当前位置: 首页 > 范文大全 > 办公范文

二氧化碳排放方式范例(12篇)

时间:

二氧化碳排放方式范文1篇1

举目四顾,好些地方,青山不再青,绿水不再绿,河里流的是臭水,山上倒满的是垃圾,满眼都是白色的、黄色的、黑色的、红色的废水废碴废旧电池废塑料……

你可知道,被你随手丢弃的垃圾需要多久才才会分解?让我来告诉你吧,塑料瓶:450年;易拉罐:200—250年;铁罐头盒100年;油漆过的木板:13年;棉织物:1—5个月;纸片:半个月。

地球只有一个。在可预见的未来,人类不可能找到第二个地球,并实施大规模移民。为了人类自己的生存,为了子孙后代的延续,我们必须善待地球,不再做伤害地球的事了。

为了地球的明天,请你节约用水,中国是缺水大国,好多地方人畜饮水十分困难。想想这些,你何忍心让清清流水白白地从你手下流走?所以当你刷牙时,请关上水龙头,等要清洗时再拧开;当你在身上涂抹肥皂时,请你关上淋浴龙头,等要冲洗时再打开。

为了地球的明天,不要再乱丢垃圾,不要捕猎野生动物;不要乱采滥开矿产资源,不要污染环境,不要破坏生态平衡;为了地球的明天,请积极回收废纸,尽量使用再生纸。你可知道,回收100千克废纸能生产800千克的再生纸,这意味着可以少砍17棵大树。过期的挂历纸可以用来包书皮,你用过的课本可以留给低年级的同学再用。请记住,即使是一张废纸,还可以再生两次。

为了地球的明天,请你理解和支持家庭垃圾分装。如果我再告诉你,回收23.5万吨废铁,可以建造36个埃菲尔铁塔;回收6000吨废铝,可以生产74架空中客车飞机;回收120万吨玻璃,可以建造254个罗浮宫玻璃金字塔,那么请你想一想,就因为你懒于分拣,被你随手扔掉的将是我们人类生存的地球啊!

低碳生活走近你我他

对于低碳生活,人们遭遇着类似的尴尬:知道保护环境的重要,也知道保护环境人人有责,但是,为了提高生活质量,却不得不以增加碳排放为代价。专家指出,尽管人们不能避免碳排放,但却可以减少碳排放。每个人都不可能过“零碳”的生活,在资源匮乏的当下,我们要做的是,把有限的资源用于满足人们的基本需要,限制奢侈浪费。同时,养成“低碳生活”理念,在可选择、可替换的条件下,首选自然、环保、健康的生活方式。

其实,加入到低碳一族当中并非难事,“低碳生活”细节贯穿在家居生活的各个环节,就拿日常生活用电来说:家用电器的插头插座接触良好才能节电;电水壶的电热管积了水垢后要及时清除,这样才能提高热效率;熨烫衣物最好选购功率为500瓦或700瓦的高温电熨斗,不仅升温快,还能节电;所有的家用电器尽量不使用“声控、光控、遥控”等作为控制开关,这样可节电10%~15%。这样看来,每个人都能为控制全球气候变暖做出积极的贡献。

或许有人认为,即使自己“低碳”了,也挡不住工矿企业的违规排放。但是,冰川融化、气候恶化,每个人都将受到惩罚。“低碳生活”带来的其实是一种新的生活质量观。需要厘清的是,过“低碳生活”,并不是意味着就不能开车、住大房子、享受空调了。低碳的真实含义是要给人们身体健康提供最大的保护和舒适感,对环境影响更小或有助改善环境。如欧洲现在建设了很多零排放建筑,隔热效果非常好,在自然通风的条件下,隔热层可以把室内温度调控到一个合适的水平,且能保持很长时间。在交通领域,可以开发太阳能汽车、生物燃料汽车等,同时大力发展公共交通。

事实上,每一个普通公民在举手投足之间就可尽享“低碳生活”。倡导低碳生活方式的公益环保网站“互联网森林”的首页上列出的平易近人的10件减排案例就生动有趣:少用一个塑料袋,减排二氧化碳0.1克;5层以下,以爬楼梯代替坐电梯,每次平均可减排二氧化碳600克;选择应季蔬菜水果,每千克减排二氧化碳400克;夏季空调调高1℃,平均每台每天可以减少排放175克二氧化碳;一棵树,一年可吸收18.3千克二氧化碳……。这些告诉我们,低碳生活就在我们身边,节约每一张纸、每一度电,装修中少用装饰灯、选用节能灯管,都是普通人可以做到的。

在刚刚结束的哥本哈根的气候会议上,我们深深感受到各国领导对气候环境的关注。为了保护环境,减少碳的排放,我由此联想到我们生活的衣食住行。

衣:少买不必要的衣服。一件普通的衣服从原料到成衣再到最终被遗弃,都在排放二氧化碳。少买一件不必要的衣服就可以减少2.5千克二氧化碳的排放。另外,棉质衣服比化纤衣服排碳量少,多穿棉质衣服也是低碳生活的一部分。

食:多吃素。生产1千克牛肉排放36.5千克二氧化碳,而果蔬所排放的二氧化碳量仅为该数值的1/9。另外本地的果蔬和水也比外地运输来的排放二氧化碳量小。此外,低碳饮食还包括适量喝酒,如果1个人1年少喝0.5千克酒,可减排二氧化碳1千克。

住:选择小户型,不过度装修。减少1千克装修用钢材,可减排二氧化碳1.9千克;少用0.1立方米装修用木材,可减排二氧化碳64.3千克。

用:节电、节水。以11瓦节能灯代替60瓦白炽灯、每天照明4小时计算,1支节能灯1年可减排二氧化碳68.6千克;随手关灯减排二氧化碳4.7千克。如果每台空调在26℃基础上调高1℃,每年可减排二氧化碳21千克。此外,少用1个塑料袋可以减少二氧化碳排放0.1克;只要少用10%的一次性筷子,每年就能减碳10.3万吨;少用电梯,合理使用电视、冰箱、电脑等电器,及时切断其电源。工作时,单面纸要重复利用,能电子化办公的少用纸张。

行:少开车,选小排量车。每月少开一天,每车每年可减排二氧化碳98千克,如果出行选择公共交通工具或自行车,二氧化碳排放量将会更少。此外,排气量为1.3升的车每年减排二氧化碳647千克。通过及时更换空气滤清器、保持合适胎压、及时熄火等措施,每辆车每年减排二氧化碳400千克。不仅要低碳还要碳补偿

本次峰会上,不少国家纷纷宣布自己的减碳目标。中国外交部公布消息称,经过国务院决定,到2022年中国单位GDP的二氧化碳排放将比2005年减少40%-45%。

此前,为了减碳,中国一直在行动。2008年,"中国低碳发展项目"启动,低碳城市建设在我国正式起步,上海和保定两市成为首批试点城市。此外,日前中国国家林业局副局长祝列克说,从1980年到2005年,中国通过植树造林等工作减少的碳排放超过50亿吨。

在民间,也有越来越多的普通百姓加入到低碳生活的队伍中来了。不久前一项涉及1.5万人的网络低碳调查显示,73.08%的人有双面使用纸张的习惯,83.33%的人自备购物袋,79.49%的人能自觉地把空调温度调到26℃,83.34%的人愿意参加环保志愿者组织的环保活动。而且,不少人会记下自己的"碳足迹",并由此督促自己减碳。有的人会与别人分享自己的减碳小妙招,而且还经常参加"旧物交换"、"绿色出行"等活动。此外,低碳房屋、低碳服饰、低碳汽车等也更多地融入到生活之中。

此外,国外的一些减碳做法也值得借鉴。日本和欧盟已经全面禁用白炽灯了,以欧盟为例,家家户户使用节能灯后将减排3200万吨二氧化碳。

只有我们每个人都能从小事做起,人人争当低碳环保的市民。

低碳生活是一种非常环保、文明的生活方式。节水、节电、节油、节气,可以帮助我们将低碳生活变为现实。

现在我们国家对全世界公开承诺减排指标,决定到2022年温室气体排放比2005年下降40%-45%。低碳时代已经如约而至,正在改变着我们的生活。"低碳"就在我们身边。夏天,我们在家用空调时,不要长时间开着,用了几个小时后,就关掉,再开电风扇。这样就能省50%的电;在冰箱内放食物时,食物的量以占容积的80%为宜,用塑料盒盛水制冰后放入冷藏室,这样能延长停机时间、减少开机时间,更节电;用微波炉加工食品时,最好在食品上加层无毒塑料膜或盖上盖子,这样被加工食品水分不易蒸发,食品味道好又省电;开车时尽量避免突然变速,选择合适档位,避免低档跑高速,定期更换机油,轮胎气压要适当和少开空调。短时间不用电脑时,启用"睡眠"模式,能耗可下降到50%以下;关掉不用的程序和音箱、打印机等设备;少让硬盘、软盘、光盘同时工作;适当降低显示器的亮度。

平时我们勤动手动脑,也可以实现"低碳"。一般家庭都有很多废弃的盒子,如肥皂盒、牙膏盒、奶盒等,其实稍加裁剪,就可以轻松将它们废物利用,比如制作成储物盒,可以在里面放茶叶包、化妆品之类的物品;还可以利用方便面盒、罐头瓶、酸奶瓶制作一盏漂亮的台灯;喝过的茶叶渣,晒干做一个茶叶枕头,既舒适还能改善睡眠……

另外,将普通灯泡换成节能灯,尽量步行、骑自行车或乘公交车出行,随手拔下电器插头……你看这些看似不经意的小事,都是在为"减碳"做贡献。

我们应该从节电、节水、节碳、节油、节气这种小事做起,低碳生活是我们要建立的绿色生活方式,只要我们去行动,就可以接近低碳生活,达到低碳生活的标准。"总之,低碳生活,既是保护环境,也是拯救自己。"

那么对于我们小学生来说,还有其它降耗低碳的好方法吗?来看看我的建议吧。

纸张的双面使用,节约用纸;不用一次性的筷子和一次性的饭盒;不用一次性的塑料袋;减少粮食的浪费;随手关灯,随手关好水龙头。使用手帕,少用纸巾……

二氧化碳排放方式范文篇2

本刊开设“寻找中国创新榜样”栏目以来,收到政商学各界读者的热烈反馈。在读者的启发建议下,我们决定再开一个姊妹栏目“发现中国原创技术”。

中国需要原创技术。它是中国从“制造”走向“创造”的必由之路;是调结构、转方式的重要动力源。原创技术是企业竞争的核心,也是国家竞争力的体现。30多年的实践证明,别人的核心技术靠市场换不来;付出重金也买不来。高大上的技术还得靠我们自己“原创”。

其实,中国并不缺原创技术,缺的是发现、重视和扶持。有许多好的原创技术,或被视而不见,或被束之高阁,或无奈贱卖国外,披上洋装后成为“引进技术”在中国大行其道。

我们希望通过这个栏目,持续发现中国的原创技术,使我们的自主创新成果,广为人知、受到激励,并最终获得推广应用。

请把您的发现及时告诉我们。栏目热线:010-65363420Email:栏目编辑:张伟

“速生草本植物碳转化刈割封存技术,可促进生物质飞跃大增产,获得足量的生物质,将其制备成固体、气体、液体形态的能源产品,替代化石能源,实现大气温室气体负增长,可降碳除霾,解决相关环境问题。”中国的一位化学家雷学军自信地对《中国经济周刊》介绍说。

雷学军研究员,湖南省精细化工研究所所长、全国劳动模范、国务院政府特殊津贴专家。他发明的“速生草碳转化刈割封存技术”,即利用速生草的光合作用,将大气中的二氧化碳转化成固态的有机碳化合物,从而减少大气中的二氧化碳含量,在全球二氧化碳的回收方面实现了革命性突破。

与此同时,来自环保、科技等相关机构和领域的多位专家,在对雷学军的专利技术和科研基地进行调研和考察后认为,此技术的另一革命性意义在于,将有限的森林碳汇变成无限的植物碳汇,改虚拟的“指标”碳排放权交易为可计量的实物碳产品交易。

“如果此项技术在实践应用中,确能达到减碳、固碳、除霾效果,并能推广形成产业规模,那么其现实意义不可忽视。”一位权威政策研究专家分析说,“既解决中国节能减排和除霾的技术难题,又可以缓解中国节能减排的巨大压力,改善中国在世界上的环保负面形象。”

雷学军对自己技术的自信及其潜在意义,远超过专家的预估和评价。“我们经过科学测算,如果此技术得到规模化推广应用,那么,中国只需要用50年时间,种植和加工4369亿吨碳产品,全球二氧化碳的浓度就可以降低恢复到工业革命前的水平,实现人类碳排放与碳回收的自然平衡状态,二氧化碳的减排就会成为历史。”

令雷学军没想到的是,他的专利技术得到了一位地方官员的高度认可,并自愿为他做试验试点:位列中国百强县第7位的湖南省长沙县,确定2014年创建全国首个“零碳县”试点发展模式,县委书记杨懿文亲任试点领导小组组长。

杨懿文说,长沙县之所以自愿率先试点,他们的考虑是,长沙县是工业大县,但同时也一直高度重视生态发展,“如果借助此项中国原创发明技术,长沙县能在全国率先实现‘零碳县’目标,那么全国2856个县也可以通过复制实现零碳。中国的节能减排目标也许可以由此实现。”

碳回收的革命性技术——依靠速生草吸收工业革命带来的二氧化碳增量

全人类都在努力,但也都不明白:为何没人能将工业革命带来的历史遗留问题——二氧化碳排放增量或存量给解决掉?

对于普通人来说,二氧化碳的回收是个知识盲点和技术难题;但对于化学家雷学军来说,难题似乎只是一个简单的化学原理:二氧化碳的排放和回收,原本是自然界自我完成的一个循环平衡,即地质运动、人类和动物等生存排放,海洋、森林和草原等植物吸收;但是,从工业革命开始,化石能源的使用人为地将碳排放一下子陡增。根据联合国政府间气候变化专门委员会统计公布的数据,工业革命前,即1750年,大气中的二氧化碳总质量约为1.462万亿吨,而工业革命以来将这一数字骤然扩大为2.1万亿吨,增加了6380亿吨。也就是说,目前,人类节能减排需要从大气中回收的二氧化碳,就是这6380亿吨。

如何回收和减少呢?雷学军介绍说,从科学原理看,二氧化碳的回收途径很简单,通过自然界中的植物吸收。他算了一笔账:现在的世界森林总面积约40亿公顷,储存的碳储总量为2890亿吨。换句话说,现有的世界森林面积能够形成的森林碳储总量只有2890亿吨。城市化和工业化使森林面积不断减少,因此,对全球节能减排目标中需要减少的6380亿吨二氧化碳来说,森林已是尽力了。

“现有的森林面积是经过6500万年才形成的,地球陆地面积有限,因此用扩大森林面积来减碳的思路根本行不通。”雷学军断然否定。

除此之外,他还对寄希望于秸秆等生物质能源来实现减排目标的美好愿望,用数据泼了一盆冷水:现在世界能源年使用总量约160亿吨标煤,相当于320亿吨碳产品,而世界秸秆年总产量43.8亿吨,仅占世界总能耗的13%。因此,秸秆不能替代化石能源,不能实现大气二氧化碳负增长。

“既然依靠森林自然回收和依靠减少新排放,都解决不了化石能源带来的二氧化碳存量问题,我们就必须转换思路,回到治本这一起点。”雷学军说。

何为治本?

雷学军将复杂的科学难题翻译为通俗语言:种植既速生、体积又高大的草本植物(代替生长缓慢的森林),通过光合作用吸收空气中的二氧化碳;然后再将速生草通过干燥和成型,减小体积、做成标准碳产品,最后封存在仓库中,从而达到固定空气中二氧化碳的作用,降低大气二氧化碳浓度。

何谓速生草本植物?

在雷学军的科研基地,第一次来参观的人都会被一种从未见过、比人还高的速生植物吓一跳:2~3米高、叶子宽大、种植密集,外形类似玉米和高粱,而且在湖南地区每年可以像割韭菜一样重复收割3到4次。更令人吃惊的是,他们的研究发现,以乔木普遍50年的生长周期计算,速生草由于一年可多次收割,同样的种植面积,50年在一个单位地块反复收割种植的速生草加起来,叶面总面积是乔木的260~370倍;叶绿体总数量是乔木的250~350倍;生物质总量和捕碳总量是乔木的50~80倍。

这些速生高大的草本植物被收割后,便被送到科研基地的“固碳加工流水线”:鲜草通过干燥、粉碎、压缩,最后成为“压缩饼干式的标准碳产品”。

据介绍,这些速生草的选育、栽培、加工、储碳、封存,可实现大气二氧化碳负增长,并能代替化石能源、化学肥料、化学农药,制备精细化工产品,修复生态环境等进行综合利用,雷学军已经申请获得了29项发明专利。

在科研基地,记者看到了整齐封存的标准碳产品。但它们真的将二氧化碳吸收并储存了吗?

面对记者的疑问,雷学军提供的“南方林业生态应用技术国家实验室”为其所做的技术检验报告显示:有机碳块中有机碳含量达49.2%,封存1吨有机碳块相当于封存1.46吨二氧化碳。

为了帮助记者更通俗地理解标准碳产品的碳储量与现实中二氧化碳排放的关系,雷学军又算了一笔账:钢铁企业一直是碳排放“大户”,例如宝钢,按其1500万吨产量计算,二氧化碳排放量约为3000万吨;为固化这些二氧化碳,就需要2054.8万吨碳产品。

从一个企业扩展到全球,数字又如何?雷学军测算,将全球大气中二氧化碳浓度从当前的0.0391%降低到工业革命前的0.0275%,需封存4369亿吨标准碳产品;若每年封存90亿~110亿吨,需种植土地、湿地和水面面积约10000万公顷,“我国的土地、海洋资源完全能够满足”,雷学军说,这一过程只需50年时间,就能使大气中二氧化碳浓度降低至工业革命前的水平,让空气污染、温室效应和雾霾问题得到根本性的解决。

湖南启动中国首个“零碳县”试点

速生草固碳的技术理论如何从实验室向实践推广应用?

今年1月21日,中共长沙县委下发了关于成立“零碳县”发展模式试点工作领导小组的通知,由县委书记杨懿文亲自担任领导小组组长。

长沙县,中国百强县排名第7,有令人羡慕的经济发展速度和经济效益。“只有经济发展快还远远不够,还必须走低碳经济道路,将财政资金用好,用于生态保护。”杨懿文对记者说。

所谓“零碳县”,就是将全县生产生活产生的二氧化碳排放用速生草固碳封存,实现全县二氧化碳零排放。

据了解,工业排放是长沙县空气污染的主要来源。县规模以上企业达到400余家,其中销售额过亿的企业超过100家,2014年长沙县将对规模以上工业企业进行二氧化碳排放量测定,进而完成全县的碳排放普查工作。

按照《长沙县“零碳县”发展模式试点实施方案》,今年全县将封存标准碳产品10万吨,实现2000亩种植基地、20亩加工基地与50亩仓储基地;2015年,封存30万吨;2016年,封存60万吨,并完成县委提出的100万吨级标准碳仓库的建设目标。杨懿文表示,除标准碳仓库外,碳产品还可以存放在附近的废旧矿坑里等等,并不会占用工业和农业用地。

10万吨、30万吨、60万吨,大规模固封二氧化碳,钱从何来?

杨懿文表示,刚开始试点时,县财政会对项目给予财政支持。2013年长沙县财政总收入达到180亿元,同比增长19.7%,预计2014年财政收入超过200亿没有问题,县政府将从中拿出约1000万对项目进行补贴。但最终,二氧化碳固封项目必须实现商业化运作,也只有这样,才能保证项目的可持续性。

按规划,从2015年开始,长沙县将在各领域确定试点企业3~5个,启动试点企业的碳排放权模拟交易系统。杨懿文介绍说,目前对于包括二氧化硫在内的4种污染物,长沙县对企业收取排污费用,未来县里或将适当减少这一部分排污费的收取,将其置换为国际通行的“碳税”,所谓“碳税”,就是多排放多交钱、少排放少交钱,按照二氧化碳排放量来收取,做到谁污染谁治理。

不过,与以往税收不同的是,“碳税”拟将与标准碳产品绑定,即排放多少二氧化碳,就要购买相应数额的标准碳产品,目前的计划是,一吨标准碳产品430元。

这种“碳税”运作模式,不但能实现固碳项目的有效运转,提供持续资金,也能自动淘汰一批高污染、高能耗的企业,倒逼企业创新减排。

尽管试点已正式启动和实施,但杨懿文书记坦言,零碳县由于是全国首家试点,推行中也遇到了不少困难,例如速生草种植过程中滩涂地的确权、如何积极动员农民种植速生草、调动企业的积极性,以及建立“碳税”的法律执行体系等等,“许多问题都必须在国家层面上才能得到解决,因此固碳项目若能在全国范围内铺开,势必对项目的局部试点起到巨大的推动作用。”杨懿文说。

日前,雷学军领导的项目组已在长沙县首次固封10吨二氧化碳,形成6.8吨碳产品,完成了二氧化碳的首次固封。按照现有数据计算,2011年长沙县二氧化碳排放量约为164万吨。减去县域境内森林、水体等碳汇约155.8万吨,碳源减碳汇后,仅需固化8.2万吨标准碳产品,堆放成10米高的碳堆占地10.3亩,就能达到二氧化碳“排”、“固”平衡,实现零排放。

为中国政府变革碳汇交易争取主动权

就在长沙县积极试点“零碳县”,建立碳排放权模拟交易系统的同时,2013年11月11日,在华沙召开的2013年度联合国气候变化大会谈判持续了40多个小时,其中,“碳汇交易”成为各方广泛关注的热词。

所谓碳汇交易,是基于《联合国气候变化框架公约》及《京都议定书》对各国分配二氧化碳排放指标的规定,创设出来的一种虚拟交易。发展工业而制造了大量温室气体的发达国家,在无法通过技术革新降低温室气体排放量达到《联合国气候变化框架公约》及《京都议定书》对该国家规定的碳排放标准时,可以采用在发展中国家投资造林的方式,增加碳汇,抵消碳排放,从而降低发达国家本身总的碳排量的目标。

简单地说,所谓碳汇交易,就是发达国家出钱向发展中国家购买碳排放指标,一些国家通过减少排放或者吸收二氧化碳,就可以将多余的碳排放指标转卖给需要的国家,以抵消这些国家的减排任务。

“中国如果通过速生草固碳技术大量固定二氧化碳,就可以将相应的碳排放指标转卖给其他国家,不但能产生巨大的经济效益,还能从根本上逆转我国在气候变化谈判中所遭遇的困境,变被动为主动,履行减排承诺,国际社会对中国日益增加碳排放的指责,为中国积极制定国际规则争取主动权。”雷学军说。

相比目前二氧化碳买卖指标的虚拟交易,速生草固碳交割的是标准碳产品,这一“实体交割”模式,或将在诸多方面改革现有的碳汇交易方式。首先,标准碳产品的固碳量是可准确计量的,将标准碳产品制成体积、重量相同的标准碳,可实现碳汇交易的准确计价,填补了国际碳交易产品不能准确计量的空白;其次,标准碳产品相比“森林碳汇”固碳效率更高,且不用占用大量土地,成本大大降低了。

从虚拟交易到实体交易,从森林碳汇到植物碳汇,“打开了碳汇交易的新思路。”杨懿文书记介绍说,未来长沙县将加大对项目的扶持力度,争取制定出第一个速生草固碳封存技术标准,创设标准封存仓库和标准碳交易制度,加快推进项目建设。

对于未来标准碳交易制度的推广,雷学军建议创立《国际植物碳产品封存与碳排放权交易新公约》,将标准碳交易推向国际。此外,据了解,在中国国内,有关国家层面碳排放控制、碳交易的顶层设计也正在研究之中。未来标准碳交易制度,或将在更大范围内得到普及推广。

记者在科研基地采访时,遇到了来此调研的相关政府部门的几位领导和专家,其中一位专家评价说,当年苹果砸出了英国物理学家的“牛顿定律”,刈割韭菜则启迪了中国化学家雷学军;“种植速生草本植物实现大气二氧化碳负增长”这一朴实的科学思路,蕴藏了革命性技术的大智慧,希望这一中国自主创新的技术,经过进一步的科学探索和实践应用,真正为解决大气污染问题找到一条新出路。

专家点评

科技部调研室主任胥和平:

速生草固碳技术为固碳、碳汇开拓新思路

寻找适宜的固碳技术,真正实现碳收集和封存,以减少大气中存在的碳存量,对解决全球气候变化非常关键。人们过去的努力,一方面是通过专用技术收集人类生产生活的碳排放(如重大动力装备的碳排放),但目前仍然是技术成本高、数量规模小;另一方面,则是希望通过森林吸碳、固碳,但森林固碳周期长且是阶段性的,最终仍形成碳排放,未必真正形成碳封存,因而仍没有解决碳存量的减少问题。

通过速生植物固碳,为我们解决碳排放问题打开了新思路。

这种技术利用植物的自然光合作用转化二氧化碳,能将大量的二氧化碳固封在植物体内,并通过速生植物加工实现碳封存。大面积种植一年多次刈割的速生草,如种植皇竹草、芦苇等速生草,可以充分利用劣质土地,像河滩、海岸等资源,实现大规模的碳收集、封存,可以大大降低碳收集、封存成本,有效降低大气中二氧化碳浓度,为高效解决碳排放、碳捕捉问题找到了一条重要途径,对推动从高碳经济向低碳经济转型具有开创性的意义。

近年来,由于我国二氧化碳排放量的不断上升,受到国际社会不少指责。对此我们要客观地、历史地看问题,要积极应对措施。虽然我们历史排放量少、人均排放量少、转移排放量大(西方高碳产业转移到中国),但近年来我国人均排放量和排放总量迅速上升的形态,确实对我们提出了严峻挑战。大规模的碳排放,已经严重影响经济和生态环境的可持续发展,已经成为关系到中国经济社会转型发展的重大问题。在解决问题的思路上,我们不仅要控制高碳产业的发展规模和速度,同时更要致力于碳收集和封存,以真正实现大气碳含量的降低。速生草固碳技术及其引发的固碳产业发展(碳收集、封存、使用、服务等),以及碳汇交易方式变革(将森林碳汇变为植物碳汇),对中国探索新的发展模式,在国际谈判上争取主动,具有重要的意义。

驾驭高碳是赢家

湖南省精细化工研究所所长、国务院政府特殊津贴专家雷学军

低碳经济还只是个空洞概念

近年来,很多人在盲目推崇低碳经济。但低碳经济不仅需要强大的技术基础,还会遏制经济发展速度。低碳经济不适合正处于发展阶段的中国。

所谓“低碳经济”是以低能耗、低排放、低污染为基础的经济模式。最早出现在英国能源白皮书《我们能源的未来》。在此背景下,“碳足迹”、“低碳经济”、“低碳技术”、“低碳发展”、“低碳生活”、“低碳社会”、“低碳城市”、“低碳世界”等一系列新概念、新政策应运而生。同时,碳政治、碳课税、碳产品、碳汇林、碳商人等统统被倒进一个锅里,炒出了一个个让人迷糊的碳概念。

其实,大家都明白,在没有找到实用、经济、安全和充足的新型能源替代化石能源之前,低碳经济只能是一个空洞的概念。对于中国这样的发展中国家来说,如果盲目遵从西方发达国家倡导的低碳经济模式,不仅会遏制经济发展速度、丧失发展权利和发展机遇,还会在碳交易的国际竞争和国际谈判中丧失主动性和主动权。

中国短期内难以摆脱高碳经济

首先,中国正在加快推进工业化、城市化和现代化建设,正处在能源需求和能源消费的快速增长阶段,碳排放总量仍会不断增加,短期内碳排放总量有可能位列世界第一。在现有能源结构下,要想有效地降低碳排放总量,唯一的办法就是停止经济发展,这显然是不可能的。因此,中国正经历“高碳”特征突出的“发展排放”。

其次,富煤、少气、缺油的资源条件,决定了中国能源结构以煤为主,低碳能源资源的选择有限。电力中,水电占比只有20%左右,火电占比达77%以上,“高碳”占绝对比例。

第三,我国经济的主体是第二产业,这决定了能源消费的主要部门是工业,而工业生产技术水平落后,决定了我国经济的“高碳”特征。例如,工业能源消耗占能源消耗总量高达约70%,特别是采掘、钢铁、建材、水泥、电力等高耗能工业行业的能源消耗量又占了能源总消耗量的约60%。

第四,粗放的工业技术是降低碳排放量的瓶颈。我国整体科技水平落后,技术研发能力有限。尽管《联合国气候变化框架公约》规定,发达国家有义务向发展中国家提供技术转让,但实际情况与之相差甚远,我国发展低碳经济所需高端技术,主要依靠商业渠道高价引进。

第五,商品出口和化石能源进口带来的碳排放转移。我国是一个商品出口大国,为外国人生产提供了大量的商品,丰富了他国的物质生活,却把生产排碳的烟囱架在了中国大地上。

但是,已伴随工业革命完成经济发展的发达国家,现在却大力提倡低碳经济模式,主导国际碳交易规则,设置碳关税等壁垒,借低碳经济遏制中国发展。

谁驾驭了高碳,谁就是赢家

低碳经济是一种积极的节约行为,但也是一种消极的发展概念,它必然会产生制约经济社会发展的负面效应。因此,必须转变思路,寻找解决“高碳”出路。

目前,世界碳封存方法主要是工业封存和森林碳汇两种。工业碳捕集和封存技术(CCS)的弊端是投资大、能耗高、成本高、存储有泄漏风险等;森林碳汇则存在种植面积有限和残枝落叶腐烂等二次排放问题。

碳捕集和碳封存,难道真的就是人类无法解决的世纪难题吗?

其实,从化学角度看,碳排放和碳捕集是一个极其简单的自然过程:生物质的使用和燃烧,向大气中释放CO2,再利用植物通过光合作用吸收大气圈中的CO2转化成生物质。再使用,再获得,周而复始地循环,谓之循环经济。

基于这一思路,我发明了用速生草本植物捕碳、储碳的专利技术,这是中国人在全球高碳领域的技术突破。速生草本植物制备的碳产品是目前世界上唯一可准确计量的碳交易产品,可改变现有的国际碳汇交易标准,引导国际碳排放权交易市场新秩序的建立。同时,我国应迅速建立科学的碳税制度,用碳税支持新技术实施,应对和破解发达国家设立碳关税遏制我国对外贸易壁垒。

二氧化碳排放方式范文篇3

一、碳税促进节能减排的原理分析

温室气体排放的大量增加,导致全球性气候的变化,并且这一问题已经成为国际社会普遍关注的热点问题。而二氧化碳是引起全球气候变化重要的温室气体,据调查研究显示,引起气候变化的气体中有至少60%是二氧化碳。因此当今控制温室气体的主要措施是减少二氧化碳的排放。

碳税则是以减少二氧化碳的排放为目,从而对化石燃料(如煤炭、天然气、柴油和汽油等),按照其碳含量或碳排放量征收的一种税。英国经济学家庇古曾提出,应该对造成外部效应的企业增收调节环境污染行为的庇古税”。碳税是庇古税”的一种,即是政府通过征税的方式使碳排放造成的全球变暖的外部性效应内部化,使得排放二氧化碳的成本转化到产品的价格上去。征收碳税对化石燃料供求的影响可以用图1表示:

在图1中,在未征收碳税的情况下的社会化石燃料的供给曲线为S1,需求曲线为D,供给曲线与需求曲线相交与E1,此时社会中化石燃料的需求量为Q1,价格为P1。当对于化石燃料征收碳税时,使其外部边际成本由税收的方式支付。经济主体需要考虑这部分的成本,社会中的均衡价格发生变化,价格由P1上升到P2。因而供求量由Q1减少为Q2。供给曲线S1向右移动至S2,均衡点发生变化,由E1移动至E2位置。

从理论上来讲对化石燃料按照其含碳量征收碳税,则会使得燃料的使用成本上升,而使用成本的上升会在一定程度上减少化石燃料的使用及促进资源的节约,削弱化石燃料的市场竞争力,同时促进清洁能源的研发及推广,使二氧化碳污染减少到帕累托最优水平。碳税通过减少化石燃料使用,从而减少二氧化碳的排放量,同时促进新能源推广,提高能源利用率,促进经济的可持续发展。

二、国外征收碳税的做法与经验

(一)国外征收碳税的基本情况

1、多国开征碳税且根据国情设计不同的税率

欧洲国家征收碳税的实践起步较早,芬兰是最早对二氧化碳排放征税的国家,于1990年开始征收碳税。此后,瑞典、挪威、荷兰、丹麦、斯洛文尼亚、意大利、德国、英国等国家开始先后征收碳税。迄今为止欧盟27国已经全部开始开征环境税。并且碳税的征收对于二氧化碳的减排起到了一定的作用。

各国征收碳税根据各自实际国情实行不同的税率。例如1990年芬兰实行碳税时,税率为1.62美元/吨二氧化碳;1991年瑞典对私人家庭和工业企业征收碳税的税率为250瑞典克朗/吨二氧化碳;而1992年丹麦征收碳税时税率为100丹麦克朗/吨二氧化碳等。并且根据之后国情及社会经济的发展,逐步提升税率,已达到既定的政策目标,例如芬兰1995年碳税税率调整至38.3芬兰马克/吨二氧化碳;1995年瑞典碳税普通税率为340瑞典克朗/吨二氧化碳,而工业部门税率为83瑞典克朗/吨二氧化碳。

2、各国设定多种减免税条款

碳税的征收,可以减少二氧化碳的排放量,但是对于企业征收碳税会在一定程度上削弱企业或者行业的竞争力,不利于国家综合国力的增强,同时也会增加低收入家庭的负担,不利于社会公平分配。

所以,各国在征收碳税的同时,设定了一系列的减免税措施,以减少对企业的不利影响,补助低收入家庭,通过对工业企业节能项目补贴,促进企业技术革新及新能源的研发及推广。例如:丹麦缴纳增值税的企业可以享受50%的税收返还,而如果二氧化碳的净税负比较重还可以享受进一步的税收优惠,电力部门给予免税优惠;荷兰,碳税的征收按能源税/碳税各占50%征收,对于能源密集型部门可以豁免能源税,但是碳税不可以豁免。并且该国开征的能源管理税,该项税种,大型能源消费者只要通过计划减排协议自愿降低二氧化碳的排放就可以缴纳很少的税款;瑞典,首先对工业部门和私人家庭实现差异税率,并且工业企业也只需缴纳50%的税款,对于能源密集型产业还有进一步的税收减免政策。

3、碳税税款的用途及对GDP贡献率

各国收取的碳税税款的用途主要有以下几个方面:一是用于研发节能新技术,如英国;二是纳入国家的一般预算收入,如芬兰、荷兰;三是投入养老基金,如德国;四是退还给工业企业,用以补贴企业节能项目,如丹麦;五是补贴低收入家庭,减少税收对低收入家庭的影响。

主要征收碳税国家的环境税收入占GDP比重如图2所示:

(二)国外开征碳税的特点总结

1、税率具有渐进性特点且实行差异税率

国外主要征收碳税国家的碳税税率,主要以低税率开始征收,在以后年度,逐步提高税率。有利于缓冲碳税征收对于企业的不利影响,也有利于逐步深入转变人们的观念,促进节能减排。例如:芬兰1990年实行碳税时以含碳量为计税依据,当时设定的税率为1.62美元/吨二氧化碳;1994年调高税率;1995年调整至38.3芬兰马克/吨二氧化碳;2003年再度升高至26.15美元/吨二氧化碳。丹麦1992年开始对家庭和企业征收碳税,税率为100丹麦克朗/吨二氧化碳;1996年,税率不变,税基扩大到供暖能源;1999年,税率再提高了15%-20%。

对于税率实行有差异的征收,一是对不同纳税对象使用不同的税率,其目的主要是在促进节能减排的同时尽量减少对企业的竞争力的削弱,提高国际竞争力。例如:瑞典在1991年开始征收碳税时对工业部门和私人家庭征税税率设定为250瑞典克朗/吨二氧化碳,但工业企业只需按照50%来缴纳税款;而后,1993年工业部门税率降为80瑞典克朗/吨二氧化碳,并且对能源密集型产业还有进一步的税收优惠政策,但是私人家庭税率提升为320瑞典克朗/吨二氧化碳;1995年普通税率为340瑞典克朗/吨二氧化碳,而工业部门税率为83瑞典克朗/吨二氧化碳;2002年税率进一步提升,但对于工业部门的税收减免度从50%提升到70%。二是对不同的应税品实行不同的征收税率,这种做法具有一定的政策导向性。例如:挪威1991年开始征收碳税其征收范围为矿物油、天然气、汽油。之后1992年煤和焦炭也纳入了征收范围。并且根据化石燃料的含碳量不同,征收标准也随之改变。资料显示,1995年,汽油、柴油的征税标准分别为0.83挪威克朗/升和0.415挪威克朗/升。2005年,对石油、轻油、重油征收碳税的标准分别为41欧元/吨二氧化碳、24欧元/吨二氧化碳和21欧元/吨二氧化碳。

2、征税对象以下游”征收为主

主要征收碳税的国家的征税对象各不相同,如:丹麦的征税范围为汽油、天然气、生物燃料以外的二氧化碳排放,征税对象为家庭和企业;荷兰征税范围为燃油、柴油、天然气、液化气石油、电力等,征税对象主要为家庭小型能源消费者;瑞典对所有的燃料油征税,征税对象主要为进口者、生产者和储存者,虽然对私人家庭和工业部门都征收碳税但是税率有着明显的区别。

虽然各个国家选择征税对象不同,有的在上游”征税,有的在下游”征税。在上游”征税,虽然遵守了污染者付费”的原则,可以及时的向生产者传导信号,促进其改变生产方式,但是不利于将价格信号传导给消费者,不利于在人们心中深入节能减排的思想。在下游”征税,在一定程度上可以使价格信号更便捷的传导给消费者,但是会在一定程度上阻碍工业出口的发展。

3、综合配套措施全面

各个国家在开征碳税的同时,实施多种综合配套措施,来减少碳税开征对于企业及行业竞争力的不利影响及对于国家综合国力的削弱。主要措施有设置各种税收优惠政策,对高耗能企业在一定程度上进行补贴,对于企业购置节能设备或者进行节能研究提供资金支持,对于低收入家庭进行补贴,用税收收入来投入养老保险金等,以此减少征收碳税对于经济的不利影响。

(三)国外开征碳税对二氧化碳排放量的积极影响

通过征收碳税,在长久的趋势上有利于减少二氧化碳的排放量,并且企业节能减排技术的研究和革新。数据显示,德国截至2002年底,二氧化碳减排量达700万吨以上。根据1997年对丹麦与能源使用有关的税的实施效果进行的评估显示。如果不征这类税的话,企业将多耗费10%的能源,并且碳税的征收,对于能源替代性也有一定的影响,从1980到2002年间,丹麦能源结构发生了变化,煤、焦炭和油的消耗比重降低,与此同时,天然气和可再生能源的使用增加。由于碳税的征收,1987-1994年间,瑞典的二氧化碳排放减少了6-8公吨。

由此可见,碳税是一种有效的可以促进二氧化碳减排的政策手段,碳税的征收,不仅可以促进二氧化碳排放量的减少,而且可以在一定程度上促进企业节能技术的革新,并且对新能源的研究与推广,经济的可持续发展有促进作用。

三、我国推行碳税政策的必要性分析

(一)开征碳税是我国两型社会建设的需要

我国经济迅速发展,二氧化碳排放量也迅猛的增加。据财政部财政科学研究所碳税课题组报告指出,1994年我国CO2排放量为30.7亿吨,2004年增加到50.7亿吨左右,人均二氧化碳排放量为3.65吨,我国温室气体排放量有可能在未来二三十年内超过美国成为世界第一排放大国。并且由温室气体引起的气候变化已经对我国自然生态系统和经济社会产生了一系列影响。开征碳税,有利于减少化石燃料的使用量,促进节能减排,从而减少二氧化碳的排放,有利于建设两型社会。

(二)开征碳税是转变我国经济发展方式的需要

对化石燃料开征碳税,可以在一定程度上使化石燃料的价格上涨,从而导致其消费量下降,二氧化碳排放量减少。化石燃料价格上涨会致使高耗能企业成本增加,促使高耗能企业革新生产技术,促进节能减排。同时,碳税的增加,有利于企业探索节能减排的新路径,促进新能源、新技术的推广和应用,这会促进我国经济产业结构调整,资源的优化配置,使我国的经济发展由粗放型向集约型发展。

(三)开征碳税是应对国际碳关税等绿色壁垒的需要

美国国众议院以微弱的优势通过《美国能源安全法案》(亦称气候法案),该法案规定,从2022年起美国将对包括中国在内的未实施碳减排限额的国家产品征收惩罚性关税。碳关税”违反了《联合国气候变化框架公约》中确定的发达国家和发展中国家在气候变化领域共同但有区别的责任”。

如果我国先开征碳税,那么双重征税则违反WTO协议。而我国征收碳税的税收收入可以用来促进企业节能减排的发展、补贴低收入家庭。并且可以应对国际碳关税等绿色壁垒。

(四)开征碳税是树立负责任大国的形象的需要

作为发展中国家,虽然我国与发展中国家在气候变化领域共同但有区别责任”。但是作为温室气体排放大国,我国在国际上减排的压力越来越大。我国一直积极采取措施和行动来应对气候变化。征收碳税有利于减少二氧化碳的排放,是我国采取积极行动应对气候变化的具体表现,有利于提升我国的国际形象。

四、对我国征收碳税的启示

全国人大环资委有关负责人表示,目前征收碳税的可能性比较大。而近期,国家发改委和财政部有关课题组经过调研,表示2012年前后是我国推出碳税比较合适的时间,这表明,我国政府将在不远的将来开征碳税。那么,在我国开征碳税时,要根据我国的国情,结合国际经验,应注意考虑以下方面:

(一)应考虑税率设计的循序渐进性

在我国设计碳税征收税率时,应以低税率开始征收,对于不同的征收对象征收差异税率。根据不同地区,不同行业的实际情况有区别的设计税率。这样可以在减少二氧化碳排放量的同时,在一定程度上减少碳税征收对于企业和行业竞争力的减弱。同时要考虑到碳税引入的时序性,对于我国的实际情况来说,应该在完善和改革我国的能源税体系中,逐步引入碳税。

(二)应注意完善减免税机制

碳税的征收,在一定时期,对于企业的竞争力,低收入家庭的税收负担,以及一国的国际竞争力都可能有不利的影响。所以,在碳税条款设计时,要充分考虑到企业、行业竞争性及社会公平分配等问题,完善的设计减免税机制,以减少征收碳税对齐的不利影响。例如使用对符合节能减排标准的低碳产业进行减免税,对于企业购置或研发节能减排方面的设备予以加计扣除增值税等税收优惠政策。

(三)应注意保持税收中性

从国外碳税征收的实践可以看出,在碳税征收时,通过降低养老保险等其他税种的负担,来保持税收中性。我国在开征碳税时,要注意保持税收中性,对于征收的税款专款专用,可以通过将碳税收入用以减少扭曲性税收或者用于对能源密集型企业和低收入家庭进行补贴,同时扶持国内高新技术企业的发展,对其碳减排部分的技术开发做资金支持,并提供一定程度的税收优惠。

参考文献

[1]苏明,傅志华等.碳税的国际经验与借鉴[J].经济研究参考,2009(72).

[2]周剑,何建坤.北欧国家碳税政策的研究及启示[J].环境保护,2008(11B).

[3]汪曾涛.碳税征收的国际比较与经验借鉴[J].理论探索,2009(4).

[4]王淳.国外碳税政策体系及基本经验[J].宏观经济管理,2010(11).

[5]苏明,傅志华等.我国开征碳税问题研究[J].经济研究参考,2009(72).

[6]EEA.Totalrevenuesforenvironmentaltaxesincludetaxesontransport,energy,pollutionandresources.07-April-2011.

二氧化碳排放方式范文

2011年底,国务院了《“十二五”控制温室气体排放工作方案》(国发〔2011〕41号),提出了“探索建立碳排放交易市场”,“加快构建国家、地方、企业三级温室气体排放核算工作体系,实行重点企业直接报送温室气体排放和能源消费数据制度”等要求。有色金属冶炼及压延加工业是中国的能耗大户,涉及能源活动和工业生产过程等多类温室气体排放机理,因此必将成为温室气体排放报告及碳排放交易的重要参与行业。

在国家发展改革委的组织下,清华大学与中国有色金属工业协会合作,分两批开发了适用于不同有色金属子行业的企业温室气体排放核算方法与报告指南。其中,第一批开发的两个指南《中国电解铝生产企业温室气体排放核算方法与报告指南(试行)》和《中国镁冶炼企业温室气体排放核算方法与报告指南(试行)》,已于2013年10月由国家发展改革委印发,分别适用于铝冶炼(国民经济行业代码3216)和镁冶炼(国民经济行业代码3217),是我国有色金属行业中能耗和温室气体排放量最大的两个子行业;本文介绍的是第二批开发的《其他有色金属冶炼及压延加工业企业温室气体排放核算方法与报告指南(试行)》,于2015年7月由国家发展改革委印发,适用于除铝冶炼和镁冶炼之外的其它所有有色金属冶炼及压延加工企业(国民经济行业代码以32开头)。

上述三个指南的研究开发,全面覆盖了有色金属冶炼及压延加工业的温室气体排放核算与报告,是我国碳排放交易市场建设中的一项重要的基础性工作,对合理分配企业的碳排放权、保证市场的公平性具有十分重要的意义。

二、方法学的技术概要

(一)核算边界

本方法的温室气体排放核算边界,是中国除铝冶炼和镁冶炼之外的其他有色金属冶炼和压延加工业的独立法人企业或视同法人单位。

(二)排放源

企业核算边界内的关键温室气体排放源包括:

1、燃料燃烧排放:煤炭、燃气、柴油等燃料在各种类型的固定或移动燃烧设备(如锅炉、窑炉、内燃机等)中与氧气充分燃烧产生的二氧化碳排放。

2、能源作为原材料用途的排放:主要是冶金还原剂消耗所导致的二氧化碳排放。常用的冶金还原剂包括焦炭、蓝炭、无烟煤、天然气等。

3、过程排放:指工业生产活动中,除能源的使用以外所发生的物理变化或化学反应,导致温室气体排放。其他有色金属冶炼和压延加工业企业所涉及的过程排放是企业消耗的各种碳酸盐以及草酸发生分解反应导致的二氧化碳排放。

4、净购入电力和热力产生的排放:指企业净购入电力和净购入热力所隐含的燃料燃烧产生的温室气体排放。此类排放实际发生在其他企业所控制的发电和供热设施上。

(三)量化计算方法

企业的温室气体排放量是其各项排放源的排放量之和,按公式(1)计算。

EM=∑EMi(1)

式中:

EM―企业温室气体排放总量;

EMi―企业核算边界内某项排放源的温室气体排放量;

i―排放源类型,包括燃料燃烧、能源的原材料用途、过程排放、外购电力和外购热力等。

按照以下内容核算各类排放源的温室气体排放量。

1、燃料燃烧排放

燃料燃烧导致的二氧化碳排放量是企业核算和报告年度内各种燃料燃烧产生的二氧化碳排放量的加总,按公式(2)计算:

E燃烧―核算和报告年度内化石燃料燃烧产生的二氧化碳排放量,单位为吨二氧化碳(tCO2);

ADi―核算和报告年度内第i种化石燃料的活动数据,单位为百万千焦(GJ);

EFi―第i种化石燃料的二氧化碳排放因子,单位为吨二氧化碳/百万千焦(tCO2/GJ);

i―化石燃料类型代号。

燃料燃烧的活动数据是核算和报告年度内各种燃料的消耗量与平均低位发热量的乘积,按公式(3)计算:

ADi―核算和报告年度内第i种化石燃料的活动数据,单位为百万千焦(GJ);

NCVi―核算和报告年度内第i种燃料的平均低位发热量,采用本指南附录二所提供的推荐值;对固体或液体燃料,单位为百万千焦/吨(GJ/t);对气体燃料,单位为百万千焦/万立方米(GJ/万Nm3);具备条件的企业可遵循《GB/T213煤的发热量测定方法》、《GB/T384石油产品热值测定法》、《GB/T22723天然气能量的测定》等相关指南,开展实测;

FCi―核算和报告年度内第i种燃料的净消耗量,采用企业计量数据,相关计量器具应符合《GB17167用能单位能源计量器具配备和管理通则》要求;对固体或液体燃料,单位为吨(t);对气体燃料,单位为万立方米(万Nm3)。

燃料燃烧的二氧化碳排放因子按公式(4)计算:

2、能源作为原材料用途的排放

能源作为原材料用途(冶金还原剂)的二氧化碳排放量按公式(5)计算。

E原材料为核算和报告年度内,能源作为原材料用途导致的二氧化碳排放量,单位为吨二氧化碳(tCO2);

EF还原剂为能源产品作为还原剂用途的二氧化碳排放因子,单位为吨二氧化碳/吨还原剂(tCO2/t还原剂),指南附录提供了不同能源品种作为还原剂的排放因子推荐值;

AD还原剂为活动水平,即核算和报告年度内能源产品作为还原剂的消耗量,采用企业计量数据,对固体或液体能源,单位为吨(t),对气体能源,单位为万立方米(万Nm3)。

3、过程排放

过程排放量是企业消耗的各种碳酸盐以及草酸发生分解反应导致的排放量之和,按公式(6)计算:

E过程=E草酸+∑E碳酸盐=AD草酸×EF草酸+∑(AD碳酸盐×EF碳酸盐)(6)

E过程为核算和报告年度内的过程排放量,单位为吨二氧化碳(tCO2);

E草酸为草酸分解所导致的过程排放量,单位为吨二氧化碳(tCO2);

E碳酸盐为某种碳酸盐分解所导致的过程排放量,单位为吨二氧化碳(tCO2);

AD草酸为核算和报告年度内的草酸消耗量,采用企业计量数据,单位为吨(t);

AD碳酸盐为核算和报告年度内某种碳酸盐的消耗量,采用企业计量数据,单位为吨(t);

EF碳酸盐为某种碳酸盐分解的二氧化碳排放因子,单位为吨二氧化碳/吨碳酸盐(tCO2/t碳酸盐),指南附录提供了不同碳酸盐品种的排放因子推荐值;

EF草酸为草酸分解的二氧化碳排放因子,单位为吨二氧化碳/吨草酸(tCO2/t草酸),按公式(7)计算。

EF草酸为草酸分解的二氧化碳排放因子,单位为吨二氧化碳/吨草酸(tCO2/t草酸);

0.349是二氧化碳与工业草酸的分子量之比;

PUR草酸是草酸的浓度(含量),采用供货方提供的标称值;如标称值不可得,则采用默认值99.6%。

4、净购入电力产生的排放

企业购入的电力消费所对应的电力生产环节二氧化碳排放量按公式(8)计算:

E电―购入的电力所对应的电力生产环节二氧化碳排放量,单位为吨二氧化碳(tCO2);

AD电―核算和报告年度内的净外购电量,单位为兆瓦时(MWh),是企业购买的总电量扣减企业外销的电量,活动数据以企业的电表记录的读数为准,也可采用供应商提供的电费发票或者结算单等结算凭证上的数据;

EF电―根据企业生产地及目前的东北、华北、华东、华中、西北、南方电网划分,选用国家主管部门最近年份公布的相应区域电网排放因子,单位为吨二氧化碳/兆瓦时(tCO2/MWh)。

5、净购入热力产生的排放

企业购入的热力消费所对应的热力生产环节二氧化碳排放量按公式(9)计算。

E热―购入的热力所对应的热力生产环节二氧化碳排放量,单位为吨二氧化碳(tCO2);

AD热―核算和报告年度内的净外购热力,单位为百万千焦(GJ),是企业购买的总热力扣减企业外销的热力,活动数据以企业的热力表记录的读数为准,也可采用供应商提供的热力费发票或者结算单等结算凭证上的数据;

EF热―年平均供热排放因子,单位为吨二氧化碳/百万千焦(tCO2/GJ),可取推荐值0.11tCO2/GJ,也可采用政府主管部门的官方数据。

三、关键问题及解决

(一)本行业内产品种类多(铜、铅、锌、镍、各种稀土等几十种),如何用一个指南覆盖住所有关键排放源

经企业调研和专家咨询,各产品生产工艺的差别体现在能源的原材料用途和工业生产过程排放源。国际通用的核算方法分为基于产品产出和基于原料投入两种。由于产品种类多,采用基于产品产出的方法容易产生漏算问题;但其他有色金属冶炼及压延加工业所使用的作为原材料用途的能源品种和碳酸盐原料品种比较统一,合计主要有7种,因此本指南采用基于原料投入的方法,全面覆盖了其他有色金属冶炼及压延加工业各种能源作为原材料用途的排放因子推荐值、工业生产过程各种碳酸盐消耗的排放因子推荐值,不会导致漏算问题。

(二)本指南所提供的碳酸盐消耗排放因子推荐值为何略低于政府间气候变化专门委员会(IPCC)和欧盟缺省值

IPCC和欧盟缺省值为碳酸盐原料纯度和分解率均为100%情况下的理论值;但经企业调研和专家咨询,了解到我国碳酸盐原料纯度和分解率达不到100%,企业生产记录数据在95―99%之间,因此本指南根据我国实际生产情况进行了修正。

二氧化碳排放方式范文1篇5

何为低碳生活

“低碳生活”(low-carbonlife),就是指生活作息时所耗用的能量要尽力减少,从而减低碳特别是二氧化碳的排放量,从而减少对大气的污染,减缓生态恶化。

联合国气候变化大会于2009年12月7日在丹麦首都哥本哈根揭幕,面对全球气候变暖的严峻挑战,本次会议异常“火热”。随着大会的召开,如何降低碳排放成为人们关注的热点话题。据调查,城市居民的日常生活对二氧化碳等温室气体排放“贡献”颇大。全面实现低碳生活将成为发展低碳经济、应对气候变化的重要对策。

温室效应及全球变暖的危害

之所以要倡导低碳生活,是因为过多的碳排放会使地球变暖,也就是我们常说的温室效应。人类生存的地球在宇宙中非常特殊,它有一个“被子”,即大气圈,里面有一定的二氧化碳、甲烷、氧化亚氮和水汽。如果没有这层被子,地球表面平均温度将是负18℃;有了这层被子,大气圈短波辐射的热量通过长波辐射反射出去的时候,就会使温室气体产生增温效应,使地表平均温度保持在正15℃左右,非常适合人类生存。

如果“被子”变厚,也就是温室气体的浓度增加(主要原因是人类向大气中排放过多二氧化碳等温室气体),就会导致全球变暖。而全球变暖的危害是巨大的:

炎热全球温度增长实际测量表明,全球总体温度的增长趋势十分明显。近些年来,气温在持续上升,热浪已经开始出现。科学家们认为,如果全球变暖问题没有得到处理,此类热浪将更为常见。2003年夏天,欧洲遭受了一股强大的热浪,35000人因此丧生。

冰川消融世界上几乎所有的冰川都在融化,其中有些冰川融化的速度较快如北极的北冰洋。北冰洋的融化给全球的气候环境带来了深远的影响。

洪水全球变暖还提高了降雨在每年降水量(包括雨、雪等)中所占的百分比,使得世界上许多地区会在春天和初夏发生洪灾。

物种锐减全球变暖打乱了不同物种间处于微妙平衡中的生态关系。世界上许多物种如今正受到气候变化的威胁,其中有一部分已经灭绝。

飓风近些年的研究表明,四级和五级飓风的数量较以往有了明显增多,因此科学家们普遍认为飓风日益强大的破坏力与全球变暖有关。另一项研究预测,全球变暖将使飓风的威力在著名的五级分级标准上平均再增强半个级别。美国国家海洋大气局总结了这些新的调查研究中普遍出现的一些因素,例如当水温上升时,风速及风暴的湿度都会增加。

干旱气候变暖同时还会导致土壤水分蒸发加剧,使土地干旱加重。随着二氧化碳含量的增加,美国科学家预测,如果不改变现状,在未来50年内,美国辽阔的种植区的土壤水分将流失达35%,其他种种恶果还未计算在内。无疑,干旱的土地将导致蔬菜水分减少、农作物减产、火灾次数增多。不仅如此,科学家们还警告,如果我们不及时采取措施控制导致全球变暖带来的污染,二氧化碳含量很快就会从2倍上升到4倍,这样土壤将流失达60%的水分。

此外,全球变暖还可能会导致疟疾、血吸虫病和登革热等传染病的蔓延。人类只拥有一个地球,全球气候变暖的威胁任何人都无法逃避。

碳排放如何计算

低碳生活首先源自碳足迹,它表示一个人或者一个团体的碳耗费量,是测量某个国家和地区的人口因每日消耗能源而产生的二氧化碳排放对环境影响的一种指标。人们日常生活中,照明、做饭、洗澡、上班、旅行等等,时时刻刻都在产生“碳足迹”。

无论是个人还是群体的碳足迹都可以分为第一碳足迹和第二碳足迹。第一碳足迹是因使用化学能源而直接排放的二氧化碳,比如一位经常坐飞机出行的人会有比较多的第一碳足迹,因为飞机飞行会消耗大量燃油,排出大量二氧化碳。第二碳足迹是因使用各种产品而间接排放的二氧化碳,比如消费一瓶普通的瓶装水,会因它在生产和运输过程中产生的碳排放而带来第二碳足迹。

所以,低碳生活就是人们在日常生活和工作中减低碳足迹的行为方式,即在生活和生产中少排放二氧化碳。例如,通过一个专门设计的“碳足迹计算器”来测算,您用了100度电,就等于排放了大约78.5千克二氧化碳;您自驾车消耗了100公升汽油,也就等于排放了270千克二氧化碳。碳足迹越大,说明您是高碳生活,对全球变暖要负的责任越大;碳足迹越小,说明您进入了低碳生活,对环境的保护做出的贡献也大。

温馨提示

碳足迹的计算方式(仅罗列部分项目):

家居用电的二氧化碳排放量(千克)=耗电量×0.785

小轿车的二氧化碳排放量(千克)=油耗公升数×2.7

使用天然气的二氧化碳排放量(千克)=天然气使用升数×0.19

使用自来水的二氧化碳排放量(千克)=自来水使用吨数×0.91

食用肉类的二氧化碳排放量(千克)=肉(千克)×1.24

乘坐飞机的二氧化碳排放量(千克):

短途旅行:200公里以内=公里数×0.275;

中途旅行:200~1000公里=55+0.105×(公里数-200);

长途旅行:1000公里以上=公里数×0.139。

注:目前中国人均碳足迹为每年3900千克;工业国家人均碳足迹为每年11000千克;全球人均碳足迹为每年4300千克;应对气候变化全球人均目标碳足迹为每年2000千克。

如何低碳生活

每个人在日常生活中,无论衣食住行,无时不在进行着碳排放。比如任何一件衣服,从它还是庄稼地里的棉花、亚麻开始,就会消耗无数资源。它要经过漂白、染色的工艺才能变成纱线、面料,经历成衣制作、物流和使用后,最终被焚烧、降解,每个环节都有碳排放发生。就更不用说那些在加工生产中会产生严重污染的皮革业和其他服饰类产品了。因此,每个人都要从日常生活中的点滴做起,无论衣、食、住、行都尽量做到低碳生活,为应对气候变化做出自己的贡献。

少买一件衣服每人每年少买一件不必要的衣服,相当于节约2.5千克标准煤,相应减排6.4千克二氧化碳。如果有2500人做到这一点,就可以节约6.25吨标准煤,减排二氧化碳16吨。

选择环保面料的衣服穿环保面料的衣服,减少碳排放,如果选择可持续面料(一种能够回收再利用的面料)制作的“低碳服装”则更好。

解下领带2005年夏天,日本商界白领纷纷脱下他们标志性的深蓝色职业装,换上了领子敞开的浅色衣服。这是日本政府为节约能源所作的努力。那年夏天,政府办公室的温度一直保持在28℃。整个夏天,日本因此减少排放二氧化碳7.9万吨。

尽量不用或少用洗衣机每次洗衣耗电约1.2度、烘干耗电约3.5度,这样每次开启洗衣机的间接碳排为2千克。

让衣服自然晾干研究表明,洗一件衣服消耗的能量其中60%是在清洗和烘干过程中释放的。需要注意的是,洗衣时用温水,而不要用热水;衣服洗净后,挂在晾衣绳上自然晾干,不要放进烘干机里烘干。这样,总共可以减少90%的二氧化碳排放量。

总之,减少购买服装的频率、选择环保面料、选购环保款式、减少洗涤次数、选择环保洗涤、手洗代替机洗、旧衣翻新或转赠他人、旧物利用、一衣多穿等都能为节能做出贡献。

购买季节性的水果和蔬菜很多温室里种植的反季节性蔬菜和水果都需要消耗大量的能源。

少食肉食特别是牛肉据联合国粮农组织研究表明,全球18%的温室气体源于肉类生产。每千克牛肉的生产过程排放36千克二氧化碳,是肉类中最高的!德国健康杂志报道,一份红肉(猪、牛、羊肉)的年碳排量如果为1485.1千克,同样一份白肉(鸡、鸭、鱼肉)的碳排量为1054.2千克,所以,许多德国人选择后者这个相对低碳的饮食。据德国生态经济研究所报道,肉食者年造成碳排放相当于车行4758公里;茹素则碳足迹减少至少一半。

不浪费粮食食品浪费也是增加碳排放的重要因素之一,少浪费0.5千克粮食(如水稻),可节能约0.18千克标准煤,相应减排二氧化碳0.47千克。如果全国平均每人每年都少浪费0.5千克粮食,可节能约23万吨标准煤,减排二氧化碳约61万吨。

买本地产品畜养和运送1千克牛肉、羊肉和猪肉所消耗的能源,相当于点亮一盏100瓦的灯泡将近3个星期。消费本地的水果、蔬菜、饮品远比外来的碳排量低。

选择小户型,不过度装修每减少1千克的钢材用量,可减排1.9千克二氧化碳;每少用0.1立方木材,可减排64.3千克二氧化碳。

合理调空室温冬季空调调低2度,夏季空调调高2度,每年可减排900千克的二氧化碳。

使用节能灯曾有专家测算,到2010年,预计全国2.7万亿度用电量中照明用电量将超过3000亿度,如果全国有1/3的白炽灯换成节能灯,每年能省下一个三峡工程的年发电量。

生活小知识

LED光源的特点

1.发光效率高白炽灯、卤钨灯光效为12~24流明/瓦,荧光灯50~70流明/瓦,钠灯90~140流明/瓦,大部分的耗电变成热量损耗。LED光效达到50~200流明/瓦,而且其光的单色性好、光谱窄,无需过滤可直接发出有色可见光。

2.耗电量少LED单管功率0.03~0.06瓦。

3.使用寿命长LED灯具使用寿命可达5~10年,可以大大降低灯具的维护费用,避免经常换灯之苦。

4.安全可靠性强发热量低,无热辐射,冷光源,使用安全。

5.有利于环保LED为全固体发光体,耐震、耐冲击不易破碎,废弃物可回收,也便于安装和维护。

避免使用一次性物品尽量少使用一次性牙刷、一次性塑料袋、一次性水杯……因为制造这些生活必需品时所使用的资源也是一次性的。

尽量选择低碳出行方式一架波音747飞机一年碳排放量,相当于1.5万亩人工林吸收量;而一辆汽车的碳排放量,相当于15亩人工林吸收量。因此,出行时多步行或骑自行车,多乘坐轻轨或者地铁,都有利于减排。

选用小排量汽车很多大型SUV汽车(运动型多功能车)和豪华汽车排放的二氧化碳至少是小排量汽车的2倍以上。

少开一天车每月少开一天车,每车每年可节油44升,相应减排二氧化碳98千克。如果全国1248万车主做到这点,每年可节油5.49亿升,减排122万吨。

小心保养汽车以确保在最佳状态下行驶不需要的时候,把车顶行李架和箱子拆下来,因为这些都会使车子的效率降低超过10%。及时为车辆更换滤芯、保持适当胎压、停车等候时熄火,每车每年可减排二氧化碳约400千克。

使用生物液体燃料生物液体燃料与传统车用燃料相比可以显著减少二氧化碳排放量。我国已经是燃料乙醇的第三大生产国和使用国。燃料乙醇已在全国9个省的车用燃料市场得到推广和使用。

家电

冰箱冰箱内存放食物的量以占容积的60%为宜,放得过多或过少,都费电。食品之间、食品与冰箱之间应留有约10毫米以上的空隙。用数个塑料盒盛水,在冷冻室制成冰后放入冷藏室,这样能延长停机时间、减少开机时间。需要解冻的食品,可预先将食品从冰箱冷冻室移入冷藏室,慢慢解冻,这样可充分利用冷冻食品中的“冷能”。

空调空调启动瞬间电流较大,频繁开关相当费电,且易损坏压缩机。将风扇放在空调内机下方,空调开启后马上开电风扇,利用风扇风力可提高制冷效果。晚上可以不用整夜开空调,省电近90%。将空调设置在除湿模式工作,此时即使室温稍高也能令人感觉凉爽,且比制冷模式省电。

洗衣机在同样长的洗涤时间里,弱档工作时,电动机启动次数较多,也就是说,使用强档其实比弱档省电,且可延长洗衣机的寿命。按转速1680转/分(只适用涡轮式)脱水1分钟计算,脱水率可达55%,一般脱水不超过3分钟,再延长脱水时间意义也不大。

微波炉较干的食品加水后搅拌均匀,加热前用聚丙烯保鲜膜覆盖或者包好,或使用有盖的耐热的玻璃器皿加热。每次加热或烹调的食品以不超过0.5千克为宜,最好切成小块,量多时应分时段加热,中间加以搅拌。尽可能使用“高火”。

此外,购买电器时,选择节能效率较高的型号。如果可以的话,请购买有节能评定标签的产品。

生活习惯

及时关电源统计数据显示,家庭中75%的用电都耗在使电视、电脑和音响等保持待机状态上。平均一台台式电脑每天耗电60瓦至250瓦。如果一台电脑每天使用4小时,其他时间关闭,那么每年能节省约500元人民币,且能减少83%的二氧化碳排放量。另外,如果只用电脑听音乐,显示器应调暗,或者干脆关掉。看完电视或用完其他小家电后及时关闭电源或拔下插头均有利于节能减排。

网上付账单在网上进行银行业务和账单操作,不仅能够挽救树木、避免在发薪日开车去银行排放不必要的二氧化碳,还能减少纸质文件在运输过程中所消耗的能源。

自备购物袋每年全球要消耗超过5000亿个塑料袋,其中只有不到3%可回收。塑料袋都由聚乙烯制成,掩埋后需上千年时间才能递降分解,期间还要产生有害的温室气体。

双面打印计算机打印文件每张纸都双面打印,相当于保留下一半原本将被砍掉的森林。

烹饪用大火用大火比用小火烹调时间短,可以减少热量散失。但也不宜让火超出锅底,以免浪费燃气。夏季气温高,烧开水前先不加盖,让比空气温度低的水与空气进行热交换,等自然升温至空气温度时再加盖烧水,可省燃气。能够煮的食物尽量不用蒸的方法烹饪,不易煮烂的食品用高压锅,加热熟食用微波炉等等方法,也都有助于节省燃气。

低碳生活的意义

减少碳排放,可以遏制全球温室效应,减少大气粉尘污染,这些是低碳生活的主要作用。其实,低碳生活的深远意义在于,第一可以减少地球上不可再生能源的开采,减少对矿藏的破坏,因为大部分的碳都是燃烧矿物燃料产生的;第二可以迫使各国加快对可再生能源和绿色能源的研究和使用;第三就是能促进世界经济向绿色经济和可持续发展的经济形势方面转变。

同时,低碳生活与个人的身体健康也是密切相关的。①减少空气污染;低碳排放能明显减少对大气的污染,新鲜的空气不仅能够保证人体足够的氧气,还能降低呼吸道和肺部疾病的发生率;②运动增加;低碳生活倡导少开车、多骑车或走路,低碳的同时增加了运动量,在提高心肺功能的同时可减掉部分多余的脂肪,全面提升身体素质;③低脂饮食;低碳生活使我们减少了肉食的摄入量,相应减少了脂肪及胆固醇的摄入量,有利于高血压、冠心病等疾病的防治。

追求健康生活,不仅要“低脂”、“低盐”、“低糖”,也要“低碳”!“低碳生活”节能环保,有利于减缓全球气候变暖和环境恶化的速度,势在必行。减少二氧化碳排放,选择“低碳生活”,是每位公民应尽的责任,低碳生活的方法渗透在我们衣食住行的各个方面,就让我们从小事做起,从我做起,从现在做起吧。

相关链接――清洁能源

清洁能源是指不排放污染物的能源,包括核能和“可再生能源”。可再生能源是指原材料可以再生的能源,如水力发电、风力发电、太阳能、生物能(沼气)、潮汐能等,可再生能源不存在能源耗竭的问题,因此日益受到许多国家的重视,尤其是能源短缺的国家。

清洁能源的种类(简单介绍几种):

核能轻原子核的融合和重原子核的分裂都能释出能量,分别称为核聚变能、核裂变能,简称核能。建造一个吉瓦级的核电站,一年大约用25吨核燃料,如果要用标准煤来替代,大约要用260万吨。也就是说,同样是一吨燃料,核燃料产生的能量大概是标准煤的10多万倍。核能的优点:①核能发电不像化学燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。②核能发电不会产生加重地球温室效应的二氧化碳。③核能发电所使用的铀燃料,除了发电外,没有其他的用途。④核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30吨的铀燃料,一航次的飞机就可以完成运送。⑤核能发电的成本中,燃料费用所占的比例较低,核能发电的成本不易受到国际经济形势影响,故发电成本较其他发电方法稳定。

太阳能是将太阳的光能转换成为其他形式的热能、电能、化学能,能源转换过程中不产生其他有害的气体或固体废料,是一种环保、安全、无污染的新型能源。利用方法:①光与热的转换,如太阳能热水器、太阳能灶等。②光与电的转换,如太阳能电池板,太阳能车、船等。

风能在自然界中,风是一种可再生、无污染而且储量巨大的能源。据估算,全世界的风能总量约1300亿千瓦。风能的利用主要是以风能作动力和风力发电两种形式,其中又以风力发电为主。

生物能是将太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物能具备下列优点:①提供低硫燃料;②提供廉价能源(某些条件下);③将有机物转化成燃料可减少环境公害(例如,垃圾燃料);④与其他非传统性能源相比较,技术上的难题较少。

清洁能源的污染及碳排放问题

二氧化碳排放方式范文篇6

Abstract:TherapidgrowthofCO2emissionsaffectstheglobalclimatechange.TheCPCCentralCommitteeandtheStateCouncilhaveattachedgreatimportancetotheworkofaddressingclimatechangeandintegratedclimatechangeworkintothemediumandlong-termplanningofeconomicandsocialdevelopment.Asabigprovinceofpopulationandenergyconsumption,carbonemissionsfromenergyconsumptionarethemainsourceofcarbondioxideemissionsinHenanProvince.ThispaperanalyzesthecurrentsituationofenergyconsumptionandcarbonemissionsinHenanProvince,andmakeconclusionsasfollows:energyconsumptionperunitofGDPisstillrelativelyhigh,industrialenergyconsumptionaccountsforalargeproportionofsocialenergyconsumption,andsince2000,thetotalsocialcarbonemissionscontinuedtorisebuttheunitGDPcarbonemissionscontinuedtodecline.Accordingtotheanalysis,itisproposedthesuggestionsofchangingthemodeofdevelopment,adjustingtheeconomicstructure,takingtheroadoflow-carbonenergydevelopment.

关键词:二氧化碳排放;河南省;能源

Keywords:carbondioxideemissions;HenanProvince;energy

中D分类号:X24文献标识码:A文章编号:1006-4311(2017)07-0044-05

1研究背景

近一百年来,全球气候发生着巨大的变化,全球变暖已成为共识。而CO2排放快速增长会带来气候变化异常与全球变暖,因而会给全球造成破坏性的影响,例如积雪覆盖面积的减少、全球平均海平面上升、北极地冰川大部分退却、北极部分地区的永冻土层退化、解冻、变暖、动植物分布向高海拔、高纬度转移等。气候变化和温室气体减排问题近年来持续升温,为应对全球气候变化与资源环境相关问题,低碳经济议题已成为世界各国的政治和经济问题。

2015年9月25日,国家主席再次发表关于气候变化的联合声明,声明承诺中国到2030年单位国内生产总值二氧化碳排放将比2005年下降60%-65%,森林蓄积量比2005年增加45亿立方米左右,并明确了计划于2017年启动全国碳排放交易体系[1]。党中央、国务院高度重视应对气候变化工作,把应对气候变化工作作为生态文明建设的重要组成部分,作为经济社会发展的重大战略和加快转变经济发展方式、调整经济结构和推进新的产业革命的重大机遇,纳入到经济社会发展中长期规划,建立了评价考核机制,确立了绿色循环低碳发展道路。《国家“十三五”规划纲要》明确要积极应对气候变化,有效控制温室气体排放[2]。

河南省是人口大省、粮食和农业生产大省、新兴工业大省。多年以来,河南省能源消耗强度高于全国平均水平尤其是东部发达地区,经济发展是以能源的大量消耗和物质资本投入为代价的[3],能源消费碳排放是二氧化碳排放的主要来源。国家碳排放峰值及减排指标的承诺不仅对国家更对河南省经济社会发展过程中节能减排措施的实施与碳减排量控制提出了新的要求。近年来,河南省着力推进产业结构和能源结构优化升级,加快发展低碳产业,全面加强生态文明建设、资源节约和环境保护,全省节能低碳工作取得明显成效。但在经济下行压力加大的新常态下,我省正处于蓄势崛起、跨越发展的关键时期和爬坡过坎、转型攻坚的紧要关口[4],必须克服产业结构偏重、资源约束趋紧、环境承载能力下降等发展中面临的诸多问题。由此,进行河南省碳排放现状研究,分析河南省能源消费量、二氧化碳排放量及其变动趋势,从而确定碳排放强度控制的主要领域,对于河南省加快推进绿色低碳发展,确保完成“十三五”规划纲要确定的低碳发展目标任务,推动二氧化碳排放2030年左右达到峰值并争取尽早达峰,做好参与全国碳排放权交易准备具有重要意义。

2河南省碳排放现状

2.1依据已有数据分析

《河南省统计年鉴》还未录入CO2总排放量、CO2总排放量年长率、单位GDP二氧化碳排放(简称碳强度)等碳排放相关指标,本文根据河南省温室气体清单报告及河南省碳强度下降指标核算表进行河南省碳排放现状分析。

河南省温室气体清单报告中,温室气体清单包含能源活动、工业生产过程、农业、土地利用变化和林业以及废弃物处理五个领域,其中能源活动、工业生产过程、农业以及废弃物处理均为碳排放,土地利用变化和林业为净碳汇。温室气体包括二氧化碳、甲烷、氧化亚氮、氢氟化合物、全氟化碳、六氟化硫,本文只分析二氧化碳。河南省碳强度下降指标核算表中,二氧化碳排放包含化石能源和电力调入调出产生的二氧化碳。

2.1.1河南省二氧化碳排放概况:

2005年河南省二氧化碳排放总量为38918.23万吨,其中能源活动35730.35万吨,占比91.81%;工业生产过程3182.95万吨,占比8.18%;废弃物处理4.93万吨,占比0.01%;土地利用变化和林业-999.82万吨,总净排放量为37918.41万吨[5]。

2010年河南省二氧化碳排放总量为53485.06万吨,其中能源活动48977.57万吨,占比91.57%;工业生产过程4502.27万吨,占比8.42%;废弃物处理5.22万吨,占比0.01%;土地利用变化和林业-1729.58万吨,总净排放量为51755.48万吨[6]。具体详见具体详见表1和图1、图2。

河南省2013、2014、2015年二氧化碳排放量分别为53792.83、55548.86、56536.65万吨CO2,其中化石能源碳排放分别为53781、54575.09、54787.2万吨,约占总量的97%。三年碳强度分别为1.73、1.64、1.55吨CO2/万元,详见表2。

2.1.2河南省二氧化碳排放分析:

①总体排放变化分析。

从排放总量看,2010年河南省的二氧化碳排放总量比2005年增长了37.43%,年均增长5.48%;2014年比2013年增长了3.26%,2015年比2014年增长了1.78%,年均增长量持续下降。以单位GDP计算,2005年时的碳强度为3.68吨二氧化碳当量/万元,2010年为2.32吨二氧化碳当量/万元,与2005年相比下降了36.96%,略大于同期河南省的单位GDP能耗下降率(20%),2014年比2013年碳强度降低5.17%,2015年比2014年碳强度降低6.02%,见图3。

②化石燃料燃烧排放变化分析。

由图1和图2可以看出,河南省二氧化碳排放中能源活动占比达到91%以上,因此,分析能源活动二氧化碳排放清单,如表3。

就化石燃料燃烧来看,2010年时化石燃料燃烧排放较2005年增长了37.14%,年均增长了6.51%。以单位GDP计算,2010年化石燃料燃烧的单位GDP排放为2.12吨二氧化碳当量/万元,较2005年(3.37吨二氧化碳当量/万元)下降了37.09%。以人均计算,2010年时化石燃料燃烧的人均排放为4.69吨二氧化碳当量/人,较2005年(3.65吨二氧化碳当量/人)增长了28.49%。

分部门来看,和2005年相比,2010年能源工业增长为50.12%,工业和建筑业增长33.92%,交通运输增长了40.49%,服务业增长了110.13%,农业排放增幅较小为5.59%,而居民生活排放则下降22.87%。总体而言,除居民生活外的各部门的排放增长与2005-2010年期间河南省的社会经济发展和能源消费增长趋势是基本吻合的。而居民生活排放的下降则是由于2005-2010年居民生活排放能源消费结构优化导致的:根据《河南省统计年鉴2011》中的人均生活能源消费数据,2010年时河南省的人均煤炭生活消费量由2005年时的112.90千克下降到了78.96千克,而人均用电量则出现了大幅增长由2005年的128.91千瓦时增长到了272.78千瓦时,增幅达111.60%。

2.2依据年鉴相关数据计算分析

根据已有的河南省碳排放量数据,只能对2005年、2010年、2013年、2014年、2015年碳排放量做大致判断,还不能够分析河南省历史碳排放量发展趋势。因此,本文根据《国家发展改革委办公厅关于开展2014年度单位国内生产总值二氧化碳排放降低目标责任考核评估的通知》发改办气候[2015]958号、《国家发展改革委办公厅关于开展“十二五”单位国内生产总值二氧化碳排放降低目标责任考核评估的通知》l改办气候[2016]1238号,国家文件中碳排放量计算方法及河南统计年鉴中可以用到的原始数据对河南省碳排放历年数据进行计算后再分析。

2.2.1计算方法

二氧化碳排放量=燃煤排放量+燃油排放量+燃气排放量从第j个省级电网调入电力所蕴含的二氧化碳排放量-本地区电力调出所蕴含的二氧化碳排放量[7]。

其中:

燃煤排放量=当年煤炭消费量×燃煤综合排放因子

燃油排放量=当年油品消费量×燃油综合排放因子

燃气消费量=当年天然气消费量×燃气综合排放因子

从第j个省级电网调入电力所蕴含的二氧化碳排放量=当年本地区从第j个省级电网调入电量×第j个省级电网供电平均CO2排放因子

本地区电力调出所蕴含的二氧化碳排放量=本地区调出电量×本地区省级电网供电平均CO2排放因子

说明:单位化石燃料燃烧产生的二氧化碳排放理论上随着燃料质量、燃烧技术以及控制技术等因素的变化每年应该有所差异,考虑到年度获取的滞后性以及可比性,核算各省二氧化碳排放的排放因子数据采用2005年国家温室气体清单的初步数据,见表4。

调入或调出电量数据可以从各省能源平衡表或电力平衡表获得,并以千瓦时为单位。对于调入电量,需明确本地区外购电力所属省级电网并采用相应的省级电网平均二氧化碳排放因子。对于调出电量,采用本省的省级电网平均二氧化碳排放因子。在核算年度电力调入调出蕴含的排放量时,采用2012年相应省级电网平均二氧化碳排放因子数据,见表5。本文核算电力二氧化碳排放量时,直接采用河南省统计年鉴中能源消耗总量及构成表中的水电数据进行计算。

2.2.2数据

根据《河南省统计年鉴2015》数据,河南省能源消耗总量及构成见表6,基于以上计算方法和计算因子计算河南省历史碳排放量数据,结果见表7。

2.2.3结果分析

由表7可以看出,2014年,河南省总碳排放量达到55574.29万吨CO2,其中,煤炭消费产生CO2达46953.65万吨,当年碳排放强度为1.591。对比河南省温室气体清单报告和河南省2014、2015年碳强度下降指标核算表中2005年、2010年、2013年、2014年碳排放总量,由于计算方法、数据来源不同,两种结果存在差异,但数据差异不大,在差异允许范围内,见表8。

根据历年结果总体分析,在四种能源消耗产生的碳排放量中,煤炭消费产生的碳排放量占总碳排放量的占比达到年均89%,且占比在2009年后呈现持续下降的趋势,2000-2009年均保持90%-91%的占比基本不变,2009年以后持续下降,到2014年下降到84%。说明在河南省能源消费结构中煤炭占绝对比重,2009年以后的占比下降是我省节能减排,提升非化石能源比重的结果。2009年之前,煤炭消费碳排放量、总碳排放量与河南省GDP保持几乎平行的趋势增长,说明经济增长与能源消费的依赖关系。2009年以后河南省GDP保持持续上扬趋势,但煤炭消费碳排放量、总碳排放量逐渐平稳,甚至下降,反应到碳强度指标上,表现为平稳下降趋势,由2000年的3.995吨/万元下降到2014年的1.591吨/万元,说明河南省持续优化产业结构,突出重点领域节能减排等工作成效明显。

3结论与建议

3.1结论

从数据分析来看:能源消费方面:河南省能源消费结构仍然以煤为主,需要在相当长时间内进一步地改善;能源利用效率虽逐步提高,但是对比其他先进省份,河南省的单位GDP能耗仍然较高,存在较大的节能潜力;工业能耗占社会能耗七成以上,交通运输能耗增长速度加快;郑州作为省会城市,能源消耗较大;2009年以来非化石能源消费比重持续提升。碳排放方面:2000年以来虽然社会总碳排放量持续上升,但单位GDP碳排放量保持持续下降。

对数据反映结果深入分析,结论如下:

节能降碳工作深入实施,成效明显。主要耗能行业单位工业增加值大幅下降,能效水平显著提高。三次产业结构不断优化,2015年低能耗、低排放的服务业占比比2010年提高了8.9个百分点。能源结构持续改善,非化石能源消费逐步增加。万家企业节能低碳行动效果明显,建筑、交通等行业节能有序开展。但在取得成效的同时,下步节能降碳工作也面临诸多问题。

能源刚性需求快速增长,节能降碳有压力。随着全省经济社会仍将保持平稳发展、城市化进程继续加快、建筑规模持续扩大、交通总量保持持续增长势头,全社会能源刚性需求将大幅增加,不断增长的能源消费需求与能源消费总量控制间的矛盾日渐突出,实现以有限的能源消耗和较低的碳排放保障经济社会的持续较快发展压力大,继续实现有限能源消耗和低碳排放保障经济社会持续较快发展的难度逐步加大。

节能潜力得到较大程度释放,节能降碳空间受到压缩。全省围绕调结构、促转型,大力开展节能降碳工作,节能潜力得到较大程度释放。高耗能领域“以退促降”的空间进一步缩小,以传统手段推进节能减碳工作的边际成本逐渐增加,实现“以退促降”向“内涵促降”的转变还需要一个持续推进的过程,进一步节能降碳工作压力较大。

能源结构调整进入瓶颈期,节能降碳难度较大。受资源禀赋制约,河南省煤炭消费在一次能源消费总量中的占比达到76%左右,较全国平均水平高出10个百分点,由煤炭消费产生的污染物已成为我省大气污染物和温室气体排放的主要来源之一。考虑到水能资源基本开发殆尽、新能源较长时期内只能作为补充能源,我省以煤炭为主的能源生产和消费结构仍将维持较长时间,由此带来的能源消费结构调整难题短期内难以破解。

3.2建议

根据上文分析和结论,为河南省早日实现碳排放量达到峰值,和更好参与全国碳排放权交易市场建设做好准备,河南省需加快转变发展方式、调整经济结构、推进产业升级,走节能低碳发展道路。本文提出以下建议:

大力构建节能环保型产业体系。推动传统制造业改造升级,开展工业生产过程清洁化、能源利用高效低碳化、水资源利用高效化、基础制造工艺绿色化等四大改造计划,从产品全生命周期控制资源能源消耗。发展低碳型服务业,提升发展现代物流、现代金融,推动生产业向专业化和价值链高端延伸,拓展提升生活业,推动生活业向精细化和高品质转变。严控“两高一剩”(高耗能、高污染、产能过剩)行业新增产能,大力发展节能环保产业。

积极构建绿色低碳能源体系。坚持“内节外引”的能源战略,优化能源结构,积极发展可再生能源,有效控制高碳能源,开展煤炭消费减量替代和清洁高效利用工作,构建清洁低碳、安全高效、智慧多元的绿色低碳能源体系。提升电力供应能效,推行节能低碳电力调度,强化电力需求侧管理,建设“能效电厂”。深入实施“气化河南”工程。实行能源消费总量、强度“双控”和碳排放度控制,开展用能权有偿使用和交易试点及低碳试点建设。

实施重点领域节能低碳行动。工业领域开发绿色产品,创建绿色工厂,建设绿色园区,以水泥、钢铁、石灰、电石、己二酸、硝酸、电解铝等为重点,控制工业生产过程温室气体排放。重点单位要建设能源管理体系,落实节能低碳措施。建筑领域强化城乡建设规划管理,对新建建筑提高能效要求,对既有建筑实施节能改造,扩大绿色建筑规模,大力发展绿色建材,推进建筑产业现代化发展。交通领域完善综合交通体系,优化交通运输能源消费结构,优先发展公共交通,向“互联网+智能交通”方向发展。农业农村领域加强农业机械、农村生活节能,发展低碳农业。

实施全民节能低碳行动。弘扬节能低碳文化,通过实施节能减排全民行动、节俭养德全民节约行动,开展社团组织节能低碳专项宣传行动等多方位开展节能低碳教育,普及生活方式低碳化的知识和方法。倡导低碳消费理念,提高消费者低碳环保意识,倡导绿色低碳消费模式,开展反过度包装、反食品浪费、反过度消费等全社会反对浪费行动。推行绿色生活方式,提倡家庭节约用电,倡导低碳出行,减少一次性用品使用,完善居民社区再生资源回收体系。

参考文献:

[1]中美元首气候变化联合声明[Z].

[2]中华人民共和国国民经济和社会发展第十三个五年规划纲要[S].

[3]王彦彭.河南省能源消费碳排放的演变与预测[J].企业经济,2013(6):26-32.

[4]河南省国民经济和社会发展第十三个五年规划纲要[S].

[5]2005年河南省温室气体清单总报告[R].

二氧化碳排放方式范文

关键词:林业;低碳经济;森林碳汇

中图分类号:F316.12

文献标识码:A

文章编号:1673-5919(2012)03-0053-03

控制和减少温室气体的排放,发展低碳经济,是全世界控制气候变化的战略选择。而在应对气候变化中,林业具有特殊作用。发展低碳经济,不仅要重视节能减排,还要重视碳汇的作用。因此,要发展低碳经济,就要求在最大限度减少碳排放的同时,必须重视发挥林业的碳汇作用[1]。

1林业是发展低碳经济的有效途径

林业是减排二氧化碳的重要手段。部分研究认为,林业减排是减排二氧化碳的重要手段。首先,通过抑制毁林、森林退化可以减少碳排放;其次,通过林产品替代其他原材料以及化石能源,可以减少生产其他原材料过程中产生的二氧化碳,可以减少燃烧化石能源过程中释放的二氧化碳[2]。

1.1毁林、森林退化与碳排放

近年来,大部分的毁林活动都是由人类直接引发的,大片的林地转变成非林地,主要活动包括大面积商业采伐以及扩建居住区、农用地开垦、发展牧业、砍伐森林开采矿藏、修建水坝、道路、水库等[3]。

在毁林过程中,部分木材被加工成了木制品,由于部分木制品是长期使用的,因此,可以长期保持碳贮存,但是,原本的森林中贮存了大量的森林生物量,由于毁林,这些森林生物量中的碳迅速的排放到大气中,另外,森林土壤中含有大量的土壤有机碳,毁林引起的土地利用变化也引起了这部分碳的大量释放。因此,毁林是二氧化碳排放的重要源头。

毁林已经成为能源部门之后的第二大来源,根据IPCC的估计,从19世纪中期到20世纪初,全世界由于毁林引起的碳排放一直在增加,19世纪中期,碳排放是年均3亿t,在20世纪50年代初是年均10亿t,本世纪初,则是年均23亿t,大概占全球温室气体源排放总量的17%。因此,IPCC认为,减少毁林是短期内减排二氧化碳的重要手段。

1.2林木产品、林木生物质能源与碳减排

①大部分研究认为,应将林产品碳储量纳入国家温室气体清单报告,主要理由是林产品是一个碳库,伐后林产品是其中一个重要构成部分[4]。

通过以下手段,可以减缓林产品中贮存的碳向大气中排放:大量使用林产品,提高木材利用率,扩大林产品碳储量,延长木质林产品使用寿命等。另外,也可以采用其他有效的手段来减缓碳的排放,降低林产品的碳排放速率,如合理填埋处置废弃木产品等方式,这样,甚至可以让部分废弃木产品实现长期固碳。在森林生态系统和大气之间的碳平衡方面,林产品的异地储碳发挥了很大的作用。

②贾治邦认为,大量使用工业产品产生了大量的碳排放,如果用林业产品代替工业产品,如减少能源密集型材料的使用,大量使用的耐用木质林产品就可以减少碳排放。秦建华等也从碳循环的角度分析了林产品固碳的重要性,林产品减少了因生产钢材等原材料所产生的二氧化碳排放,又延长了本身所固定的二氧化碳[5]。

③以林产品替代化石能源,也可以减少因化石能源的燃烧产生的二氧化碳排放。例如,木材可以作为燃料,木材加工和森林采伐过程中也会有很多的木质剩余物,这些都可以收集起来用以替代化石燃料,从而减少碳的排放;另外,林木生物质能源也可以替代化石燃料,减少碳的排放。

根据IPCC的预计,2000—2050年,全球用生物质能源代替的化石能源可达20~73GtC[6]。相震认为,虽然通过分解作用,部分林产品中所含的碳最终重新排放到大气中,但因为林业资源可以再生,在再生过程中,可以吸收二氧化碳,而生产工业产品时,由于需要燃烧化石燃料,由此排放大量的二氧化碳,所以,使用林产品最终降低了工业产品在生产过程中,石化燃料燃烧产生的净碳排放[7]。林产品通过以下两个方面降低碳排放量:一是异地碳储燃料,二是碳替代。这两方面可以保持、增加林产品碳贮存并可以长期固定二氧化碳,因此,起到了间接减排二氧化碳的作用。

从以上分析可知,林业是碳源,因此在直接减排上将起到重大作用;林业可以起到碳贮存与碳替代的作用,可以间接减排二氧化碳。因此,林业是减排二氧化碳的重要手段。

有些研究认为林业在直接减排二氧化碳方面的作用不大。这是基于较长的时间跨度来考察的,认为林业并不是二氧化碳减排的最重要手段,工业减排是发展低碳经济的长久之计;但是从短时间尺度来考察,又由于CDM项目的实施,林业是目前中国碳减排的一个重要的不可或缺的手段。

2森林碳汇在发展低碳经济中发挥的作用巨大

绝大部分的研究认为,林业是增加碳汇的主要手段。谢高地认为,中国的国民经济体系和人类生活水平都是以大量化石能源消耗和大量二氧化碳排放为基础。虽然不同地区、不同行业单位GDP碳排放量有所差别,但都必须依赖碳排放以求发展。这种依赖是长期发展形成的,是不可避免的,我国现有的技术体系还没有突破性的进展,在这之前要突破这种高度依赖性非常困难,实行减排政策势必会影响现有经济体系的正常运行,降低人们的生活水平,也会产生相应的经济发展成本[8]。谢本山也认为,中国还处于城镇化和工业发展的阶段,需要大量的资金和先进的技术才能使这种以化石能源为主要能源的局面有所改变,而且需要很长的周期,目前的条件下,想要实现总体低碳仍然存在较大的困难。与工业减排相比,通过林业固碳,成本低、投资少、综合收益大,在经济上更具有可行性,在现实上也更具备选择性[9]。

从碳循环的角度上讲,陶波,葛全胜,李克让,邵雪梅等认为,地球上主要有大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库四大碳库,其中,在研究碳循环时,可以将岩石圈碳库当做静止不动的,主要原因是,尽管岩石圈碳库是最大的碳库,但碳在其中周转一次需要百万年以上,周转时间极长。海洋碳库的周转周期也比较长,平均为千年尺度,是除岩石碳库以外最大的碳库,因此二者对于大气碳库的影响都比较小。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成很复杂,是受人类活动影响最大的碳库[10]。

从全球不同植被类型的碳蓄积情况来看,森林地区是陆地生态系统的碳蓄积的主要发生地。森林生态系统在碳循环过程中起着十分重要的作用,森林生态系统蓄积了陆地大概80%的碳,森林土地也贮藏了大概40%的碳,由此可见,林业是增加碳汇的主要手段。

聂道平等在《全球碳循环与森林关系的研究》中指明,在自然状态下,森林通过光合作用吸收二氧化碳,固定于林木生物量中,同时以根生物量和枯落物碎屑形式补充土壤的碳量[11]。在同化二氧化碳的同时,通过林木呼吸和枯落物分解,又将二氧化碳排放到大气中,同时,由于木质部分也会在一定的时间后腐烂或被烧掉,因此,其中固定的碳最终也会以二氧化碳的形式回到大气中。所以,从很长的时间尺度(约100年)来看,森林对大气二氧化碳浓度变化的作用,其影响是很小的。但是由于单位森林面积中的碳储量很大,林下土壤中的碳储量更大,所以从短时间尺度来看,主要是由人类干扰产生的森林变化就有可能引起大气二氧化碳浓度大的波动。

根据国家发改委2007年的估算,从1980—2005年,中国造林活动累计净吸收二氧化碳30.6

亿t,森林管理累计净吸收二氧化碳16.2亿t。李育材

研究表明,2004年中国森林净吸收二氧化碳约5

亿t,相当于当年工业排放的二氧化碳量的8%。还有方精云等专家认为,在1981—2000年间,中国的陆地植被主要以森林为主体,森林碳汇大约抵消了中国同期工业二氧化碳排放量的14.6%~16.1%。由此可见,林业在吸收二氧化碳方面具有举足轻重的作用。

3发展森林碳汇的难点

通过以上分析可以看出,通过林业减排与增加碳汇是切实可行的,减少二氧化碳的排放量、增加大气中二氧化碳的排放空间是发展低碳经济关键所在。然而,森林碳汇在发展低碳经济中也受到相关规定的限制。

在《联合国气候变化框架公约》及《京都议定书》中,都有关于“清洁发展机制(CDM)”和碳贸易市场的叙述,其中明确规定开发森林碳汇项目及进行碳贸易须要符合以下规则:

①在《京都议定书》中明确规定,开发森林碳汇的土地,必须是从项目基准年开始,过去五十年内没有森林,《京都议定书》也规定,如果是再造林项目,所用的土地必须是从1989年12月31日至项目开发那一年不是森林,但是在此之前可以有森林[12]。

②进行交易的碳信用额必须是新产生的,不可以是现存的碳汇量。

③自身可以完成减排指标的,不可以利用清洁发展机制;可以使用清洁发展机制的国家,与其合作的发展中国家的企业,也需要将符合规定的碳减排量申报,并获得联合国相关部门认可后,才能出售给发达国家的企业。

④减少毁林和优化森林管理产生的森林碳汇并没有纳入清洁发展机制;另外,只有造林再造林项目产生的森林碳汇被纳入到清洁发展机制,森林碳汇项目的种类很单一,而且有关的申报、认证等程序非常复杂。

通过以上分析,可以得出以下结论,林业对于发展低碳经济具有不可替代的作用。尽管也受到很多方面的制约,但其未来的快速发展趋势是必然的。因此必须加强森林经营、提高森林质量,促进碳吸收和固碳;保护森林控制森林火灾和病虫害,减少林地的征占用,减少碳排放;大力发展经济林特别是木本粮油包括生物质能源林;使用木质林产品,延长其使用寿命,最大限度的固定二氧化碳;保护湿地和林地土壤,减少碳排放。

参考文献:

[1]张秋根.林业低碳经济探讨[J].气候变化与低碳经济,林业经济,2010(3):36-38.

[2]王春峰.低碳经济下的林业选择[J].世界环境,2008(2):37-39.

[3]林德荣,李智勇.减少毁林和森林退化引起的排放:一个综述视角的分析[J].世界林业研究,2010(2):1-4.

[4]文冰.基于低碳经济的林分质量改造分析[A].低碳经济与林业发展论—中国林业学术论坛·第6辑,2009:179-186.

[5]贾治邦.全面发展林业,助推低碳经济发展[J].高端论坛2010(3):18-19.

[6]魏远竹.产业结构调整与林业经济增长方式转变[J]北京林业大学学报,2001(1):72-75.

[7]相震.碳减排问题刍议[J].环境科技,2009(2):1-10.

[8]谢高地.碳汇价值的形成与和平价[J].自然资源学报,2011,26(1):1-10.

[9]谢本山.森林碳汇在低碳经济中的作用[J].现代农业科技2010(23):205-206.

[10]陶波,葛全胜.陆地生态系统碳循环研究进展[J].地理研究,2011(5):142-157.

二氧化碳排放方式范文篇8

关键词:节能减排城市交通居民生活城市产业

DOI:10.3969/j.issn.1674-7739.2014.06.005

当前我国新型城镇化发展快速兴起,如何加快城市转型,走节能减排与可持续发展的道路,是我国新型城镇化面临的迫切问题。

2014年的《国家新型城镇化规划(2014-2022年)》明确提到,坚持生态文明、绿色低碳的原则,把生态文明理念全面融入城镇化进程,着力推进绿色发展、循环发展、低碳发展。总理要求我们要实现的新型城镇化,也必须是生态文明的城镇化。要以节能减排作为结构调整和创新转型的重要突破口,加快发展循环经济、节能环保和绿色低碳产业。

“新型城镇化”和“城镇化”有着本质的区别,在城市规划建设上,就是要转变过去粗放的发展方式,走资源节约、环境友好、低碳生态发展之路,建设生态文明社会。[1]因此,本文着重提出几点在此背景下的城市可持续发展的节能减排策略。

一、城市交通的节能减排

城市交通以客运为主,私人汽车、出租车是能耗主体。城市交通发展尤其是快速的机动化导致能源消耗逐年增长,城市交通的燃油消耗占到了全国燃油消耗的17.2%,其中私人机动车的消耗占据城市交通总能耗的64.9%,并呈现增长的趋势。[2]

欧洲对城市交通的节能减排也非常重视,主要通过“减少(无效交通需求)”、“转型(促进低碳客运模式发展)”、“提高(能源利用效率)”三大策略来提高城市交通的能源利用率,促进低碳城市交通系统的实现,具体通过规划、管理、技术、经济、信息等措施来推进实施。[3]

我国现阶段的城市交通,可以采用以下节能减排策略。

(一)减少交通出行需求

交通出行的总量和交通能耗和碳排放呈现正相关的关系。在人口规模持续增长的情形下,不同的城市空间形态对应的交通出行方式结构是不一致的,其产生的交通能耗和碳排放也是不一致的。城市结构和土地使用形态的是否合理是减少交通需求的关键。建设紧凑型的城市形态,提倡土地混合使用,以减少交通出行,特别是远距离的小汽车出行。

此外,可以利用现代信息技术的服务交通,实现跨空间的交流,也能对交通出行的需求起到调节作用。

(二)倡导低碳出行方式

地面公交、地铁等出行方式以相对较少的能源承担了较大一部分客运周转比重,在载客量较高的情况下,其人均能源消费和碳排放明显低于私家车,因此应该作为优先发展的对象。值得一提的是,城市客流有着明显的潮汐现象和城区与郊区客流特征的差异性,公交和地铁的建设需要避免出现低效行驶。

步行和自行车交通是最低碳的出行方式。通过比较研究,我们还发现相当一部分的私家车出行,实际上是可以用步行和自行车来代替的。提倡这两种出行的方式,可以将人们从现代化的运输设施中解脱出来,是一种自由度更高、更加健康,同时也更加节能减排的交通方式。提倡步行和自行车,也是基于我国城市具有高密度和土地混合使用的特点。城市交通与土地使用的5D的发展模式,也就是POD>BOD>TOD>XOD>COD,是将以人为本作为城市交通规划的先导,把步行和自行车方式放到了优先位置。因此,我们应当优化城市步行和自行车的交通出行环境,让人们的出行向节能减排的方式转变。[4]

除此之外,作为慢速交通的新型交通方式,电动自行车同样是一种较低碳的方式,然而现在对电动自行车的管理还未到位,为了使电动自行车能够有序发展,相关部门需要尽早出台相应的管理方案。

(三)交通新能源新技术应用

随着对新能源技术的研究和发展,使用混合动力、燃料电池、纯电动汽车等新能源交通工具渐渐成为城市交通节能减排的发展途径之一。通过对车辆能耗利用效率的提升,实现节约能耗的目的;通过优化能源结构,发展新能源,实现CO2的集中捕捉和处理,可以实现节能减排的目的。

然而新能源汽车产业发展还处于起步阶段,其技术还未成熟,城市里新能源交通的配套设施还不完善,新能源消费市场也不够成熟。城市新能源交通的发展还需要更多的投入以及耐心,不可急功近利。同时政府也应该加大扶持力度,积极搞好试点项目,[5]另外我们也必须从初级能源的来源、产品制造和回收利用的全生命周期过程分析各种新能源技术的碳效。

二、居民生活的节能减排

人们在生活中处处都涉及到能源消耗和碳排放,如果能够改变一些不良习惯,人人做到在生活中节能减排,那么整体上对城市节能减排将会起到非常大的贡献。

(一)合理控制需求

控制合理的人均居住面积。住房面积过大,首先带来的是建筑和装修耗材的能源过度消费;其次,在夏季制冷、冬季采暖、清洁卫生等方面都会比人均面积小的住房带来更高的能源消耗和碳排放。

居住建筑占城市能源消耗较大比例,推广绿色建筑以及对现有建筑节能改造有助于整个城市的节能减排。仇保兴提出了建筑节能减排设计五原则:(1)建筑节能不仅要着眼于减少能源使用,还必须考虑尽量采用低品质(低能值转换率)的能源,如地热能、太阳能;(2)在建筑设计中尽可能应用简单技术,如通风、外遮阳等,达到能源节约的目的;(3)用低品质能源进行建筑整体性、基础性调温,用高品质能源进行局部性、精细性调温;(4)建筑成为能源产生的单元,如屋顶计划中的太阳能;(5)从单一产能建筑走向集合――分布式绿色能源。[6]

减少食物浪费。“谁知盘中餐,粒粒皆辛苦”,可是现在浪费粮食的现象仍比较严重。而少浪费0.5千克粮食(以水稻为例),可节能约0.18千克标准煤,相应减排二氧化碳0.47千克。如果全国平均每人每年减少粮食浪费0.5千克,每年可节能约24.1万吨标准煤,减排二氧化碳61.2万吨。每人每年少浪费0.5千克猪肉,可节能约0.28千克标准煤,相应减排二氧化碳0.7千克。如果全国平均每人每年减少猪肉浪费0.5千克,每年可节能约35.3万吨标准煤,减排二氧化碳91.1万吨。

节能装修。(1)减少装修铝材使用量。铝是能耗最大的金属冶炼产品之一。减少1千克装修用铝材,可节能约9.6千克标准煤,相应减排二氧化碳24.7千克。如果全国每年2000万户左右的家庭装修能做到这一点,那么可节能约19.1万吨标准煤,减排二氧化碳49.4万吨。(2)减少装修木材使用量。适当减少装修木材使用量,不但保护森林,增加二氧化碳吸收量,而且减少了木材加工、运输过程中的能源消耗。少使用0.1立方米装修用的木材,可节能约25千克标准煤,相应减排二氧化碳64.3千克。如果全国每年2000万户左右的家庭装修能做到这一点,那么可节能约50万吨标准煤,减排二氧化碳129万吨。

(二)资源的合理使用

用布袋取代塑料袋。尽管少生产1个塑料袋只能节能约0.04克标准煤,相应减排二氧化碳0.1克,但由于塑料袋日常用量极大,如果全国减少10%的塑料袋使用量,那么每年可以节能约1.2万吨标准煤,减排二氧化碳3.1万吨。

减少一次性餐具的使用。我国是人口大国,广泛使用一次性筷子会大量消耗林业资源。如果全国减少10%的一次性筷子使用量,那么每年可相当于减少二氧化碳排放约10.3万吨。

尽量少用电梯。目前全国电梯年耗电量约300亿度。通过较低楼层改走楼梯、多台电梯在休息时间只部分开启等行动,大约可减少10%的电梯用电。这样一来,每台电梯每年可节电5000度,相应减排二氧化碳4.8吨。全国60万台左右的电梯采取此类措施每年可节电30亿度,相当于减排二氧化碳288万吨。

合理用水。(1)给电热水器包裹隔热材料。有些电热水器因缺少隔热层而造成电的浪费。如果家用电热水器的外表面温度很高,不妨自己动手“修理”一下――包裹上一层隔热材料。这样,每台电热水器每年可节电约96度,相应减少二氧化碳排放92.5千克。如果全国有1000万台热水器能进行这种改造,那么每年可节电约9.6亿度,减排二氧化碳92.5万吨。(2)淋浴代替盆浴并控制洗浴时间。盆浴是极其耗水的洗浴方式,如果用淋浴代替,每人每次可节水170升,同时减少等量的污水排放,可节能3.1千克标准煤,相应减排二氧化碳8.1千克。如果全国1千万盆浴使用者能做到这一点,那么全国每年可节能约574万吨标准煤,减排二氧化碳1475万吨。(3)适当调低淋浴温度。适当将淋浴温度调低1℃,每人每次淋浴可相应减排二氧化碳35克。如果全国13亿人有20%这么做,每年可节能64.4万吨标准煤,减排二氧化碳165万吨。(4)洗澡用水及时关闭。洗澡时应该及时关闭自来水开关,以减少不必要的浪费。这样,每人每次可相应减排二氧化碳98克。如全国有3亿人这么做,每年可节能210万吨标准煤,减排二氧化碳536万吨。(5)使用节水龙头。使用感应节水龙头可比手动水龙头节水30%左右,每户每年可因此节能9.6千克标准煤,相应减排二氧化碳24.8千克。如果全国每年200万户家庭更换水龙头时都选用节水龙头,那么可节能2万吨标准煤,减排二氧化碳5万吨。(6)避免家庭用水跑、冒、滴、漏。一个没关紧的水龙头,在一个月内就能漏掉约2吨水,一年就漏掉24吨水,同时产生等量的污水排放。如果全国3.9亿户家庭用水时能杜绝这一现象,那么每年可节能340万吨标准煤,相应减排二氧化碳868万吨。(7)用盆接水洗菜。用盆接水洗菜代替直接冲洗,每户每年约可节水1.64吨,同时减少等量污水排放,相应减排二氧化碳0.74千克。如果全国1.8亿户城镇家庭都这么做,那么每年可节能5.1万吨标准煤,减少二氧化碳排放13.4万吨。

用太阳能烧水。太阳能热水器节能、环保,而且使用寿命长。1平方米的太阳能热水器1年节能120千克标准煤,相应减少二氧化碳排放308千克。2006年底,我国太阳能热水器面积已达到9000万平方米左右,如果在此基础上每年新增20%的使用面积,那么全国每年可节能216万吨标准煤,减少二氧化碳排放555万吨。

采用节能方式做饭。(1)煮饭提前淘米,并浸泡10分钟。如此,可大大缩短米熟的时间,节电约10%。每户每年可因此省电4.5度,相应减少二氧化碳排放4.3千克。如果全国1.8亿户城镇家庭都这么做,那么每年可省电8亿度,减排二氧化碳78万吨。(2)尽量避免抽油烟机空转。在厨房做饭时,应合理安排抽油烟机的使用时间,以避免长时间空转而浪费电。如果每台抽油烟机每天减少空转10分钟,1年可省电12.2度,相应减少二氧化碳排放11.7千克。如果对全国保有的8000万台抽油烟机都采取这一措施,那么每年可省电9.8亿度,减排二氧化碳93.6万吨。

合理利用纸张。(1)重复使用教科书。重复使用教科书,是大势所趋。减少一本新教科书的使用,可以减少耗纸约0.2千克,节能0.26千克标准煤,相应减排二氧化碳0.66千克。如果全国每年有三分之一的教科书得到循环使用,那么可减少耗纸约20万吨,节能26万吨标准煤,减排二氧化碳66万吨。(2)纸张双面打印、复印。(3)用电子书刊代替印刷书刊。(4)用电子邮件代替纸质信函。(5)使用再生纸。(6)用手帕代替纸巾。[7]

三、城市产业节能减排

(一)提倡低碳经济

提倡低碳经济,主要从两方面入手,一方面是提高能源资源利用效率,另一方面是发展清洁的能源。提高能源效率,指放弃高能耗的老旧技术工艺,研发新的工业生产加工技术工艺,比如水泥、煤炭、钢铁生产技术和汽车驱动途径等,让更少的资源和排放创造更多的价值。其次要发展新的能源,城市能源消耗和碳排放很大部分来自于对电力的消耗。因此引入清洁能源如水电、风电等多种能源方式,可以逐渐调整能源结构,从而达到节能减排的目的。然而现阶段煤电作为主要的能源来源还将持续,因此对于煤炭的节能新技术的研究还有很大意义,如热电联产、洁净煤、洗煤、煤炭液化、燃煤联合循环发电等方面有所突破,同样有利于节能减排的低碳经济发展。[8]

(二)强化重点用能单位节能减排

加强年耗能万吨标准煤以上用能单位节能管理,开展万家企业节能低碳行动。重点推进电力、煤炭、钢铁、有色金属、石油石化、化工、建材、造纸、纺织、印染、食品加工等行业节能减排,明确目标任务,加强行业指导,推动技术进步,强化监督管理。

比如建筑行业现在已经开始了“绿色建筑”的研究和尝试。绿色建筑是指“在建筑的全寿命周期内,最大限度地节约资源保护环境和减少污染,为人们提供健康、舒适和高效的生存空间,以及与自然和谐共生的建筑”,绿色建筑已成为世界建筑业发展的总趋势。诸如建筑行业这类在城市能源消耗和碳排放比重较大的行业,理应受到重视。[9]

(三)合理控制能源消费总量

建立能源消费总量控制目标分解落实机制,制定实施方案。将固定资产投资项目节能评估审查作为控制地区能源消费增量和总量的重要措施。工业部门应当进行科学的市场研究,制定合理的生产计划,避免产能过剩,造成能源资源浪费。

所以城市节能减排任重而道远,我们必须及早建立低碳城市建设的概念,从城市交通、城市生产和消费等多方面出发,才能实现在快速城市化进展中的节能减排的发展要求。

参考文献:

[1]张一成.深圳低碳生态示范市创新实践――新型城镇化探索之路[J].建设科技,2013(16).

[2]曹艳梅,丁冬梅.我国城市交通节能减排发展分析及对策研究[J].经济研究导刊,2012(2).

[3]李振宇,张好智,陈徐梅,等.欧洲城市交通节能减排的主要途径与经验启示[J].公路与汽运,2011(3).

[4]潘海啸.后世博上海低碳城市的交通与土地使用5D模式[J].上海城市规划,2011(1).

[5]周安,刘景林.新能源汽车对城市节能减排影响的新探索[J].学术交流,2012(7).

[6]低碳生活节能减排绿色建筑成为建设行业新目标[J].中国住宅设施,2010(2).

[7]蔡娟.节能减排三十六计[J].广东科技,2008(1).

二氧化碳排放方式范文篇9

Abstract:Thisarticlemainlyinvestigatessometechnologiesaboutcarbondioxide,justlikecarbondioxideconcentration,desulfurizationbyphysicalorchemicalmethodbeforegettingintothecokeoven,hightemperaturehydrogenationdesulfurizationprocessincokingandthefinaldesulfurizationincoalgasforthesulfurrecovery.ThisarticlefocusesonthedesulfurizationintheprocessofCoking.

关键词:焦煤入炉前脱硫;碳化过程加氢脱硫;回收煤气脱硫

Keywords:desulfurizationbeforegettingintothecokeoven;hydrogenationdesulfurizationincarbonization;recoverygasdesulfurization

中图分类号:X5文献标识码:A文章编号:1006-4311(2013)07-0293-02

0引言

目前世界上约85%的商业能源需求都是靠化石燃料来满足,要想迅速抛开化石燃料而不影响全球经济发展恐怕是不可能的,目前已经认识到化石燃料燃烧所排放的二氧化碳,可以通过富集和地质储存(CCS)而大大减少。本文主要从化石燃料利用的角度来阐述一下二氧化碳的减排、富集和储存技术的研究进展,发展现状和前景。

1二氧化碳的减排

《京都议定书》大致从三个方面来促进二氧化碳的减排:一是应对全球变暖的政治策略,二是二氧化碳税和排放权交易,三是清洁发展机制(CDM)。对二氧化碳为主的温室气体减排技术的研究,目前主要分为源头控制和后续处理,包括减少温室气体排放技术、增加碳汇技术(陆地生态系统碳汇、海洋碳汇等),以及碳捕获和封存技术。国外研究人员提出了“稳定楔”理论,即15种减缓气候变化的温室气体减排技术,目的是在2050年前将全球大气中CO2的浓度保持在500mL/m3。要达到该目标至少需要综合运用15种技术中的任意7种。15种减排技术综合归纳起来主要有以下5种:

①提高能源效率和加强管理。表现在提高燃料的使用效能、减少车辆的使用、降低建筑耗能、提高发电厂效能等方面;②燃料使用的转换,以及CO2的捕获与封存。以天然气取代煤作燃料、捕获并储存发电厂CO2。③核能发电。用核能技术替代燃煤发电的技术。④可再生能源及燃料。如风能、太阳能、可再生燃料(生物质能)。⑤对CO2的吸收。森林和耕地对CO2的吸收作用。

国际能源局(IEA)指出,通过提高能效和增加可再生能源生产来减少CO2排放的潜力仍是有限的。CCS在10~20年内是可大大减少CO2排放有潜力的技术。因此,减少全球CO2排放的策略必须将以下几种组合采用:提高能效;更多地生产可再生能源;较多地实施CCS。减少CO2排放几大策略的潜力如图1所示。

因此,CO2的捕获和封存技术是当前该领域研究的热点,被认为是最具应用前景的温室气体减排技术之一。下面就主要介绍一下CCS的研究现状和进展。

2二氧化碳的富集

目前,电厂和其他工业生产燃烧生成的二氧化碳主要以烟气的形式排出,烟气中二氧化碳的浓度在4-14%(V/V)左右,从原理上来说,这些烟气可以通过压缩至10MPa以上而被储存起来,从而减少二氧化碳的排放,但如此大的烟气量造成存储源的浪费,同时压缩烟气的能量消耗巨大,因此生产利于运输和储存的高纯度的二氧化碳就有利可图,这个过程被称为二氧化碳的富集。二氧化碳的富集与储存对于大型固定的排放源来说是最实用的,它所需求的支持运输网络的相关设施最简单并且构建起来最经济。化石燃料燃烧工厂的二氧化碳富集一般有四种工艺路线:

①燃烧后富集;②燃烧前富集;③在燃料氧化燃烧过程中富集;④化学链燃烧技术。

2.1燃烧后富集燃烧后富集是从化石燃料燃烧后的含有NOx和SO2的烟气中分离出二氧化碳的过程。图2是燃烧后富集CO2的工艺流程示意图。

由图可知,燃烧后富集是从燃料燃烧产生的烟气(CO2、NOx、SO2)中分离CO2,目前首选的技术是用化学溶剂(通常是用胺,如乙醇胺MEA)对烟气进行洗涤,化学溶剂与二氧化碳发生化学反应后形成一种化合物,然后对溶剂进行加热,化合物分解,分离出高纯度的CO2,同时达到化学溶剂再生的目的。

2.2燃烧前富集燃烧前富集是指,燃料与氧气或空气亦或水蒸气发生反应产生主要成分是一氧化碳和氢气的混合气体,这个过程被称为气化、部分氧化或重整。一氧化碳和氢气的混合气体通过催化转化也即水煤气变换反应使一氧化碳与水反应生成二氧化碳和氢气,然后二氧化碳被分离出来,氢气则作为燃气轮机联合循环系统的燃料,如整体煤气化联合循环系统(IGCC)。图3是燃烧前富集CO2的工艺流程示意图。

该工艺可以用于从天然气、石油或煤为燃料的系统,但是以石油和煤作燃料时,需要加装去除硫化物、氮氧化物和颗粒物等杂质的设备。和燃烧后分离相比,燃烧前分离需要处理的气体较少,所处理气体压力较高,二氧化碳浓度较大,这就减小了二氧化碳分离设备的尺寸,从而降低了投资成本。

显然,燃烧前富集工艺需要从根本上改变原有电厂设计的变化,但大多数燃烧前二氧化碳富集技术已经在制氨厂和其他工业过程中得到了证实,并且这些技术正在美国的GreatPlainsSynfuels电厂应用。另外对于一些不需要富集二氧化碳的电厂来说,此工艺还可以用来制造氢气,如采用IGCC的电厂。

在燃烧前富集工艺中生产的氢气可以作为燃料电池的替代燃料,虽然目前来说燃料电池和燃气轮机相比不具竞争力,但是从长远来看,随着化石燃料的减少,特别是对于小型发电厂和运输业而言,燃料电池的优势是不言而喻的。

对于燃烧前二氧化碳富集工艺,通过新技术的开发,节约成本和提高能源效率的空间是巨大的。

2.3富氧燃烧富集富氧燃烧富集二氧化碳是指,燃料在氧气和二氧化碳的混合气体中燃烧,而不是在空气中燃烧,因而产生的是一种富含二氧化碳的烟气。通常,氧气由空气分离装置提供,氧气和二氧化碳混合气体通过将部分烟气回流到燃烧室里生成。图4是在燃料氧化燃烧过程中富集CO2的工艺流程示意图。

该工艺燃烧炉使用氧气和二氧化碳混合气的目的是为了控制火焰温度,如果燃烧发生在纯氧中,火焰温度就会过高,不易控制,很可能会超出燃烧炉所承受的最高温度,但如果在燃烧炉里回流部分含有高浓度二氧化碳的烟气,就可以控制燃烧炉的温度,改善燃烧速度,从而提高热效率。这样产生的烟气富含二氧化碳,并且不含氮氧化物,部分回流到燃烧室,大部分被除去硫化物和颗粒物杂质后二氧化碳的浓度可接近90%,这样就不需要对其进行分离就可以直接进行压缩储存或运输。

这种工艺的优点在于不用任何除NOx的设备,还可以省去分离二氧化碳的设备和能耗,并且由于燃烧炉里氧气的浓度较空气燃烧来说高得多,这就可以大大减小燃烧炉的规模,进而后续如脱硫等工段的设备也相应减小,这样就更进一步减少了设备投资。由于不需要对二氧化碳进行分离,就大大降低了分离二氧化碳带来的能量消耗,节约了成本。

2.4化学链燃烧技术富集一些新的工艺方案试图避开在上述工艺中使用空气分离装置,因为它的能量需求大。化学链燃烧技术利用金属氧化反应来分离氧气,随着后来金属氧化物的减少,为化石燃料燃烧提供了所需的氧气。该技术把传统的燃烧分解为两个气固化学反应,燃料与空气不直接接触,是一种无火焰的燃烧方式。

该系统含有两个反应器:空气反应器和燃料反应器。在燃料反应器内金属氧化物与燃料气体发生还原反应并吸收热量,一般使用天然气、氢气等作为燃料气体。其反应式为:

(m+4n)MeO+2CnHm+ΔHred(m+4n)Me+mH2O+2nCO2(1)

在燃料反应器内被还原的金属颗粒回到空气反应器并与空气中的氧气发生氧化反应放出热量,其反应式为:

Me+O2MeO+ΔHox(2)

式(1)与式(2)相加即为传统燃烧反应

CnHm+O2nCO2+m/2H2O+ΔH(3)

通常情形下,反应(1)吸收热量,反应(2)放出热量,这两部分热量的代数和即为反应(3)中的ΔH,即燃料进行传统燃烧时放出的热量。但是由于该种燃烧形式把一步化学反应转变成了两步化学反应来完成,实现了能量的梯级利用,提高了能源利用率。特别是,从燃料反应器内排出的二氧化碳和水蒸气可以直接通入冷凝器被冷却,在不需要额外消耗能量的情况下,把水蒸气冷凝成液态水,分离出高浓度的二氧化碳,便于进行下一步对二氧化碳的回收和处理。另外在燃烧过程中,燃料不与氧气直接接触,避免了燃料型NOx的生成。当燃烧温度低于1500℃时,热力型NOx生成极少,而空气侧反应温度较低,因而可以控制热力型NOx的生成。

化学链燃烧技术仍处于研究阶段,目前主要采用热重分析仪、流化床和固定床进行探索性研究,作为氧载体的金属物质主要有Fe、Ni、Co、Mn、Cu、Cd等。

3二氧化碳的分离技术

上述的四种工艺路线都包括从气流中分离二氧化碳,目前有四种主要的二氧化碳分离方法[1-3],选择哪一种方法取决于要富集的二氧化碳的状态(压力、浓度和量),这四种二氧化碳的分离方法分别是:吸收分离法;吸附分离法;膜分离法。

参考文献:

[1]裴克毅,孙绍增,黄丽坤.全球变暖与二氧化碳减排[J].节能技术,2005,23(03):239-243.

二氧化碳排放方式范文篇10

[关键词]网上购物低碳经济二氧化碳

网上购物低碳经济

通过网上购物的形式,购买方可以待在家里或是在办公场所就可以实现浏览商品、下订单、从而进行的网络交易,可以避免因为乘坐交通工具或是自身驱车前往所产生的能源消耗,从而降低碳排放。

我们设定的研究模型如下,购买者与所购买的商品所在的商场有5公里远的距离。购买者可以选择驱车前往,也可以选择足不出户,通过电子商务的形式,登陆该商城的网上商城,进行购买。

有以下几种情况进行研究:

第一种情况,购买方从事的是网络虚拟商品的购买,比如电影光盘或是数码软件,在这种情况下,上购买方与商场交易后,商品的物流环节完全可以在通过互联网络进行传递,因而就省掉了传统的物流环节。

在这种情况下,如果购买者选择驱车前往进行购买,购买后,携带商品返回家中。在这种情况下,我们所消耗的能源计算如下

按照私家车100公里耗油8升计算,则1公里耗油0.08升,因此驱车前往并返回会耗油0.08升×10=0.8升

所排出的二氧化碳的量,按照碳足迹计算公式计算如下

二氧化碳排放量=油耗升数×0.785=0.8×0.785kg=0.628kg

如果按照每天一次购物计算的话,则每年的二氧化碳排放量为0.628kg×365=229.22kg

在这种情况下,如果我们选择网上购物的话,根据计算,通过互联网每完成一次网购所产生的二氧化碳约为0.2克,主要由电能消耗所产生。

因此,如果如果按照每天一次购物计算的话,则每年的二氧化碳排放量为0.2g×365=72g=0.072kg

在这种情形下,选择网络购物的话,每年所减少的碳排放是229.22kg-0.072kg=229.148kg

第二种情况,情境1:购买者A从事的是实体商品的购买,在这种购买的情形下,需要有实体物流的参与,实现商品的最终的送达。如果该购买者选择电子商务的形式购买该商品,商品最终的送达是由该商场提供的,则由于购买商品所产生的物流送达过程中所消耗的能源,主要是交通工具所产生的汽油消耗。

这与购买者驱车前往购买并返回的能源消耗是相同的,差别只是将交通工具由私家车换成了配送车,因此在一个购买者的情形下,网络购物与传统购物,在交通工具的碳排放量上是基本一致的。

但是在现实生活中,采用电子商务的购物模式,物流车辆在配送过程中一般不会空车行驶的,通常会配送过程中同时会给多个购买者进行配送,因此在这种情况下,我们进行分析如下:

第二种情况,情境2:购买者A和购买者B从事的是实体商品的购买,在这种购买的情形下,需要有实体物流的参与,实现商品的最终的送达。如果该购买者选择电子商务的形式购买该商品,商品最终的送达是由该商场提供的,则由于购买商品所产生的物流送达过程中所消耗的能源,主要是交通工具所产生的汽油消耗。

按照设计的模型,配送车会将商品沿着路径进行配送,送达给购买者A和购买者B,然后原路返回,在这种情形下,能源的消耗计算如下:

由商场出发送给购买者A:

按照配送车100公里耗油8升计算,则1公里耗油0.08升,因此配送车前往会耗油0.08升×5=0.4升

所排出的二氧化碳的量,按照碳足迹计算公式,计算如下

二氧化碳排放量=油耗升数×0.785=0.4×0.785kg=0.314kg

再由购买者A处送达给购买者B,同样是5公里,因此配送车前往会耗油0.08升×5=0.4升

所排出的二氧化碳的量,按照碳足迹计算公式,计算如下

二氧化碳排放量=油耗升数×0.785=0.4×0.785kg=0.314kg

最后,配送车由购买者B处按照原路返回商场,全程是10公里,因此按照配送车100公里耗油8升计算,则1公里耗油0.08升,因此配送车返回会耗油0.08升×10=0.8升

所排出的二氧化碳的量,按照碳足迹计算公式,计算如下

二氧化碳排放量=油耗升数×0.785=0.8×0.785kg=0.628kg

完成配送总共的碳排放是0.314kg+0.314kg+o.628kg=1.256kg

如果购买者A和购买者B从事的是实体商品的购买,不选择电子商务的形式,而是选择自己驱车前往商场进行购买,则产生的碳排放计算如下:

按照私家车100公里耗油8升计算,则1公里耗油0.08升,因此驱车前往并返回会耗油0.08升×10=0.8升

所排出的二氧化碳的量,按照碳足迹计算公式,计算如下

二氧化碳排放量=油耗升数×0.785=0.8×0.785kg=0.628kg

按照私家车100公里耗油8升计算,则1公里耗油0.08升,因此驱车前往并返回会耗油0.08升×20=1.6升

所排出的二氧化碳的量,按照碳足迹计算公式,计算如下

二氧化碳排放量=油耗升数×0.785=1.6×0.785kg=1.256kg

购买者A和购买者B一共产生的碳排放是0.628kg+1.256kg=1.884kg

因此在这种情况下,采用电子商务的形式要比传统购物形式每次减排碳排放1.884kg-1.256kg=0.628kg

二氧化碳排放方式范文篇11

【关键词】森林;碳汇功能;森林吸收二氧化碳;放出氧气

1.森林的碳汇功能

自20世纪80年代以来,全球气候变暖已成为不争的事实,由此引起的一系列生态问题日益引起国际社会的广泛关注。预测到2100年,全球平均气温将升高1.8~4摄氏度,海平面升高18~59厘米,将给人类生产、生活和生存带来诸多重大不利影响。导致全球气候变暖的主要原因是由于工业革命以来,煤炭、石油、天然气等矿物能源的大量开采和使用,向大气中过量地排放了以二氧化碳为主的温室气体的结果。排放到大气中的二氧化碳浓度大大增加,打破了地球在宇宙当中的吸热和散热的平衡状态,导致全球气候变暖。

应对气候变化,关键是减少温室气体在大气中的积累,其做法是减少温室气体的排放(减排)和增加温室气体的吸收(增汇)。减少温室气体的排放主要是通过降低能耗、提高能效、使用清洁能源来实现。而增加对温室气体的吸收,主要是通过森林等植物的生物学特性,即光合作用吸收二氧化碳,放出氧气,把大气中的二氧化碳固定到植物体和土壤中,这个过程和机制实际上就是清除已排放到大气中的二氧化碳,因此,森林具有碳汇功能。由于森林吸收二氧化碳投入少、成本低、简单易行,有利于保护生物多样性。我国政府把林业纳入减缓和适应气候变化的重点领域,要求全力打好“森林碳汇”这张牌,充分发挥林业在应对气候变化中的特殊作用。

森林是陆地生态系统中最大的碳库。研究显示:全球陆地生态系统中存储了2.48万亿吨碳,其中1.15万亿吨碳存储在森林生态系统中。在生长季节,l公顷阔叶林每天可以吸收1吨二氧化碳;森林每生长1立方米木材,就能从空气中吸收1.83吨二氧化碳,同时释放1.62吨氧气。从20世纪80年代到现在,工业排放的二氧化碳由森林生态系统吸收的达到24%~36%,足以说明森林碳汇功能的重要意义。

2.森林森林生物量与碳储量

我国通过发展和保护森林,固定了大量二氧化碳等温室气体,在减缓气候变暖方面发挥了巨大作用。1980年-2005年,我国通过持续地开展造林和森林经营、控制毁林,净吸收和减少碳排放累计达51.1亿吨。仅2004年中国森林净吸收了约5亿吨二氧化碳当量,占同期全国温室气体排放总量的8%以上。据中国林科院依据第七次森林资源清查结果和森林生态定位监测结果评估,目前我国森林植被总碳储量高达78.11亿吨,森林生态系统年涵养水源量4947.66亿立方米,年固土量70.35亿吨,年保肥量3.64亿吨,年吸收大气污染物量0.32亿吨,年滞尘量50.01亿吨。发展碳汇林业是黑龙江省经济社会可持续发展中的一件大事,也是黑龙江的优势所在。

全省现有森林面积1923.2万公顷,森林蓄积量15.7亿立方米。从森林面积、森林总蓄积和木材产量上看,均居全国首位,丰富的森林资源形成了巨大的碳库。按照全省森林蓄积量15.7亿立方米计算,黑龙江省森林现有碳库储量为(储存二氧化碳)27.34亿吨。随着天保二期和退耕还林的深入实施,碳储量及碳汇效益会更加显著。不同纬度森林生态系统的二氧化碳通量具有显著的差异。随纬度的增高,森林二氧化碳碳汇的功能减弱,甚至成为大气二氧化碳的源。森林的二氧化碳通量特征存在日变化、季变化、年变化与不同发育阶段变化。我国科学家利用野外实测资料,结合森林资源清查资料,推算了我国50年来森林碳库及其动态变化,并分析了中国森林植被的二氧化碳源/汇功能。利用森林资源清查资料从不同角度对我国森林生态系统的碳贮量进行分析后指出,我国森林正起着碳汇的作用,我国主要森林生态系统碳贮量为28.11PgC,其中森林生态系统植物碳贮量为3.26~3.73PgC,占全球的0.6%~0.7%。

3.碳储量及其碳汇功能研究中存在的不足

国内外在陆地生态系统与森林生态系统的碳循环和碳储量方面进行了大量的研究,从有代表性的文献来看,还存在以下不足:

3.1研究的规模和尺度问题

一是全球尺度和国家尺度,二是局部典型的陆地生态系统和森林生态系统,而对于中尺度或区域森林生态系统的碳储量和碳汇功能的研究却较少。森林退化、土地利用变化所引起的森林生态系统碳的源/汇变化关系研究等方面,目前仍存在很大的不确定性。

3.2研究方法和手段问题

森林生物量的测定以经典的手工方法为主,整体上不重视现代高新技术的应用。对于区域尺度的森林生态系统碳的源汇变化监测还缺乏有效的手段和方法。

3.3数据等信息的标准化问题

由于森林生态系统本身的复杂性,在生物量和碳库的估测中所使用的数据还不够全面和完善,各种估计模型及其使用的参数并不一致,无统一标准。

3.4“碳汇”贸易问题

在国际范围内,发达国家通过为发展中国家提供造林资金或技术等可将其排放数额通过贸易形式减轻或转移,在陆地生态系统中,森林生态系统是最大的碳库,其碳贮量约为1146PgC(PgC指1米深度的土壤有机碳总质量,1pg=109)t,占全球陆地总碳贮量的46%。1995年~2050年全球森林植被保存和吸收碳的潜力可达60~87PgC,可能吸收同期石化燃料排放碳的11%~15%,森林系统的碳收支状况对于大气二氧化碳的循环具有重要地位。中国森林面积虽仅有世界森林的3%,人工林面积却居世界第一。目前人工林贡献了中国森林总生物量的20%和碳固定量的80%。随着中国林业战略目标的实施和重点工程的推进,中国人工林面积将进一步扩大,这就意味着,继续增加的中国森林碳汇会对中国未来的二氧化碳减排和国民经济的增长作出巨大的贡献,森林的碳汇功能进一步增强。

二氧化碳排放方式范文篇12

匡算分析

文■佟庆周剑张文婷

国务院的《“十二五”控制温室气体排放工作方案》提出,北京到2015年单位地区生产总值二氧化碳排放比2010年下降18%,这个目标简称为碳强度控制目标。因此,对源自能源活动的二氧化碳排放总量进行定量化的计算和分析,是研究北京市碳强度控制目标实现情况的一项重要的基础性工作。

一、北京市能源活动分类及二氧化碳排放机理

为了进行二氧化碳排放匡算分析,本研究依据统计机构所公布的能源平衡表和二氧化碳排放机理,对北京市的能源活动进行了以下分类:

加工转换:包括发电、供热、炼油、煤炭洗选等活动,将投入的能源转换为电力、热力、石油制品、洗精煤等新的能源品种。在北京市的能源加工转换环节,最主要的二氧化碳排放源是发电和供热,排放机理为燃烧排放,化石燃料中的碳元素在高温燃烧过程中被氧化为二氧化碳,排放至大气中。而在发电、供热之外的能源加工转换活动中,要么是发生大分子结构碳链的断裂,例如炼油,生产出的石油制品大部分仍以碳氢化合物的形式存在,极少发生碳元素被氧化为二氧化碳的化学反应;要么则仅仅是以去除能源中的杂质为目的,例如煤炭洗选,也基本不涉及二氧化碳排放问题。因此,本研究进行了简化处理,不考虑发电、供热之外的能源加工转换活动的二氧化碳排放问题。

终端能源作为燃料用途:煤炭、石油制品、天然气等作为农业、工业、建筑业、第三产业和居民生活的燃料,排放机理为燃烧排放。

终端能源作为生产原材料用途:在某些工业生产活动中,把能源作为原材料投入使用,例如北京市的一些混凝土生产企业采用石油制品沥青为原料,还有一些石油化工企业也采用石油制品生产油和防水涂料等。根据国际经验,与燃烧活动相比,终端能源作为生产原材料用途所导致的二氧化碳排放量是微乎其微的;其中还有一些过程只是发生了产品体积或浓度方面的物理变化,根本不排放二氧化碳。因此,为了简化起见,本研究不考虑终端能源作为生产原材料用途的排放问题。

从北京市行政区域以外调入电力:北京市在电力消费方面的情况较为特殊,是一个电力的净调入地区,超过2/3的电力消费量由区域外调入。全市的电力主要依靠华北电网内其他省区的电厂来供应,意味着这部分电力消费隐含了在其他省区的二氧化碳排放问题。此类二氧化碳排放在国际上被定义为电力消费所导致的间接排放。由于在能源统计方面,净调入的电量应计入实际消费地区能源消费总量之中,本研究也将净调入电量所隐含的间接二氧化碳排放量计入北京市的二氧化碳排放总量之中,这种处理方法可以比较公平地体现能源消费侧所应承担的社会责任。

二、匡算研究方法

国家发展改革委已经内部下发了《省级温室气体清单编制指南(试行)》(简称《省级清单指南》),本研究在此方法的基础上,提出简化的匡算方法,可以快速地对北京市能源活动导致的二氧化碳排放形势与趋势作出判断,计算公式如下:

EM=(EFi,j×ACi,j)(1)

式中,EM为北京市能源活动所导致的二氧化碳排放总量;下标i代表能源活动的类型,包括发电、供热、终端能源消费、电力的净调入;下标j代表能源品种;EFij为区分能源活动类型和能源品种的排放因子;ACij为区分能源活动类型和能源品种的活动水平。

在公式(1)的应用过程中,最关键的问题是排放因子和活动水平数据的获取。具体到排放因子而言,由于政府部门和统计机构尚未公布北京市的化石燃料排放因子数据,因此在目前的匡算研究中只能采用部级数据进行代替,煤炭、石油产品和气体能源的燃烧排放因子分别为2.64tCO2/tce、2.07tCO2/tce和1.63tCO2/tce;由于北京市调入的电力全部来自于华北电网,因此调入电力隐含的间接二氧化碳排放因子可以引用国家发展改革委每年公布的华北电网运行边际排放因子数据,2010年为0.9914kgCO2/kWh,2011年为0.9803kgCO2/kWh。

匡算所需的能源活动水平数据可以依靠《北京市统计年鉴》或《中国能源统计年鉴》中的北京市能源平衡表而获取,需要注意两个问题:一是能源平衡表分别给出了分品种的终端能源消费量和原材料用途的消费量,两者之差才是终端能源消费侧的化石燃料燃烧活动水平;二是应从外省区调入电量的数据中扣除从北京市调出的电量,才是净调入电力的活动水平。

三、结果分析

如表1所示,北京市能源活动的二氧化碳排放总量呈现了较低的增长趋势。其中净调入电力隐含的间接排放量占全市能源活动排放总量的1/3以上,虽然华北电网电源结构的优化导致了电网排放因子的下降,但由于全市用电量增长所导致的净调入电量的显著增加,此部分间接排放量的年均增速为6.9%,大大高于全市排放总量的增速。在化石燃料燃烧所导致的直接排放方面,这一年间已实现了绝对减排(即排放总量的降低)。

将北京市年度二氧化碳排放总量数据除以当年的地区生产总值(2010年不变价,下同),得到2010年和2011年全市万元地区生产总值二氧化碳排放量(简称为GDP碳强度)分别为1.12和1.04吨二氧化碳,这一年间的降幅为6.8%。

四、主要结论

(一)采用匡算方法可以对北京市二氧化碳排放形势和趋势进行大体上的判断

目前,北京市发展改革委和清华大学正在按照《省级清单指南》的要求,组织相关单位共同编制北京市温室气体排放清单,但由于精细化核算的工作量很大,以及部分数据的保密性要求,近期内还不具备向全社会公布北京市温室气体排放清单结果的条件。与《省级清单指南》方法相比,本研究所提出的能源活动二氧化碳排放匡算方法,虽然在计算结果的精确度方面略逊一筹,但优势在于全部活动水平数据均为公开的统计数据,可以简便快速地得到计算结果。在原始数据口径具有一致性的情况下(例如数据来源统一规定为各年度的《北京市统计年鉴》),可以对北京市二氧化碳排放形势和趋势进行大体上的判断。

(二)北京市能源活动的二氧化碳排放总量增长平缓,产业结构调整发挥了重大作用

从产业结构方面来看,第二产业占地区生产总值的比重比2010年低了0.6个百分点,第三产业的比重则上升了0.6个百分点。这一年间对于北京市产业结构优化贡献最大的是首钢的搬迁计划完成。这项搬迁工作自2005年开始启动,在2010年内,首钢在北京市仍剩余400万吨粗钢产能,至2010年底才完成了全部涉钢产能的搬迁。自2011年开始,北京市粗钢产量降为零。除首钢搬迁所导致的黑色金属冶炼与压延加工业规模大幅萎缩之外,北京市的石油和化工行业规模也有一定的缩减。对于这些高耗能行业规模的有效调控,使得北京市煤炭消费量一年间减少了400万吨标煤以上。与2010年相比,2011年北京市能源活动的二氧化碳排放总量仅增加了不到1%;其中由于煤炭消费量的减少,化石燃料燃烧所导致的直接二氧化碳排放量还有所降低。

(三)北京市能源活动的二氧化碳排放总量仍具备一定的合理增长空间

根据北京市政府部门的产业发展规划相关文件,在“十二五”期间,北京市鼓励高端制造业和新兴战略性产业等的发展,这些受到鼓励的行业类型分布在第二产业和第三产业两个部门,相关行业规模的合理增长会使全市能源消费总量和二氧化碳排放总量均有所增加。随着城镇化率的进一步提高以及机动车保有量的增加,北京市的居民生活部门和交通部门能源消费和二氧化碳排放量也会相应增加。因此,从总体趋势来看,北京市“十二五”期间能源消费总量和二氧化碳排放总量会保持一定的增长势头。