当前位置: 首页 > 范文大全 > 办公范文

逆向思维训练法范例(3篇)

时间:

逆向思维训练法范文

关键词:高中数学逆向思维培养

俄罗斯著名教育家加里宁说:“数学是思维的体操。”正如体操锻炼可以改变人的体质一样,通过数学思维的恰当训练,逐步掌握数学思维方法与规律,既可以改变人的智力和能力,也可以培养学生的创新精神和创新意识。学生的思维能力一般是指正向思维,即由因到果,分析顺理成章,而逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。因此,我们在课堂教学中必须加强学生逆向思维能力的培养。传统的教学模式往往注重正向思维而淡化了逆向思维能力的培养。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。为全面推进素质教育,加强对学生的各方面能力的培养,打破传统的教育理念,在此我从以下几方面谈谈学生的逆向思维的培养。

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以知道A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的,而有时也会从右到左运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式中,逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用,这些公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理

的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用,直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等。注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面入手解决不了就考虑从问题的反面入手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题……总之,正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、通过逆向思维的培养进一步加强灵活的教学方法

高中数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、加强举反例训练,培养逆向思维

逆向思维训练法范文篇2

数学逆向思维

培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是可以改善学生学习数学的思维方式,激发学生的创新精神,培养良好的思维品性,提高思维能力和整体素质。那么,如何在初中数学教学中培养学生的逆向思维能力呢?

一、什么是逆向思维?

所谓逆向思维,就是从与常规思维相反的方向去认识问题,从对立的角度去思考问题,寻求解题途径,解决问题的一种数学思想方法。利用逆向思维可以加深对概念、定义、定理、公式、法则、性质的正确、深刻的理解和应用,可以形成反思和换位思考的思维素质,利于学生分析思维能力的培养和提高,发展学生的智力,有效地解决复杂的问题。

二、初中数学教学中学生逆向思维能力的培养策略

1、帮助学生理顺教材的逻辑顺序。

(一)重视定义的再认与逆用,加深对定义内涵的认识。

许多数学问题实质上是要求学生能对定义进行再认或逆用。在教学实践中,有的学生能把书上的定义背得滚瓜烂熟,但当改变一下定义的叙述方式或通过一个具体的问题来表述时,他们就不知所措了。因此在教学中教师应加强这方面的训练。逆用定义思考问题,往往能挖掘题中的隐蔽条件,使问题迎刃而解。

(二)从公式的互逆找灵感。

1)、公式的互逆记忆。

数学公式是数学问题的精华之一,学习数学公式是锻炼学生思维能力的一个好好的形式之一。许多的数学公式之间联系都很紧密,很多数学问题是逆用公式的问题,要更好地解决这类问题,首先应该让学生知道公式的互逆形式,学会公式的互逆记忆。只有先记住这些公式,才有可能来解决相关的实际问题。

2)、逆用公式。

这样做往往可以使问题简化,经常性地注意这方面的训练可以培养学生思维的灵活性,变通性,使学生养成善于逆向思维的习惯,提高灵活应用知识的能力。公式逆用是学生常感到困惑的一个问题,也是教学中的一个难点,教师必须强化这方面的训练。

(三)从定理,性质,法则的互逆悟规律。

1)、让学生学会构作已知命题的逆命题和否命题,掌握可逆定理,性质和法则的互逆表述。交换原命题的条件和结论,所得的命题是逆命题;同时否定命题的条件和结论,所得命题是否命题。在教学中,教师要用一定的时间,适当地加强学生这方面的训练,打好基础。

2)、掌握四种命题之间的关系。互逆命题和互否命题都不是等价命题,而互为逆否关系的命题是等价命题。学生搞清四种命题之间的关系,不仅能掌握可逆的互逆定理、性质、法则,而且能增强思维的严谨性和灵活性,培养创造性思维能力,这也是科学发现的途径之一。

3)、掌握反证法及其思想。反证法是一种间接证法,它是通过证明一个命题的逆否命题来证明原命题正确的一种方法,是应用逆向思维的一个范例。一些问题应用反证法后就显得非常简单,还有一些问题只能用反证法来解决,反证法是学生必须掌握的一种方法。

2、强调某些基本教学方法,促进逆向思维。

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。

在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。于许多定理、法则等都是可逆的,因此许多题表面看起来不同,但其实质上是互相有紧密地联系。这就要求教师要教会学生在平时的学习中学会整理,包括公式的整理,习题的整理等。教师在分析习题时要抓住时机,有意识地培养学生把某些具有可逆关系的题对照起来解,有助于加强学生的逆向思维能力。

3、在解题中注意逆向思维能力的训练

我们知道,解数学题最重要的是寻求解题思路,这就需要我们解题之前,综合运用分析和综合或先顺推,后逆推;或者先逆推,后顺推;或者边顺推边逆推,以求在某个环节达到统一,从而找到解题途径。由此可见,探求解题思路的过程也存在着思维的可逆性,它们相辅相成,互相补充,以达到此路不通彼路通的效果。中学数学课本中的逆运算、否命题、反证法、分析法、充要条件等都涉及到思维的逆向性,在数学解题中,通常是从已知到结论的思维方式,然而有些数学总是按照这种思维方式则比较困难,而且常常伴随有较大的运算量,有时甚至无法解决,在这种情况下,只要我们多注意定理、公式、规律性例题的逆用,正难则反,往往可以使问题简化,经常性地注意这方面的训练可以培养学生思维的敏捷性。

4、作业辅导及考查以巩固对逆向思维的理解和掌握

逆向思维训练法范文

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以用A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的而有时也会从右到左的运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式的逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用。这组公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用。直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面人手解决不了就考虑从问题的反面人手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题。正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。