第3、4、5题

2、智力冲浪:练习十七的第8题。

《梯形的面积》教案 篇4

一、教学目标

1、在实际情境中,认识计算梯形面积的必要性。

2、引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

3、结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

4、通过小组合作学习,培养学生合作学习的能力。

二、教学设计

(一)新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:孩子们,这是一幅堤坝的图案,知道堤坝有什么作用吗?

生:它是用来防水灾的。

师:对了,它是一种防水拦水的建筑物,请看,这是它的横截面,这个横截面是个什么图形吗?

生:梯形。

师:堤坝横截面是梯形是因为水的压强随深度增加而增大,因此在筑堤坝时要将下部做的又宽又厚,这样既能防止强大的水压将堤坝压垮,又节省材料!你还记得梯形各部分的名称吗?

生:上底,下底,还有高。

师:那么这个堤坝的横截面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?想想我们在学习三角形的时候是怎么开始的?

生:可以象三角形那样把梯形转化为学过的图形。

师:孩子们学得真好。我有个建议,发挥小组的力量,共同合作探究。

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:听清楚老师的要求:

a、利用你们手上的梯形学具,独立思考能把梯形转化成已学过的什么图形。

b、想:拼成的图形和原来的梯形有什么关系?

2、自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3、全班汇报交流

师:同学们已经用不同的方法把梯形转化成了我们学过的图形,哪一个小组愿意先上来给我们讲一讲。

生1:我们小组的方法是用两个完全相同的梯形拼成一个平行四边形。这个平成的平行四边形的底就是梯形上底加下底的和,高还是原来梯形的高,所以梯形的面积是平成的平行四边形的一半。

生2:我们用的是两个完全一样的直角梯形,拼成的是一个长方形,长方形的长是梯形的上底加下地的和,长方形的宽是梯形的高,梯形的面积是这个长方形的一半。

生3:

4、公式的推导

师:(展示教具)对了,用两个完全一样的梯形可以平成一个平行四边形,梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)×高÷2

(教师板书梯形面积计算公式)

师:我再请一位孩子来流利的说出这种推倒的方法。

生:有没有小组是其他的办法的?

生:我们小组用的是割补法,就是沿梯形高的一半分割成两个梯形,再转化成平行四边形。高是原来的一半了,所以推导出梯形的公式。

生3:我们是把一个梯形剪成了两个三角形,利用乘法分配律,用三角形的公式推出梯形的公式。

师:同学们介绍了各种推导方法,你们都推出了梯形的面积。 这可是我们大家智慧的结晶,我们的同学真了不起!

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:s=(a+b)h÷2

师:谁来说说,想算出大坝横截面的面积应该知道什么条件呢?

生:上底,下底,高

师:对了,这是求梯形面积的重要条件,谁说一说该怎么列式呢?

生:(20+80)*40/2=200

(二)联系实际,巩固运用

1、试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积。(只列市不计算)

(1)梯形梯田的面积

(2)出示篮球场的罚球区图形,请计算出罚球区的面积。

(3)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2、练一练第1、2、3题,让学生独立完成。

(三)课堂小结

师:通过今天的上课,谈谈你的收获。

师:是的,这节课我们通过操作,观察,比较,分析,推导出了梯形面积的计算公式,真了不起,今后同学们在日常生活中要灵活运用,提高解决有关实际问题的能力。

以上就是虎知道为大家整理的6篇《梯形的面积教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在虎知道。

《梯形的面积》教案 篇5

教学内容:教材88——89页内容。

教学目标:

1,掌握梯形的面积计算公式,能正确地计算梯形的面积。

2,通过操作和对图形的观察,比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析,综合,抽象,概括和运用转化的方法解决实际问题的能力。

教学重点:理解,掌握梯形面积的计算方法。

教学难点:梯形面积公式的推导。

教学具:投影,小黑板,若干个梯形图片(其中有两个完全一样的。)

教学过程:

一,导入新课

1,提问:我们学习过哪几种平面图形的面积计算 计算公式分别是什么

2,你能说出平行四边形的面积公式是如何推导的吗 三角形的面积公式呢

3,创设情境:

投影显示:教材89页例题图及表示大坝横截面的梯形图,让学生说出它的上底,下底和高各是多少厘米。

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗 (板书课题)

二,探究新知

1,操作探索

⑴小组合作:

拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的

看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗

出示小黑板:

拼成的平行四边形的底等于( ),平行四边形的高等于( ),每个梯形的面积等于拼成的平行四边形面积的( )、

⑵汇报交流

⑶想一想:梯形的面积怎样计算

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么 为什么要除以2

⑷做一做:计算"前面出示的梯形"的面积。

2,扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式 下面小组讨论。 分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵、

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶、

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是"上底与下底的和乘以高再除以2、"

3,抽象概括

师:如果用s表示梯形的面积,用a ,b和h分别表示梯形的上,下底和高,那么梯形的面积你会表示吗

生:s=( a + b ) h ÷2

4,反馈练习

完成课本81页做一做(一人板演)

三,应用深化

1,出示例题:一条新挖的渠道,横截面是梯形,渠口宽2、8米,渠底宽

1、4米,渠深1、2米,它的横截面的面积是多少平方米

解释:举例说明"横截面"的含义。学生尝试计算:

( 2、8 + 1、4 ) ×1、2÷2

= 4、2×1、2÷2

=5、04÷2

=2、52(平方米)

答:它的横截面的面积是2、52平方米。

2,反馈练习:完成82页第1题

四,巩固练习: 82页第2题

五,全课小结:学生交流学习收获。

六,作业:82页第3,4题