金属粉末研究范例(3篇)
金属粉末研究范文篇1
关键词:粉末冶金;发展;探究
DOI:10.16640/ki.37-1222/t.2017.06.011
1粉末冶金的起源c概述
1.1粉末冶金的起源
在1930年代,螺旋磨削后还原铁粉,因此铁粉和碳粉制成的铁基粉末冶金方法的机械零件获得快速发展。第二次世界大战后,粉末冶金技术就得到了快速发展,新的生产技术和技术设备,许多新材料和产品可以衍生出一些特殊材料的制造领域,成为现代工业的重要组成部分。
1.2粉末冶金的概述
粉末冶金是一项能将金属粉末或金属粉末(或金属粉末和非金属粉末的混合物)作为原料烧结,制造出金属材料、复合材料以及各种类型的产品技术。粉末冶金方法和生产陶瓷有相似的地方,都是粉末烧结技术的一部分,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决问题的关键性新材料,在整个工程系统领域的发展中发挥关键作用。但是从定义上说粉末冶金产品往往是远超出了材料和冶金的范围,通常跨越多个学科(材料、冶金、机械、力学等)的技术。特别是现代金属粉末3d打印技术,集机械工程、AUTOCAD、逆向工程技术,分层制造技术、数控技术、材料科学、激光技术共同与粉末冶金产品技术进入一个更全面的现代技术的学科。
2我国粉末冶金面临的技术难题
我国冶金技术目前的困难,是如何积极培育自己的核心竞争力的团队已成为国家和企业急需的解决问题。我们都知道汽车零部件核心技术的价值所在,高价值主要包括:发动机进排气阀,发动机连杆,传动齿轮同步器锥环和泵在主从动齿轮等等。在这些零部件中,主流技术,粉末冶金技术。如:连杆是发动机的重要部件之一,许多进口车型的绘图规则都有连杆疲劳试验载荷,而且载荷下的载荷疲劳循环次数每年超过500多万次。而国产汽车发动机连杆锻造钢连杆和连杆疲劳铸造用途大多数次大于500000周以上是比较困难的,因为汽车钢部件的连杆没有切割,微小缺陷对连杆的疲劳寿命影响较大。国外主流主要采用粉末锻造,如:别克汽车,德国的宝马,GNK公司制造的连杆甚至达到了1041MPa的抗拉强度。因此,要培养自己的核心竞争力,首先必须加强对粉末冶金技术的发展,加强国内零部件的竞争力,从技术薄弱为突破点。
3粉末冶金在我国工业家族中的布局与现状
3.1布局
根据中国粉末冶金协会的统计数据,34家企业有国内大中型粉末冶金生产(占全国64%),53家企业数量累计产量长期53家企业生产比重高达85%,大多数都是粉末冶金部件制造商有34家公司专注于进行改革发展。在过去十年中,我国受益于汽车生产的增长,汽车用粉末冶金零件的需求也呈现快速增长的局面。未来,除了汽车工业本身的成长,粉末冶金部件的需求也将从双重替代进口替代和加工零件更换中受益,粉末冶金用量将得到明显改善,保护传统粉末冶金汽车备件的需求将保持稳定增长。自2008年以来,从行业发展趋势,由于价格优势,世界粉末冶金生产焦点逐渐转向中国,日本的生产,有明显的下降。根据中国粉末冶金协会在34家粉末冶金企业生产基地,2009/2010/2011粉末冶金自行车用量分别为3.1/3.6/3.76kg/m,消费增长趋势明显,2011年略有下降,2012年并恢复到3.71kg/m的水平。行业信息网络认为,考虑到车辆节能,产品轻便和精确的吸引力,随着中国粉末冶金生产企业的未来规模大,技术加强的成本优势仍强,进口替代粉末冶金零件在需求增长的趋势下将继续发生。
3.2现状
根据中国研究结果,2017年我国粉末冶金产品的平均自行车用量至少为8公斤,这个差异不从国外计算粉末冶金用量(进口或部分装配件)的发动机,这部分进口替代需求构成了粉末冶金部件未来需求增长的一部分。我们保守估计,未来车辆本地化的粉末冶金的更换率约为自行车用量的7%-9%。研究及相关原材料,辅助材料,各种粉末制备,烧结设备制造设备的生产。产品包括轴承,齿轮,硬质合金刀具,模具,摩擦产品等。军事企业,采用粉末冶金技术生产铠装穿刺鱼雷,制动副坦克等飞机的重型武器装备。粉末冶金汽车零部件近年来已成为粉末冶金工业在中国最大的市场,约60%的汽车零件用于粉末冶金零件。
4粉末冶金在我国的发展前景
4.1发展
粉末冶金工业在中国已经有近十几年的快速发展,但与国外工业仍存在差距如:企业规模小,经济效益远,与国外企业长距离。各种产品交叉,企业竞争激烈。况且大多数企业缺乏技术支持,研发能力,产品规模低,难以与国外竞争。加工设备及配套设施落后。产品的出口贸易渠道常被限制。
4.2前景
随着中国加入了世界贸易组织,上述问题已显著经改善,因为加入世界贸易组织后,国际市场将逐渐使粉末冶金市场将进一步得到扩大的机会。与此同时,越来越多的企业在引入粉末冶金和相关技术水平的外国资本和技术,我国冶金项目有就是这样得到改善和发展的。依据目前的数据,我国的粉末冶金零件与各项产值超过55.1亿人民币,占全球市场份额非常的小,根据我国国粉末冶金制造业在2014年和2018年生产报告和销售记录预测出转型的升级空间等。中国粉末冶金行业中的54家企业协会统计,2013年我国粉末冶金零部件的生产总值实现了主营业务收入484.11亿元,增长40左右同比增长了2个百分点,利润为7.6亿元人民币,是去年同期的两倍左右。在生产粉末冶金零部件行业里头实现了工业产值突破了57亿多元人民币,其中新产品的产值达到了7.3亿RMB,新产品(新产品输出/工业产值)所占比例为14.4%。且行业销售产值达到57.73亿元RMB,其中出口价值8.28亿元RMB,出付价值/工业销售价值的21.62%。从生产规模和销售规模分析,根据中国粉末冶金协会的统计数据显示,2017年中国粉末冶金零部件的行业产量2.61142亿吨,增长49.31%;销售了182万吨左右,增长63.75%。先后通过引进了国外的先进技术和自主发展创新,在我国粉末冶金工业的新技术的表现和快速发展的趋势下,在各种我国的机械通用零部件行业里,粉末冶金行业是这一年增长和发展得最快的一个产业,我国家的GDP增长率是36.12%。当下全球制造业迅速转移到中国的步伐正在加速,各种汽车工业和高科技产业的快速发展都离不开粉末冶金的各项技术,因此。粉末冶金行业的发展给各种行业的发展带来了一个个有利的机会和良好的市场空间。所以,我国将粉末冶金产业列为了我国优先发展的行业,并鼓励外企和投资公司对其进行大力发展。
5结束语
粉末冶金工业是机械工业在重要零部件制造中的基础。近年来,中国自行发展通过不断引进国外先进技术和创新,粉末冶金工业和技术在中国的组合显示出了快速发展的趋势,是中国机械通用部件行业增长最快的行业之一。在中国经济的快速发展中,特别是在中国汽车工业发展势头强劲的推动下,中国粉末冶金行业增长强劲。粉末冶金汽车配件占45%以上,粉末冶金汽车配件成为中国粉末冶金行业最大的市场。
参考文献:
[1]张福明,钱世崇,殷瑞钰.钢铁厂流程结构优化与高炉大型化[J].钢铁,2012(07).
[2]张福明,崔幸超,张德国,罗伯钢,魏钢,韩丽敏.首钢京唐炼钢厂新一代工艺流程与应用实践[J].炼钢,2012(02).
[3]殷瑞钰.高效率、低成本洁净钢“制造平台”集成技术及其动态运行[J].钢铁,2012(01).
[4]顾里云.首钢京唐钢铁公司能源管控系统建设的理论与实践[J].冶金自动化,2011(03).
金属粉末研究范文
1高速压制成形技术最新研究进展
1.1成形装备
成形设备是实现粉末冶金高速压制成形的硬件基础,是发挥高速压制成形技术优势的前提条件,因此成形设备的研究进展也是高速压制技术研究人员关注的重点。为使冲击锤头获得高速度和高能量脉冲,目前可以采用的技术包括压缩空气、燃烧汽油-空气混合气、爆炸、电容器放电、叠并磁场、磁力驱动和机械弹簧等[2]。目前,基于液压驱动、重力势能驱动、机械弹簧蓄能驱动的高速压制成形设备进展较快。Hydropulsor公司以专利技术液压动力单位控制油路系统实现锤头的高速下降和提升,可实现高速的冲击压制和在极短时间间隔内多次高速压制,该公司已经成功开发出第四代HVC压机,可供应2000t、900t、350t、100t等不同规格的机型,并销往多个国家和地区,对高速压制成形技术的研究起到积极的推动作用。但该类HVC成形设备成本较高、售价高昂,且压制速度通常在10m/s以下,无加热等辅助装置,在一定程度上限制了它的普及。重力势能驱动的HVC成形装置具有成本低廉,压制速度调节范围大等优势引起了研究人员的高度重视,华南理工大学肖志瑜教授等人[3]自行设计制造了一种重锤式温粉末高速压制成形试验装置。该装置采用独特的冲击结构,直接利用重力势能获得压制能量,通过调节重锤下落高度获得不同的冲击速度,最大理论速度可达18.78m/s,与Ku-mar[4]等人采用的重锤式试验装置冲击速度只能达到10m/s相比,具有明显的优势。该装置通过加热圈直接对模具进行加热,替代了热油加热,简化了加热元件的安装,加热温度可以精确控制,通过测温仪可以读出模具温度。同时,拿掉加热圈,就可以进行传统的高速压制,从而进行高速压制和温高速压制的对比实验,为研究提供了极大的方便。华南理工大学邵明教授等人[5],自行设计和制造了一种基于机械弹簧蓄能的粉末冶金高速压制压力机,并用于基础探索研究。该设备可以将气动、液压或其他动力机构能量储蓄在机械弹簧中,通过一个锤柄锁紧释放机构将压缩弹簧的机械势能瞬间释放,驱动冲击锤头达到10m/s以上的高速度,使压制瞬间的重锤冲击速度达到HVC技术的要求,并将冲击波通过上模冲传递给金属粉末颗粒,使其在极短时间内致密成形。
1.2模具结构优化
模具的稳定性和寿命影响着高速压制技术的工业化应用,而改善高速压制模具寿命的手段不外乎于合理选材和优化模具结构设计。在高速压制过程中,上模冲要承受剧烈的冲击,因此宜选用韧性好的材料;而模具结构优化方面,一般认为冲锤与模冲直径相等且均为等截面杆时,对模冲寿命和撞击效率来说都是最佳选择,但这势必会缩小高速压制(HVC)技术的应用范围,因此需要对模具进行进一步的结构优化,目前利用高速压制技术除已成功制备了圆柱体、环形、棒体和凸轮等单层零件外,还可以成功制备轴承盖、牙齿冒等复杂多级产品。如Hinzmann[6]等人即成功设计出可用于多级零部件高速压制成形的模具,他指出模具设计时采用单个上模冲和每级一个下模冲的结构更有利于模具寿命和冲击能量的传递;Le[7]等人用高速压制的方法将WC-Fe等材质成功压制成多级试样,并对界面的凝聚力和界面几何尺寸进行了分析;法国机械工程技术中心(CETIM)采用HVC技术成功制备了多阶零件和有内齿或沿高度方向有外齿的复杂形状部件[8];Eriksson等人[9]采用HVC和弹性模相结合的方法,使冲击能量通过弹性模以准等静压方式转移至零件的不同部位进行压制,成功制备了形状复杂的3D齿帽零件。
1.3成形过程数值模拟
数值模拟能大幅度降低设计成本、缩短设计周期,因此对高速压制致密化过程的数值模拟也是近几年的研究热点。对于粉末压制成形的数值模拟,目前主要是基于金属塑性力学和广义塑性力学两种方法,但在低密度情况下,其假设条件与实际情况有出入,因此在实际应用中,粉末压制模型是以完全致密化材料的基本模型为基础,加上给定的一系列引起塑性流动的条件而建立的。Haggblad[10,11]等利用Hopkinson实验装置对硅胶和钛粉进行高速压制,根据所得数据分别建立了相应的数学模型,用有限元法模拟了硅胶模中压制钛粉的情况得出密度分布和最佳尺寸设计,其结果与实验结果一致。中南大学的郑洲顺教授[12]等对高速压制成形过程中应力波的传播特征和粉末流动过程进行了数学建模和数值模拟,其研究结果表明,高速压制过程中,应力波的传播会使粉末应力突跃到峰值,每层的应力峰值随时间以指数衰减,从上层到下层应力峰值呈指数下降;应力波作用后,铁粉压坯垂直方向的线密度值从上层到底层递减,中间各层的线密度均匀;压制过程开始后,密度最先变化的是底层的单元,它们之间的空隙迅速缩小(对应颗粒重排),顶层的单元继续往下运动(对应颗粒塑性变形),顶层颗粒受压继续往下运动而底层颗粒运动基本达到平衡,粉末的密度分布开始趋于均匀,这一过程与高速压制成形的试验结果相符[13]。Jerier等[14]建立了一种高密度粉体接触模型,并在YADE开源软件系统上进行了离散元(DEM)数值模拟,其结果与多粒子有限元数值模拟及试验结果吻合程度均较高,在一定程度上克服了离散元法(DEM)数值模拟不能正确推演高密度粉末压制过程应力演变的缺点,为金属粉末高密度压制的数值模拟拓展了新理论和新方法。秦宣云[15]等通过等效热阻法建立了粉末散体空间导热的并联模型,并考虑了热辐射的贡献,推导的有效导热率的计算公式表达了分形维数、温度对有效导热率的影响。
1.4致密化机理
高速压制技术已经成功用于生产实际,但高速压制的致密化机理目前尚无定论,HVC致密化机理的分析也一直是研究热点之一。果世驹教授等人[16]提出了“热软化剪切致密化机制”,据此给出了相应的压制方程,该方程可合理地定性与定量解释高速压制下粉末压坯的致密化行为与特性;Sethi等人[2]认为HVC过程中并无冲击波产生,粉末体受冲击时,应力波形是一种逐渐上升的波形,在冲击速度不是非常高的情况下,很难在粉末内产生真正的冲击波;北京科技大学曲选辉教授等人[17]对铁粉、铜粉、钛粉等多种粉末进行的压制中证明了HVC过程中温升现象的存在,但并未发现绝热剪切现象;易明军等[18]初步研究了HVC过程中应力波波形的基本特征和对压坯质量的影响,结果表明,应力波为锯齿波形,每一个加载波形上都有数个极值点,其持续时间受加载速率的影响,且应力波在自由端面反射后会造成拉应力,从而导致压坯表面分层和剥落。陈进[19]对高速压制致密化机理进行了初步探讨,他认为粉末剧烈的塑性变形和颗粒间的摩擦产生较大温升,对粉末致密化起到主导作用。此外在成形过程中,气体绝热压缩对致密化也起到了重要的作用,即在高速压制时,瞬间内气体难以逸出而产生绝热压缩,使温度升高,从而使孔隙中气体分子的热运动加速,使粉末散体的传热增强,能量沉积在颗粒界面而使其软化,有利于进一步致密化。此外,高速压制的压坯密度不仅取决于冲击能量,还与压坯质量有很大关系,因此应该采用既能体现冲击能量又能反映压坯质量的质量能量密度的概念,即单位质量的压坯在压制过程中所受到的冲击能量,单位为J/g。闫志巧等[20]通过钛粉高速压制试验得知,对外径60mm内径30mm圆环形压坯,质量能量密度为40.1J/g时相对密度达到76.2%;而对直径20mm的圆柱形压坯,质量能量密度为121.7J/g时相对密度达到96.0%;不同压坯形状的致密化机理有所不同,圆环形压坯主要以颗粒滑动和颗粒重排为主,而圆柱形压坯主要以塑性变形为主。目前HVC研究的压制速度一般在10m/s左右,其机理无法套用爆炸成形的致密化机理,需要进一步进行研究与探索,尤其是重点研究粉末颗粒的微观行为,如粉末塑性变形、粉末碎裂等,以及粉末颗粒界面的显微组织形成与演变,粉末颗粒边界的扩散、焊合过程,孔隙形状的演变等现象。
1.5HVC的成分体系适应性
近几年,国内外研究人员已经对铁粉、铜粉、钛粉、合金钢粉末、软磁材料以及聚合物等成分体系的高速压制致密化行为进行了初步探索,如Bos[21]等人所在的SKF公司用HVC技术大规模制备高密度、高强度的铁基和316L不锈钢零件,所生产的铁基齿轮件密度可达7.7g/cm3;王建忠[22,23]等人对铁粉和铜粉的高速压制试验表明:单次压制铁粉时,当冲击能量增加到6510J时生坯密度达到7.336g/cm3,相对密度约为97%;单次压制铜粉时,当冲击能量为6076J时,试样的生坯密度达到最大,为8.42g/cm3,相对密度约为95%;Eriksson[24]等人采用HVC技术制备了致密度为98.5%的钛/羟基磷灰石复合压坯,在500℃的低温即可实现材料的烧结;闫志巧[25]等人的研究表明,高速压制可制备高密度的钛粉压坯,当冲击能量为1217J时,直径为20mm圆柱试样的压坯密度最大,达到4.38g/cm3,相对密度为97.4%;中南大学的王志法[26,27]教授等人在950℃高速压制获得了相对密度大于80.65%的W骨架,从而为高温熔渗制备90W-10Cu复合材料奠定了基础;Andersson[28]等人指出,由于高速压制(HVC)技术能显著提高磁粉的压制密度,从而能大幅提高其磁性能,使软磁材料具有更强的竞争力和更广泛的应用范围;Poitou[29]等人对聚四氟乙烯进行高速压制,发现其密度、晶体质量分数、抗磨损性能等物理和力学性能相对常规压制有所提高;Jauffres[30,31]等人采用高速压制技术对超大分子量聚乙烯进行成形,研究发现其杨氏模量、延伸率、屈服强度、蠕变强度和耐磨性等各项性能指标均优于传统压制成形方法。在上述研究的基础上,应进一步拓展合金钢粉末、复合材料粉末、铜合金粉末、钨合金粉末、铝合金粉末、磁性材料及非晶合金材料等成分体系的高速压制技术,从而为制备高密度高性能粉末冶金制品提供新途径。
2高速压制成形技术的发展方向
高速压制是在传统模压中输入高速度机械能产生的新型压制技术,作为近十年才发展起来的一种新技术,其相关基础研究还不够系统和深入。此外,为了进行技术创新,可以考虑将高速压制技术与温压、模壁、复压复烧等工艺有机地结合起来,更深入、更全面地进行探索。尤其要深化以下几个方面的研究:
2.1温高速压制
华南理工大学肖志瑜教授等人[3]提出了一种高速压制和温压相结合的温高速压制(warmhighve-locitycompaction,简称WHVC)技术的思路,并设计制造出了实验装备,开展了相关基础研究,并取得一系列研究成果。其实验结果表明,温高速压制能否获得更高的压坯密度,取决于粉末的种类和特性。对于316L不锈钢粉末、混合铁粉、电解铜粉等粉末来说,温高速压制压坯密度高于传统高速压制,这是因为:(1)在温度场条件下,粉末中潮气得到充分挥发,同时粉末中气体也得到较好地排出;(2)在一定的加热温度下能够降低粉末的屈服强度,延缓其加工硬化程度并提高其塑性变形能力,塑性变形能力的改善为颗粒重排过程提供协调性变形,克服粉末颗粒之间的相互牵制,从而降低颗粒重排阻力,有利于颗粒重排的充分进行。而对于铝粉来说,温高速压制和传统高速压制致密化程度相差不大,这是因为铝是面心立方结构的金属,且具有12个滑移系,发生滑移的临界分切应力很小,塑性变形能力非常高,传统高速压制已经能够达到理想的压坯密度。在实验基础上,还对温高速压制的致密化机理和应力波特点进行了分析,认为在致密化过程中温升效应起了很大作用,致密化过程主要以剧烈塑性变形和颗粒冷焊为主。截止目前,温粉末高速压制成形技术的研究只有华南理工大学开展,其研究具有前瞻性和新颖性,有望在高密度成形中获得新的突破。
2.2条件对HVC结果的影响
由于高速压制自身的特点,HVC成形粉末时可在少量剂甚至无剂的条件下成形[32],减少了脱脂和间隙元素引起的污染。如何在剂最少的前提下获得最理想的致密化程度是一个重要的研究目标。对于铁基、铜基等成形性较好的粉末通常采用模壁(即外),如邓三才等[33]研究了模壁对Fe-2Cu-1C粉末高速压制成形效果的影响,研究结果表明,模壁能有效降低粉末与模壁之间的摩擦,减少粉末颗粒与模壁冷焊的机会,相对提高有效压制压力,从而获得较高的生坯密度和生坯强度,以及较弱的弹性后效;此外,在相同压制速度时,有模壁时的最大冲击力要高于无模壁时的最大冲击力,且脱模力要小5~20kN。对于钛粉、钼粉等高硬化速率粉末的高速压制,通常采用内部添加剂的方式(即内),如闫志巧等人[34]研究了剂含量对钛粉高速压制性能的影响,结果表明,加入适量的剂,可以提高钛粉成形时的质量能量密度,从而获得更高密度的压坯。当剂加入量为0.3%(质量分数)时,钛粉成形的最大质量能量密度为0.192kJ/g,压坯密度为4.38g/cm3,相对密度为97.4%。此外,适量的剂能提高钛粉压制过程中的最大冲击力降低脱模力,但却会显著降低压坯的强度,密度较低的纯钛压坯的强度显著高于致密度较高的含剂压坯。对于不同剂含量的压坯,当密度接近时,其强度相差不大。在更广泛的成分体系内,研究方式、剂种类、剂添加量对高速压制成形效果的影响,开发适合高速压制条件下的新型剂,如高分子极性剂、大分子极性剂、无机层间化合物剂等都是今后较有价值的研究方向。
2.3复压复烧对HVC效果的影响
一般认为,与传统压制压坯密度只取决于压制压力而不随压制次数的增加而显著提高不同,高速压制的能量是可以累加的,即可以通过多次小冲击能量的压制得到与一次大冲击能量压制相同的效果,但王建忠等[35]对铁粉进行高速压制时发现,在总冲击能量相同的情况下,分两次压制制备的压坯密度最大,分三次压制的最小,一次压制的居中。Metec粉末冶金公司采用高速复压技术(HVR)制造出密度为7.7g/cm3的铁基粉末冶金制品,此外还通过高速压制316L不锈钢金属粉和1385℃烧结工艺生产出高密度不锈钢零件,此类不锈钢制品在抗拉强度、冲击韧性和延展性等方面性能均较为突出。陈进等[36]在多次压制的基础上对铁粉进行了复压试验,即在两次高速压制之间引入预烧结工序,其研究结果表明,在冲击能量相同的条件下,复压比二次高速压制得到的生坯的密度更高,且随着复压冲击能量的增加生坯密度逐渐增大,在相同复压冲击能量下,预烧结温度为780℃时生坯密度最高,径向弹性后效最小。复压能大幅度提高生坯密度,主要是因为压坯经过预烧结阶段的回复与再结晶,粉末颗粒的强度和硬度下降,弹性储能得到一定的释放,再进行复压后,剂的去除促进更多的粉末颗粒发生塑性变形、微观焊接和熔合,颗粒界面得以消失,这有利于致密度的提高。此外,复压能量更多用于预压坯的塑性变形,弹性能量释放的少,一定程度上减轻了压坯尺寸的弹性膨胀,使得压坯与模具模壁的摩擦减小,从而导致复压时的脱模力较单次高速压制时显著降低。Fe-C粉末复压压坯经过复烧之后,密度高,孔隙少,珠光体较多且分布均匀,裂纹可能在晶粒内部沿着珠光体相或颗粒“烧结”界面展开,诱发了沿晶断裂,使得抗弯强度明显增强。复压复烧工艺是进一步发挥高速压制优越性的重要方向之一,需要进行更广泛、更细致、更深入的研究。
金属粉末研究范文
1.激光熔覆技术
激光熔覆技术的研究始于20世纪70年代,美国AVCO公司就汽车发动机许多易磨损件进行了激光熔覆技术的研究。1981年英国Rolls.Royce公司成功在喷气发动机叶片上涂覆钴基合金面并显着提高了其耐磨性。由于这一新技术具有巨大的发展潜力,并能产生较大的经济效益,因此,在生产中获得了广泛推广及应用。
激光熔覆技术在目前材料表面改性技术中应用较广泛。激光熔覆是在基体上添加不同成分的材料,利用高能激光束辐照基体,熔覆粉末和基体形成一薄层,这一薄层快速熔化并凝固成形,且基体对熔覆层稀释度极低,因此熔覆层与基体冶金结合良好,可以制备耐热、耐蚀、耐磨、抗氧化、抗疲劳或具有光、电、磁特性的表面保护涂层。
2.激光熔覆工艺方法
按熔覆材料的供给方式不同,激光熔覆工艺方法分为两种:激光熔覆合金预置法和合金同步送粉法。科技论文。
2.1合金预置法
合金预置法是在基体的表面上通过一些方法将预涂材料置于其上,然后采用高能激光束辐照,涂层表面吸收能量使熔覆部位迅速升温、气化和熔化,激光束离开后,熔覆层与基体呈现良好的冶金结合。
熔覆材料的加入形式通常有粉末、丝材、板材三种,其中以粉末的形式最为常用。预置法一般包括粘结法和热喷涂法。对于粉末类材料,预置的两种方法都可以。热喷涂主要优点是喷涂效率高、容易控制沉积厚度的均匀性,且与基材接合牢固,这种方法不足之处是粉末利用率低,受工件形状限制和成本相对较高。粘接法是利用粘结剂,在基底材料的表面上,将粉末调和成膏状涂上,这种方法的不足之处在于效率低,很难得到厚度均匀的涂层,可能会妨碍熔化或引起过渡稀释;同时由于沉积层的导热性不好,会消耗更多的能量;通常仅对熔覆面积较小的工件适用,这种方法在实验室里采用。对于丝类合金材料,既可利用预置粘结法,也可利用热喷涂法进行喷涂,但板类合金材料主要利用预置粘结法。科技论文。
2.2合金同步送粉法
合金同步送粉法是将材料直接送入激光工作区,使供料和熔覆同时完成。利用激光作用,把熔覆材料和基体一起熔化,然后冷凝成熔覆层。这种方法可以把激光能量充分利用,大大降低了熔覆层的不均匀性,同时还减少了激光对基体的热作用。合金同步送粉法过程比较简单,而且耗材少,同步送粉法可控性好,在实际应用中是很好的方法。与预置法相比,同步送粉法是激光熔覆技术的发展趋势。
3.激光熔覆材料体系现状
激光熔覆粉末按照材料成分构成不同,主要分为自熔性合金粉末、陶瓷粉末和复合粉末等。
3.1自熔性合金粉末
自熔性合金粉末指加入具有强烈脱氧和自熔作用的Si、B等元素的合金粉末。目前常用的是Ni基、Co基和Fe基自熔性合金粉末。
Ni基合金粉末:这种合金粉末应用广泛,具有合理性价比和良好材料性能,如具有良好的韧性、抗氧化性等性能,因而在激光熔覆材料中被研究的最多、应用的最广。Ni基自熔性合金粉末可分为Ni-B-Si和Ni-Cr-B-Si两个合金系列。Ni基自熔性合金粉末主要适用于局部要求耐磨、耐热腐蚀的构件,熔覆Ni基的功率密度比铁基要高一些。Ni基合金粉末不足之处是耐高温性能较差。Ni基合金粉末中常用的是Ni60,Ni45。
Co基合金粉末:具有良好耐高温性能,耐磨耐蚀性能也比较强,经常被应用于石化和冶金等领域。另外,钴基粉末合金在熔化时有很好的润湿性,其熔点相比碳化物要低,受热后Co元素最先熔化,与合金凝固时最先形成新物相,得到光滑平整的熔覆涂层,提高熔覆层与基体的结合强度。目前,常用的Co基合金的主要元素是Ni、C、Cr和Fe等,其中Ni元素用来降低Co基合金熔覆层的热膨胀系数,减小合金的熔化温度区间,有效抑制熔覆层开裂现象,提高熔覆层对基体的润湿性。Co基合金粉末不足之处是价格较高。
Fe基合金粉末:Fe基合金作为激光熔覆材料,适用于温度要求不高(温度小于400℃)的耐磨零件,基体多为铸铁和低碳钢,其最大优点是成本低耐磨性强。科技论文。Fe基合金的主要元素是Ni、B、Si及Cr等元素,其中B、Si及Cr元素是用来提高熔覆层的硬度和耐磨性,Ni元素用来提高熔覆层的抗开裂能力。由于铁基合金成本低,经常代替镍基合金使用,与Ni基合金相比,铁基合金作为激光熔覆层的不足之处是熔覆层韧性稍差。
综上,Ni基或Co基合金具有良好的自熔性和抗氧化性,较高的耐蚀性能,Ni基或Co基合金粉末的自熔性比Fe基合金粉末要好,但价格也比Fe基自熔性合金粉末高;Fe基合金粉末虽然比Ni基或Co基合金粉末便宜,但自熔性差,抗氧化能力差。具体使用时,应合理选择自熔性合金粉末。
3.2陶瓷粉末
陶瓷粉末主要有两种:硅化物陶瓷粉末和氧化物陶瓷粉末,其中用的最多的是氧化物陶瓷粉末。陶瓷粉末作为熔覆层有很多优点,如耐磨耐蚀等性能都比较强,所以陶瓷粉末常被用于制备高性能熔覆层;目前,研究生物陶瓷材料也是一大热门。
激光熔覆金属陶瓷可以通过高能激光束作用,在金属表面熔覆一层陶瓷材料,结合区形成均匀、致密且与基体结合牢固的复合层。陶瓷材料作为熔覆层有耐磨耐蚀的优点,但陶瓷材料作为熔覆层也有不足之处,这种材料与基体的热膨胀系数、弹性模量及导热系数等差别较大,这些性能的不匹配造成熔覆层开裂现象和空洞现象。近年来,用激光的高能量熔覆涂层技术,可以得到高硬度和耐磨损的陶瓷涂层。
3.3复合粉末
复合粉末是指陶瓷材料和金属合金混合在一起的粉末,作为熔覆材料,这种粉末相比金属粉末具有更强的材料特性,在目前材料表面改性方面应用比较广泛。陶瓷材料包括碳化物、氮化物、硼化物、氧化物及硅化物等硬质材料。复合粉末和不同成分的合金粉末进行机械混合的粉末不同。不同点在于复合粉末中的单个粒子的组成成分,至少要有两种或两种以上不同成分的固相材料,而且不同成分的固相材料有明显的相界面,不同成分的固相组元之间一般为机械结合。利用激光熔覆技术,把复合粉末制备成陶瓷颗粒增强金属基复合涂层,这种熔覆层很好地将合金材料的高强度、高韧性和陶瓷颗粒相优异的耐磨、耐蚀和耐高温等性能结合在一起。
复合粉末能大大提高熔覆层的耐磨性能,应用最多的是钴包碳化钨和镍包碳化钨。在复合粉末中,碳化物颗粒的加入方式有两种:第一种方式是直接加入激光熔池;第二种方式是直接与金属粉末混合成粉末。其中第二种方式是比较有效的,因此用的比较多。
4结论