当前位置: 首页 > 范文大全 > 办公范文

量子力学的理论(6篇)

时间:

量子力学的理论篇1

关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理

量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的论战,至今尚未结束。

一、量子论的早期

1普朗克的能量子假设

普朗克在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。但是,他经过几个月的紧张努力也没能从力学的普遍理论直接推出新的辐射定律。最后只好用玻尔兹曼的统计方法来试一试。他根据黑体辐射的测量数据计算出普适常数,后来人们称这个常数为普朗克常数,也就是普朗克所谓的“作用量子”,而把能量元称为能量子。

2光电效应的研究

普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。在那篇论文中,爱因斯坦总结了光学发展中微粒说和波动说长期争论的历史,提示了经典理论的困境,提出只要把光的能量看成不是连续的,而是一份一份地集中在一起,就可以作出合理的解释。与此同时,他还大胆地提出了光电方程,当时还没有足够的实验事实来支持他的理论,因此,爱因斯坦称之为“试探性观点”。但他的光量子理论并没有及时地得到人们的理解和支持,直到1916年,美国物理学家密立根对爱因斯坦的光电方程作出了全面的验证,光量子理论才开始得到人们的承认。3固体比热的研究

1906年,爱因斯坦将普朗克的量子假说应用于固体比热,解释了固体比热的温度特性并且得到定量结果。然而,这一次跟光电效应一样,也未引起物理界的注意。不过,比热问题很快就得到了能斯特的低温实验所证实。量子理论应用于比热问题获得成功,引起了人们的关注,有些物理学家相继投入这方面的研究。在这样的形式下,能斯特积极活动,得到比利时化学工业巨头索尔威的资助,促使有历史意义的第一届索尔威国际物理会议的召开,讨论的主题就是《辐射理论和量子》,这次会议在宣传量子理论上起了很好的作用。

4量子假说运用于原子模型

哈斯是奥地利的一位年表物理学家,他在研究黑体辐射时很早就注意到了量子论。汤姆生专门讨论原子结构的书《电与物质》和维恩的文章促使他运用量子公式来阐述原子结构,这是将量子假说运用于原子结构的最初尝试。

丹麦人玻尔坚信卢瑟福的有核原子模型学说,为了证实其正确性,玻尔利用量子假说来解决原子的稳定性问题。要描述原子现象,就必须对经典概念进行一番彻底的改造,因为一致公认的经典电动力学并不适于描述原子规模的系统行为。1913年,玻尔在他的第二篇论文中以角动量量子化条件作为出发点来处理氢原子的状态问题,得到能量、角频率和轨道半径的量子方程。可见,玻尔的对应原理思想早在1913就有了萌芽,并成功地应用于原子模型理论。玻尔的原子理论完满地解释了氢光谱的巴耳末公式;从他的理论推算,各基本常数如e、m、h和R(里德伯常数)之间取得了定量的协调。他阐明了光谱的发射和吸收,并且成功地解释了元素的周期表,使量子理论取得了重大的进展。

二量子力学的建立与发展

1德布罗意假说2电子自旋概念的提出半年后,荷兰著名物理学家埃伦费斯特的两个学生在不知道克罗尼格工作的情况下提出了同样的想法,并写成了。这得到了海森伯的赞同,不过,如何解释双线公式中多出的因子2,一时还得不到解答。玻尔试图从相对论推出双线公式,但仍然没有结果。终于,在1926年,在哥本哈根研究所工作的英国物理学家托马斯才解决了这个问题。这样一来,电子自旋的概念很快被物理学界普遍接受。

3矩阵力学的创立集正是线性代数中的矩阵,此后,海森伯的新理论就叫《矩阵力学》。

玻恩着手运用矩阵方法为新理论建立一套严密的数学基础。与数学家约丹联名发表了

《论量子力学》一文,首次给矩阵力学以严格的表述。接着,玻恩、约丹、海森伯三人合作,系统地论述了本征值问题、定态微扰和含时间的定态微扰,导出了动量和角动量守定律,以及强度公式和选择定则,从而奠定了量子力学的基础。

4波动力学的创立5波函数的物理诠释6测不准原理和互补原理的提出海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要“坐标”、“速度”之类的词汇,这些词汇已不再等同于经典理论中的那些词汇。为解释这些词汇坐标的新物理意义,海森伯抓住云室实验中观察电子径迹的问题进行思考。他意识到电子轨道本身的提法有问题,人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电了的不确定的位置,而不是电子工业的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限定在最小范围内,但不能等于零。这就是海森伯对不确定性的最初思考。海森伯的测不准原理是通过一些实验来论证的,他还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析得出结论:能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。

海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。于是提出了互补原理。他指出,平常大家总认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的作何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。对经典理论来说互相排斥的不同性质在量子理论中却成了互相补充的一些侧面。波粒二象性正是互补性的一个重要表现。其他量子力学结论也可从这里得到解释。

三关于量子力学完备性的争论

玻恩、海森伯等人提出了量子力学的诠释之后,遭到了爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理,双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,至今还未告结束。

正是由于以爱因斯坦为代表的EPR一派和以玻尔为代表的哥本哈根学派的长期争论,才使得量子力学越来越完备,很多问题得到了系统性的研究。

1965年,贝尔在定域隐参量理论的基础上提出了一个著名的关系,人称贝尔不等式,于是有可能对隐参量理论进行实际的实验检验,从而判断哥本哈根学派对量子力学的解释是否正确。从70年代开始,各国物理学家先后完成了十几项检验贝尔不等式的实验。这些实验大多数都明显地违反了贝尔不等式,而与量子力学理论预言的相符。但也不能就此对爱因斯坦和玻尔的争论作出最后裁决。目前这场论战还在进行之中,没有得出最后的结论。

[2]卢鹤绂.哥本哈根学派量子论诠释.上海:复旦大学出版社,1984

量子力学的理论篇2

关键词:物理本体;物理实体;量子现象;主观;客观

基金项目:国家社会科学基金项目“量子概率的哲学研究”(16BZX022)

中图分类号:N03文献标识码:A文章编号:1003-854X(2017)06-0054-06

一、引言

时间和空间是人类所有经验的背景。除去存在的事物,时间、空间什么也不是,不存在只有一件事物的时间、空间,时空是事物之间相互关系的一个方面。

人类通过感性经验认知的时空,称作经验时空;以科学原理和科学方法指导认知的时空是科学时空;牛顿时空、狭义相对论时空、广义相对论时空、量子力学时空,是经验时空的科学提升和科学发展,称作物理时空①。物理时空是科学时空。描述现象实体的时空是现象时空,经验时空、物理时空、科学时空均是现象时空。而未经观察的“自在实体(物理本体)”所在时空,称为“本体时空”。“本体时空”是复数的②,因此,人类实质生活在复数时空中。作为自然人,观察者存在于“本体时空”,实时空是人类对时空认识的简化③。

主体、客体、观察信号是人类认知自然的三大基本要素④。一般“现象对观察者的主观依赖性”有其客观原因,体现观察信号的自然属性对观察者在认知中的影响。当把现象对观察者的主观依赖性转化为时空的属性后,就可以达到客观描述物质世界⑤。所谓客观描述就是理论计算与经验及科学实验结果相符。

考虑观察信号的客观作用并纳入时空理论的科学建构之中,客观描述物理现象,是物理学家的重要工作。一般,哲学认知中没有明晰“观察信号中介作用”的客观地位,不管“机械反映论”,还是“能动反映论”,都自动将其融入“反映论”理论体系,尤其是前者,往往容易导致主观唯心主义的滋生。

狭义相对论用光对时,考虑了光对建立时空的贡献;牛顿时空是对时信号速度c趋于无穷大的极限情态;考虑引力场对建立时空的影响,引力时空是弯曲的,狭义相对论的平直时空是它的局域特例。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但主体与描述对象的关系没有变,主体对客体的描述是客观的。那么是否主体对认知对象完全没有主观影响?如果有,它如何产生,又如何消解,实现客观描述物质世界?经典力学中,人类的处理方法是通过揭示“现象对观察者的主观依赖性”及其产生机理,在不同认知领域区分描述中可以忽略的和不可忽略的,能忽略的舍弃,不能忽略的转化成时空的属性,实现客观描述;而从牛顿力学(或相对论力学)到量子力学,时空没有变化,描述对象具有波粒二象性,“量子现象的主观依赖性”更为突出。如何消解“量子现象对观察者的主观依赖性”,实现量子现象的客观描述,一直是量子力学基础讨论的热点。量子力学必须有自己的客观描述量子现象的时空⑥。

量子力学时空是闵氏时空的复数拓展和推广⑦,由此可以实现客观描述量子世界。它与相对论时空有交集,也有异域。有因必有果,反之亦然,时间与因果关系等价⑧。量子力学中的非定域性,与能量、动量量子化及量子态的突变性相关联。突变无须时间,导致因果链断裂,与因果关联的相互作用也被删除,由此引进了类空间隔。平行并存量子态的出现,是不遵从因果律的量子力学新表现;当能量、动量和相互作用变得连续,宏观时序得到恢复时,回到相对论时空,量子测量中“量子态和时空的坍缩”⑨是不同物理时空的转换,希尔伯特空间只是它们的共同数学应用空间⑩。

时空不是绝对的,相对时空有更广阔的含义,人类需要扩大对时空概念的认知,不同的认知层次有不同的时空对应,复数时空更为本质。人们不应该将所有领域的物理实体归于某一时空描述,或者用一种时空的性质去否定另一种时空的存在。还是爱因斯坦说得好:是理论告诉我们能够观察到什么。当然,新的实验事实又将告诉人们,理论及其对应的时空应该如何修改和发展。理论不同时空不同,时空具有建构特征。

二、时空的哲学认知与物理学描述

时空是哲学的基本概念,也是物理学的基本概念。马克思主义哲学认为,时间和空间是物质的存在形式,既不存在没有时空的物质,也不存在没有物质的时空。笛卡尔指出,空间是事物的广延性,时间是事物的持续性;康德认为,时空是感性材料的先天直观形式;牛顿提出时间和空间是彼此分离,绝对不变的,强调数学的时间自我均匀流逝;莱布尼茨说,空间是现象的共存序列,时间与运动相联系;黑格尔认为,事物运动的本质是空间和时间的直接统一。休谟认为,时、空上的接近和先后关系与因果性直接相关。中国的“宇”和“宙”就是空间和时间概念,它是把三维空间和一维时间概念同宇宙密切联系在一起的最早应用{11}。

哲学具有启示作用,但时空概念如果不与人的社会实践、科学实验、科学理论及其数学物理方法相联系,就只能停留在形而上,无法上升为科学理论概念。

物理学中,空间从测量和描述物体及其运动的位置、形状、方向中抽象出来;时间则从描述物体运动的持续性、周期性,以及事件发生的顺序、因果性中抽象出来;空间和时间的性质,主要从物体运动及其相互作用的各种关系和度量中表现出来。描述物体的运动,先选定参照物,并在参照物上建立一个坐标系,一般参照物被抽象成点,它就是坐标系的原点;假定被描述物体的形体结构对讨论的问题(或对参照物的时空)没有影响,将物体抽象成质点,讨论质点在坐标系中的运动及其相关规律,这就是物理学。由此,“时空是物质的存在形式”的哲学认知也就转化为人类可操作的具体物理理论描述。

可见,时空的认知与人类的社会实践、科学实验、科学进步直接相关,离不开物理和数学方法的应用。笛卡尔平直空间、闵可夫斯基空间、黎曼空间都已作为物理学所依托的几何学,在牛顿力学、狭义相对论、广义相对论中得到了充分应用。由此,几何学被赋予了物理意义。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但描述对象与观察者之间的关系没有变,描述是客观的,并且描述对象都可抽象成经典的粒子,采用质点模型。量子力学不同,从牛顿力学(相对论力学)到量子力学,描述量子现象的时空没有变化{12},物理模型没有变,但量子现象对观察者有明显的主观依赖性,难以客观描述微观量子现象。深入分析,解决的办法有两种,一是更换物理模型的同时也改变物理时空,消除“量子现象对观察者的主观依赖性”,实现客观描述微观量子客体;二是改变时空的同时,保留“量子现象对观察者的主观依赖性”,将本体、认识、时空融为一体,主观纳入客观,模糊主客关系。双4维时空量子力学基础采用了第一种方法。通过场物质球模型,把点模型隐藏的空间自由度释放出来;在改变物理模型的同时,也改变了描述时空;将不是点的微观客体自身的空间分布特性,转化为描述空间的属性,客观描述量子客体。我们认为,第二种方法将主观认识不加区分地“融入时空”,有损客观性、科W性,量子力学时空必须是描述客观世界的时空。物理时空需要建构。

三、牛顿绝对时空中“现象对观察者的主观依赖性”及其“消解”

众所周知,物理学对物体运动状态的描述,理应包含参照物和被描述物体自身的时空特征,而参照物和物体自身的时空特征,必须通过观察发现。观察需要观测信号,物体运动状态及其时空特征必然带有观测信号的烙印{13}。

“物理本体”不可直接观察,我们观察到的是“物理实体”{14}。参照物与研究对象都有自己对应的物理时空,牛顿力学时空应该是两者的综合,而不应该只是参照物的时空。但是,牛顿力学中光速无穷大,在讨论物体运动时,又假设研究对象的时空结构对讨论的问题没有影响,忽略不计,于是,研究对象抽象成了质点,整个理论体系就只有与参照物联系的时空了。

任何具体物体都不会是质点。当用信号去观察它时,物体自身的时空特征与物体的运动状态与观察信号的性质、强弱和传播速度相关。质点模型忽略物体自身的几何形象及其变化,忽略运动及观察信号对物体自身时空特征的影响,参照物也不例外。在从参照物到坐标系的抽象中,抽掉运动及观察信号对参照物时空特性的影响,就是抽掉物体运动及观察信号对坐标系时空特性的影响,就是抽掉人的参与对时空认知的影响{15}。牛顿力学时空与物体运动及观察者无关,绝对不变,基于绝对不动的以太之上。所以,牛顿可以把时间和空间从物质运动中分离出来,时间和空间也彼此分割,空间绝对不变,数学的、永远流逝的时间绝对不变{16}。哲学的时空演变成了可操作的物理时空。这是宏观低速运动对时空的简化与抽象,理论与宏观经验及计算相符。

相互作用实在论认为,现实世界是人参与的世界,对一个研究对象的观察,离不开主体、客体、观察信号三个基本要素。参照物和观察对象的运动和变化及其时空属性,与观察信号的性质相关。牛顿力学中,不是没有现象对观察主体的依赖性,而是在理论的建立中认为影响很小,可以忽略不计。牛顿力学是“物理本体=物理实体”的力学{17}。这与宏观经验和科学实验相符,在宏观低速运动层次实现了主客二分,理论被看作是对客观实在的描述。牛顿力学中,物质告诉时空如何搭建描述背景,时空告诉物质如何在背景中运动。二者构成背景相关。

牛顿时空是均匀平直时空,相对匀速运动坐标系间的变换是伽利略变换。物理定律在伽利略换下具有协变性,相对性原理成立。

四、狭义相对论中“现象对观察者的主观依赖性”及其“消解”

狭义相对论建立之前,洛伦兹就认为高速运动中物体长度在运动方向发生收缩{18}。这是他站在牛顿时空立场,承认以太及绝对坐标系的存在对洛伦兹变换所作的解释。描述时空没有变,“现象对观察者出现了主观依赖性”。自然现象失去了客观性,这是一次认识危机,属19世纪末20世纪初两朵乌云之一。

狭义相对论不同,它考虑宏观高速运动中观察信号对物体时空特征的影响。爱因斯坦在“火车对时”实验中,他用“光”作为观察、记录、认知物体时空特征的信号{19};通过参照物到坐标系的抽象,论证静、动坐标系K与K′“同时性”不同,静、动坐标系运动方向时空测量单位发生了变化;将洛伦兹所称“运动物体自身运动方向上的长度收缩”演变成坐标系时空框架的属性,还原质点模型,建立相对论力学。实现了观察者对观察对象的客观描述。

狭义相对论中质点的动量、能量、位置和时间都有确定值,质点的运动具有确定的轨迹,这一点与牛顿力学相同。

狭义相对论时空的另一重要物理意义是揭示了“物理本体”的客观实在性。

牛顿力学缺少相对论不可直接观察的静能(m0c2,m0c)对应物,物理本体=物理实体,哲学上的抽象时空直接过渡到牛顿物理时空。

狭义相对论不一样,每一个物体都有一个不可直接观察的静能(m0c2,m0c)对应物,它在任何静止参考系中都是不变量,是物理实体背后的物理本体,物理本体不变,变的是mc2、mc对应的物理实体。“物理本体”既不是形而上的(物自体),也不是形而下的(物体),是形而中的(静能对应物)。它可以认知、可以理论建构,但又不可直接观察。相对于牛顿,爱因斯坦相对论揭示了“物理本体”的真实存在性。“客观物质世界”不是思维的产物。

狭义相对论中,物质告诉时空在运动方向如何修正测量单位,时空告诉物质如何长度收缩、时间减缓。时空具有相对性。

狭义相对论时空虽然也是均匀平直时空,但由于有上述“相对时空”的出现,时空度规与欧氏时空度规有明显区别,所以称为赝欧氏时空。

但狭义相对论仍然是只考虑光及光速的有限性对建立时空的影响,没有考虑引力作用对建立时空的影响。如果考虑引力对时空的影响又如何呢?

五、广义相对论中“现象对观察者的主观依赖性”及其“消解”

广义相对论中有水星近日点进动问题和光走曲线的讨论。站在牛顿平直时空的立场,观察结果与理论计算不符。这不是仪器的精度不够,也不是操作失误,而是理论本身的问题。因为,牛顿力学也好,狭义相对论也好,讨论引力问题,引力场对参照物和研究对象时空属性的影响都没有计入其中,而留在观察者对“现象”的观察、判断之中,出现宇观大尺度“现象对观察者的主观依赖性”。如果考虑引力场使时空发生弯曲,利用弯曲时空计算水星近日点进动和光走曲线现象,“现象对观察者的主观依赖性”就变成时空的属性。“现象对观察者的主观依赖性”就得到了“消解”,观察现象与理论结果就取得了一致。这里,物质使时空弯曲,时空告诉物质如何在弯曲时空中运动。广义相对论实现了观察者对观察对象的客观描述。

广义相对论时空是弯曲的,时空度规是变化的。

六、量子力学中“现象对观察者的主观依赖性”及其“消解”

微观客体具有波粒二象性,同一个电子,通过双缝表现为波,而打在屏幕上又表现为粒子,电子集波和粒子于一身,“量子现象对观察者的主观依赖性”更为突出。经典力学中波动性和粒子性不能集物体于一身,量子力学与经典力学表现出深刻的矛盾。矛盾的产生,可能是描述微观现象的时空出了问题。量子力学的研究领域是微观世界,研究对象是微观客体,不是经典的粒子,用以观察的信号也不是连续的光,而是量子化了的光,通过光信号建立的时空应该与牛顿、相对论时空有所区别。而量子力学使用的还是牛顿时空、狭义相对论时空,时空没有变,物理模型没有变,而研究领域、观察信号和研究“对象”变了。量子力学必须有自己对应的时空,将“量子现象对观察者的主观依赖性”,转化为描述时空的属性,实现客观描述量子现象!双4维时空量子力学就是为实现这一目标应运而生的。

现有量子力学“量子现象对观察者的主观依赖性”之所以难以消解,与量子力学中的点模型相关。许多量子现象与点模型隐藏的空间自由度有直接联系,但点模型忽略了这些自由度对产生微观量子现象的作用和影响。我们必须将隐藏的空g自由度还原于时空,才可能正确地认识、客观描述量子现象。

可以公认,微观客体不是点{20},是一个有形客体,有一定的空间分布,不存在确定于某点的空间位置,这是客观事实。理论上,牛顿时空几何点位置是确定的,量子力学使用的是质点模型,0维,位置也是确定的,牛顿时空可以精确描述质点的运动。那么微观客体空间分布的不确定性如何处理?人们只好转而认为点粒子在其“空间分布”区域位置具有概率属性。微观客体自身空间分布的客观实在性在量子世界转化成了一种主观认知,赋予了微观客体“内禀”的概率属性,其运动产生概率分布,或称其为概率波。

这是一个认识上的困惑,似乎量子力学描述失去了客观实在性。这也是量子力学当今的困境。解决困难的方法是:(一)更换点模型,释放点模型隐藏的自由度,展示“这些自由度对产生微观现象的贡献”;(二)建立适合量子力学自身的时空,将释放的自由度植入其中,让“量子现象对观察者的主观依赖性”变成量子力学时空自身的属性。

双4维时空量子力学的办法是:(一)用“转动场物质球”模型取代“质点”模型,释放点模型隐藏的空间自由度;(二)将4维实时空M4(x)拓展到双4维复时空W(x,k),且将“释放的空间自由度――曲率k”作为双4维复时空的虚部坐标;(三)4维曲率坐标将量子力学赋予微观客体自身的概率属性变成量子力学复时空的几何属性,场物质球自身的旋转与运动产生物质波――物理波。

“场物质球”与“物质波”(类似对偶性假设)既是同一物理实在的两种不同描述方式,更是微观客体粒子性和波动性的统一,曲率的大小表示粒子性,曲率的变化表示波动性。场物质球的物质密度是曲率k的函数,因此,物质波既是场物质球的结构波又是场物质密度波。物质波不是传播能量,而是传播场物质球的结构或物质密度变化,可映射成实时空M4(x)的概率分布{21},与实验结果相一致。

这样,点模型中“量子现象对观察者的主观依赖性”通过“释放的自由度”转变为时空W(x,k)的属性,物质波传播其中,量子现象是物质波所为。

研究表明,是量子测量引入的连续作用,使双4维时空W(x,k)全域转换到实时空M4(x),波动形态转变成粒子形态(“相变”),球模型转换成点模型,概率属性内在其中,物质波自动映射成概率波,数学处理类似表象变换{22}。

简言之,传统量子力学,微观客体简化成质点,描述时空不变,人的主观意识介入其中,将其空间分布特性――位置不确定性,变成点粒子的概率属性,实现描述对象从客观到主观认知的转变,具有位置不确定性的点粒子,其运动产生概率波;双4维时空量子力学,微观客体简化成场物质球,“空间分布具体化为几何曲率”,空间分布特性变成曲率坐标,仍然是从客观到客观,描述时空变成了复时空,曲率坐标在其虚部,场物质球的运动产生物质波――物理波。通过量子测量,物质波映射成概率波,球模型演变成点模型,显示概率属性,时空内在自动转换,量子现象对观察者的主观依赖性消解在建构的时空理论中。具体论证方法是:

将静态场物质球写成自旋波动形式:Ψ0=е■,描述在复空间。ω0是常数,它的变化只与自身坐标系时间t0相关,全空间分布(物理本体所在空间)。设建在“静态”场物质球上的坐标系为K0,观察微观客体从静止开始作蛩僭硕,由洛伦兹变换:

微观客体的运动速度不同,平面波相位不同。复相空间kμxμ即为物质波所在时空。物质波是物理波。

自由微观客体的速度就是建在其上惯性坐标系的速度,惯性系间的坐标变换,隐藏速度突变――“超光速”概念,因为,连续变化会引进引力场破坏线性空间。不同惯性系中平面波之间,相位不同,类似量子力学中的不同本征态。这是相对论中的情形{24}。

但是,量子力学建立其理论体系时,把上述不同惯性系中的平面波(不同本征态,每一本征态则对应一惯性系),通过本征态突变跃迁假设(量子分割),切断因果联系,形成同一时空中“同时”并存的本征态的叠加。态的跃迁不需要时间,“超光速”(非定域),将类空间隔引入量子力学时空,破坏了原有的因果关系。叠加量子态的存在,是“违背”因果律在量子力学中的新表现。

量子力学时空显然不是牛顿、狭义相对论时空,但量子力学却误认为量子跃迁引起的时空性质的变化是牛顿、狭义相对论时空中的特征,这当然会带来不可调和的认知矛盾。

同一微观客体,不同本征态“同时”并存的物理状态,从整体看,是洛伦兹协变性在量子力学中的新表现。突变区“超光速”,是类空空间,“不遵从”因果律;释放光子的运动在类光空间;而本征态自身在类时空间,微观客体运动速度不能超过光速,需保持因果律,物质波讨论的就是这一部分,就像相对论讨论类时空间物理一样。量子纠缠态将涉及到上述三种不同性质物理空间量子态的转换,有完全合理的物理机制,不需要思维的特殊作用。不过,相对论长度收缩效应,将以物质波波长在运动方向上的收缩来体现。有了双4维时空量子力学,量子力学与相对论就是相容的,光锥图分析一样适用。

相对论与量子力学的不同,关键在于认知层次发生了变化,光由连续场演变成了量子场。而我们用来观察世界的光信号直接与时空相关,光的物理性质的变化,必然带来物理空间性质的变化,带来物理模型的变化,带来量子力学时空W(x,k)与相对论时空M4(x)之间的区别,带来对物质波――物理波的全新认知。我们预言,物质波有通讯应用价值{25},但与量子力学非定域性无关。

《双4维复时空量子力学基础――量子概率的时空起源》的理论实践表明,我们的工作是可取的{26}。结论是,量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。量子现象对观察者的主观依赖性消解在对应的时空理论之中,实现了观察者对量子现象的客观描述。

双4维时空是描述量子现象的物理时空,时空度规,无论实数部分,还是虚数部分,都是平直的{27}。

近年来,由于量子通讯技术的飞速发展,量子纠缠的物理基础引起了人们的特别关注,波函数的物理本质,量子力学的非定域性讨论十分热烈。“量子现象对观察者的主观依赖性”更是讨论的核心。人们甚至被量子现象的奇异性迷惑了,特别是,有科学家甚至认为:“客观世界很有可能并不存在”。世界是人臆造出来的?科学实在论者当然不能赞成!更加深入的探讨,我们将另文讨论。

按照曹天予的评论,《双4维复时空量子力学基础――量子概率的时空起源》值得关注{28}。双4维复时空与弦论、圈论比较,最大优点是将时空拓展、推广到了复数空间,数学没有那么复杂,而物理学基础却更加坚实、清晰。

七、结论与讨论

1.“现象对观察者的主观依赖性”普遍存在于人与自然的关系之中,融入时空的只能是物理实体对时空有影响的部分,时空具有建构特征。

2.物质运动与时空的关系:牛顿力学中,物质告诉时空如何搭建运动背景,时空告诉物质如何在背景上运动;狭义相对论中,物质告诉时空如何修正测量单位,时空告诉物质如何在运动方向长度收缩、时间减缓;广义相对论中,物质告诉时空如何弯曲,时空告诉物质如何在弯曲时空中运动;量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。

3.量子力学时空是平直的,其方程是线性的,而广义相对论时空是弯曲的,其方程是非线性的{29}。量子力学与广义相对论的统一,不能机械地凑合,它们的统一,必须从改变时空的性质做起,建立相应的运动方程,并搭起非线性空间与线性空间的相互联络通道。

注释:

①赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5页;CaoTianYu,FromCurrentAlgebratoQuantumChromodynamics:ACaseforStructuralRealism,Cambridge:CambridgeUniversityPress,2010,pp.202-241.

②RocherEdouard,Noumenon:ElementaryentityofaNewmechanics,J.Math.Phys.,1972,13(12),pp.1919-1925.

③④⑥⑦⑩{13}{15}{17}{21}{22}{24}{25}{27}w国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5、105、9、147、179、94、133―136、106、151、151、159、152、149页。

⑤主观与客观:“客观”,观察者外在于被观察事物;“主观”,观察者参与到被观察事物当中。辩证唯物主义认为主观和客观是对立的统一,客观不依赖于主观而独立存在,主观能动地反映客观。

⑧L・斯莫林:《通向量子引力的三条途径》,李新洲等译,上海科学技术出版社2003年版,第29―33页。

⑨张永德:《量子菜根谭》,清华大学出版社2012年版,第29页;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第178页。

{11}冯契:《哲学大辞典》,上海辞书出版社2001年版,第1579―1582页。

{12}参见L・斯莫林:《物理学的困惑》,李泳译,湖南科学技术出版社2008年版。

{14}相互作用实在论中的基本概念:(1)物质:外在世界的本原。(2)基本相互作用:遍指自然力,有引力,电磁、强、弱等力。(3)自在实体:指未经观察的“自然客体”(相互作用实在论中,自在实体作为物理研究对象时称物理本体)。(4)现象实体:经过观察,系统的、稳定的、深刻反映事物本质的理性认知物。现象则表现自在实体非本质的一面。(相互作用实在论中,现象实体作为物理研究对象时称物理实体)。(5)观测信号:人类认知世界使用的探测信号。

{16}参见伊・牛顿:《自然哲学之数学原理宇宙体系》,武汉出版社1996年版。

{18}参见倪光炯等:《近代物理学》,上海科学技术出版社1980年版。

{19}参见A・爱因斯坦:《相对论的意义》,科学出版社1979年版;爱因斯坦等:《物理学的进化》,周肇威译,上海科学技术出版社1964年版。

{20}坂田昌一:《坂田昌一科学哲学论文集》,安度译,知识出版社2001年版,第140页。

{23}参见GuoQiuZhao,DescribeQuantumMechanicsinDual4dComplexSpace-TimeandtheOntologicalBasisofWaveFunction,JournalofModernPhysics,2014,5(16),p.1684;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第149页。

{26}参见GuoQiuZhao,DescribeQuantumMechanicsinDual4dComplexSpace-TimeandtheOntologicalBasisofWaveFunction,JournalofModernPhysics,2014,5(16),p.1684;赵国求:《双4维时空量子力学描述》,

《现代物理》2013年第5期;赵国求、李康、吴国林:《量子力学曲率诠释论纲》,《武汉理工大学学报》(社会科学版)2013年第1期。

{28}曹天予:《当代科学哲学中的库恩挑战》,《中国社会科学报》2016年5月31日。

量子力学的理论篇3

从电子测量的发展趋势以及目前电子测量课程在教学中存在的问题,提出教学模式改革的具体思路和改革措施。基于传统教学模式已经不能满足课程发展要求,学校要从电子测量课程的理论教学、实践操作、教学方法等方向出发,通过现代化教育资源和手段对课程进行全面化改革,促使学生善于思考、勤于动手、勇于创新,以满足当今社会应用型人才的培养需求。

关键词:

电子测量;多角度;教学改革;研究

0引言

电子测量是现代科学获取信息的重要手段,是现代电子科学研究的必备基础。电子测量技术课程是电子信息工程专业必修的专业基础课,同时也是理论性、应用性以及综合性很强的课程。电子测量技术课程不仅仅是学生学习其他专业课程的基础课程,而且是从事电子行业的专业基础,,该课程的对于电子专业学生来说至关重要,它直接影响学生后续专业的学习,进而影响步入社会以后从事电子行业的求职道路。电子测量技术课程的特点很鲜明,实践性和应用性较强,主要考察学生的思考能力和实践能力。针对此特点,以提高学生的实践能力、创新能力、思考能力为目标,满足当今社会的发展和需求,本文提出从理论教学内容、实践内容、教学方法等多个方面有针对性的对课程进行教学改革,从多个角度出发,以提高电子测量技术的教学质量,更容易让学生掌握所学的电子测量技术的基本知识。在学习中能够熟练应用电子测量技术的相关方法,在实践中综合运用相关知识和方法解决实际问题,为自己以后的学习和工作打下坚实的基础。

1改善理论教学内容

传统的电子测量技术理论课程的教学模式比较单一,无法让学生详细的了解并掌握最新的测量仪器的使用。所以传统教学模式的局限性就表现在学习结果上。由于电子测量的应用性和综合性很强,仅仅依靠书本知识和教师的理论讲解无法做到深入浅出、清晰透彻,学生也只能半知半解,云里雾里,难以激发学习的兴趣和求知欲。因此,改善传统的理论教学刻不容缓。电子测量技术的教学内容主要包括经典内容和技术更新两个方面。经典内容主要包括各种参量的测量方法、测量误差的来源与修正、测量结果和数据处理等测量基础理论知识,以及常用电子测量仪器的电路组成原理、正确操作使用、故障分析与排除等。教师在教学过程中应当适当向学生展示优秀的毕业设计作品,并讲解其基本构造、工作原理和使用方法等,积极引导学生去思考,以提高学生的思考能力和创新能力,增强其学习的积极性和主动性。经典内容的教学,能够让学生熟练掌握电子测量理论知识,能够根据实际情况选择合适的测量仪器,使用合理的测量方法。现如今是技术更新非常迅猛的时代,在教学中要尽可能的向学生传递最新的电子测量技术信息,为学生进行简单讲解,同时要鼓励学生积极提问和发言。传统的电子测量仪器已经逐渐被淘汰,比如指针式的电压表、电流表,而智能化的、数字化的电子测量仪器越来越普及,逐渐将传统的电子测量仪器淘汰。因此在课堂上要对落后的、逐渐被淘汰的测量仪器、模拟仪器进行简单概述。通过向学生展示最新的电子测量技术的应用动态,以及先进的电子测量仪器在各个领域的应用,让学生感受到技术更新带来的巨大变化,让学生了解更多的知识和技术,使学生所学内容跟随技术更新的步伐。

2提高实践内容

为了让学生更加快速的轻松进行学习,并且能够有效掌握实践内容,可以将实践内容进行分类。第一类实践内容为基本实践内容,主要为准确掌握各类测量仪器的使用方法,比如测量波形、电阻值、电容等。学生通过对这些基本实践内容的学习,加深了对理论知识的理解,有利于学生对多种电子测量仪器在实际生活中的应用。在课堂上教师将理论与实践相结合,不应该像传统的教学模式一样,教师只注重课堂上理论知识的讲解,而忽略实践内容的展开。传统教学模式很容易造成理论与实践的脱节,课堂上理论知识学的很好,到了实践内容上又会对理论知识产生模糊印象。因此,课堂教学模式要注重理论联系实际,让学生在实际操作中加深对理论知识的理解,合理利用多媒体教学,为学生展示各类实验,在实践中让每个学生投入其中,增强学生的动手能力。第二类实践内容为综合实践内容,主要涉及简易测量仪器的设计等。此类实践内容一般将理论知识应用到设计当中,以实践应用推动理论教学。整个设计过程中,教师要对学生阐述实践项目设计目标、相关资料等,并正确引导学生查阅参考文献。学生需要根据所学知识构建设计思路,选择测量仪器,制动设计流程,汇总数据,填写实验报告。在整个实践内容的开展的过程中,学校和教师为学生提供了一个好的平台,使学生的综合实践能力得到提升和锻炼。

3丰富教学方法

电子测量技术作为一门理科类课程,理论知识内容抽象,不易理解。因此,在教学过程中,教师要配合现代化教学资源,例如多媒体课堂,能够有效地利用图形、文字、声音甚至影像,这样不仅能够提升学生的学习兴趣和积极性,而且大大提高了教学质量和效率。多媒体教学能够充实教学内容,提高教学效果,顺利完成教学目标。将电子测量技术以图像、声音、影像的形式呈现于课堂,通过视觉和听觉向学生传递最新的电子测量信息,以图像向学生展示测量仪器的每一个结构组成,以声音的形式向学生介绍其工作原理及其作用,让学生更深入、更便捷的掌握电子测量知识。

4结语

随着信息技术的飞速发展,电子测量多角度教学的改革挣脱了传统教学模式的束缚,增加了课堂教学的多样性和丰富性,这不仅加深了学生对于电子测量知识的重视,也调动了学生学习的积极性和主动性。通过多角度教学改革,学生的思考能力、创新能力、动手能力得到大大提升。而教学改革要立足于学科本身,能够做到与时俱进,才能达到教学改革的成效。

参考文献

[1]台德艳,晏菁,张勤.基于电子信息专业的电子测量技术课程教学改革研究[J].电脑知识与技术,2015,18(11):131-133.

[2]徐杰,王娟,王安华.《电子测量技术》课程多角度教学改革的研究[J].《齐齐哈尔大学学报》(哲学社会科学版),2013,5(10):179-180.

量子力学的理论篇4

[关键词]物理学理论计算机技术量子计算机

中图分类号:O4-39文献标识码:A文章编号:1009-914X(2016)27-0198-01

一、近代物理学理论的发展与现代物理学理论

现代物理学的发展即为19世纪至今,是现代物理学理论发展不断壮大的时期。

当力学,热力学,统计学,电磁学都发展的很完善时,有“两个不稳定因素”打破了物理界的当时的境况,推动了物理学的变革。第一个是迈克尔逊-莫雷实验,即在实验中没测到“以太风”,也就是说不存在真正的参考系,光速与光源运动无关,光速各向同性。第二个是黑体辐射实验,用经典物理学理论无法解释实验结果。

20世纪初,爱因斯坦打破了传统的物理学理论,提出了侠义相对论,彻底了之前牛顿提出的绝对时空观的理论。十年后又创立了广义相对论,阐述了万有引力的实质。

物理学界的第二个稳定因素――黑体辐射实验,通过普朗克,爱因斯坦,玻尔等一大批物理学家的努力下,量子力学应时诞生了。随着薛定谔波动方程解释物质与波的关系,量子力学愈来愈趋于完善。

量子力学与相对论力学在现代物理学理论发展中是不可忽略的伟大成就。这两个的研究的对象也发生了改变,由低速到高速,宏观到微观等,物理学理论也日趋成熟。

二物理学理论是计算机诞生的基础

物理学作为理论基础:随着微积分、力学三大定律、万有引力定律,经典光学理论的建立,总所周知的一位伟大的物理学家――牛顿的整个力学的体系也完美的呈现于人们眼中。一对天才数学家布尔和德莫根历经无数次的推演证明,挖掘出了数理逻辑中那闪耀着最亮的光辉――布尔代数:电磁理论则是伟大的物理学家法拉第和麦克斯文创立的!而微观领域上的量子力学经由多位物理学家――德布罗意、玻尔、爱因斯坦、海森伯、薛定谔建立;还有电子三极管经过无数次实验也被德弗雷斯发明出来了。

上世纪40年代,200多位的专家研制小组由美国国防部任命的莫奇利和埃克特领导着并且克服了无数困难,两年中坚持的开发创新,人类第一台计算机――ENIAC(1946)在宾夕法尼亚大学研制成功!这不仅是第一台电子管数字积分计算机更是人类文明进步的一大步。

随着第一台计算机的成功研制的第二年,一种不仅小而且安全可靠,又不会变热,结构也什么简单的晶体管在美国的科学家巴丁等人研制出来。德克萨斯一器和仙童公司也紧跟着飞速发展的科技的步伐,在1953年成功的生产出了首个集成电路。次年,得克萨斯仪器公司首先的宣布他们拥有了集成电路的生产线,这意味着集成电路可以大量的投入生产和使用,然后TRADIC――首台晶体管计算机诞生了,这个在体积上要小很多的计算机就诞生了。

伴随着集成电路的出现,第三代计算机则是诞生在60年代中期。同样是由IBM公司生产出的IBN600系列计算机成为了第三代计算机的代表产品。早一些的INTEL8080CPU的晶体管集成度超过5000管/片,1977年在一个小小的硅片上就可包含几万个管子。

随着时间的推移,以大比例的集成电路当作逻辑元件和存储器的第四代计算机也向着微型或巨型改。计算机的处理器也由8086不停地在转化,到了我们熟知的奔腾系列。

不管是计算机的理论基础还是硬件设施,其实都是以物理学理论为根本的。物理学理论与计算机技术在未来的日子里互相补益,会不断的推动科学向前飞速发展的。

三、计算机零件应用的物理学理论

液晶屏,一听名字就可以想象得到它是以液晶材料为基本组件的。实际上液晶屏就是把液晶材料填充于两块平行板之间,并且利用电压来改变其材料内部的分子排列情况,控制遮光与透光以显示明暗不同,鳞次栉比的图案。如果想要显示彩色的图案时,只要把带着三元色的滤光层加入到两块平行板之间就可以了。液晶屏的广泛应用还因为其功耗十分的低,应用电池的电子产品都可以配置液晶屏。由于液晶介于固态与液态之间,那么就可以既体现固态晶体所有的光学特性,还可以表现出液态的流动特性。总结液晶的物理特性可归纳为:粘性、弹性和其极化性。

目前的CPU一般就是包括三个部分:基板、核心、针脚。大家都知道有一种电脑的硬件的组成的基本单位十分的重要,就是晶体管,而CPU的主要的组成也是晶体管。AMD主流CPU内核在早期的Palomino核心和Thoroughbred-B核心的配备,通常采用3750万个晶体管,而Barton核心使用了5400万个晶体管,核心Opteron处理器使用多达1.06亿个晶体管;。因此,实际上说的CPU核心构成的最基本单位就是晶体管的的芯数,针脚。所说的基板通常是印刷电路板,它承载着核心与针脚。然后该晶体管通过电路连接,成为一个不可或缺的整体,然后可以去分成不同的执行单元,每个单元又可以去处理不同的数据,这样有秩序的完成每个任务,才会准确而快速,这也是CPU为何拥有如此强大的处理能力的原因。

其实还有很多的零件都运用了大量的物理学理论。下面向大家介绍一下比较先进的计算机――量子计算机。

四、简介量子计算机

从物理观点看,计算机是一个物理系统.计算过程是一个物理过程。量子计算机是一个量子力学系统,量子计算过程就是这个量子力学系统内量子态的演化过程。

量子计算机以量子力学建立逻辑体系,与量子计算机有关的量子力学的原理,即量子状态的主要性质包括:状态叠加、干涉性、状态变化、纠缠、不可复制性与不确定性。

量子计算机具有学术价值和产业价值不可估量。对人类的文明,它实际上是一个很大的进步,我认为最主要的方面则是它的工业价值。最直接的应用各种各样的量子算法,他就可以用于商用化。

可以回想机器在20年前的悲惨境况和现在的春分得意,利用机器学习是很难在工业部门查找数值,因为计算能力的时候真的很烂。然后还要测试几个月,谁还有时间来调整参数啊。而这两十年间,计算机体系结构不断的优化下,机器学习强大了好多倍。想想看,如果我们比今天的计算能力更强大,我们无法想象一个强大的AI强量子任务不是指日可待?而当每家每户都有一个量子计算机,互联网将演变成什么形式?总之,商业量子计算机将是未来科技的发动机,就像蒸汽机是工业文明的象征,量子计算机的前景值得我们期待!

我国科技飞速发展的今天,我们不难发现现代生活已经步入了一个电子的天堂,计算机将会发挥它不可估量的价值,而作文计算机技术的支架――物理学理论也在不断的发展着,这就要求我们在紧跟着的脚步,努力研究,发现问题、认识问题、解决问题,逐渐的将我们国力壮大,2022年全面建成小康社会。

参考文献

[1]王炳根.百年物理学发展的回顾与未来的展望[J].南平师专学报.1997,04:11-14.

量子力学的理论篇5

关键词量子力学教学内容教学方法

中图分类号:G420文献标识码:A

TeachingMethodsandPracticeofQuantumMechanicsof

MaterialsPhysicsProfessional

FUPing

(CollegeofMaterialsScienceandEngineering,WuhanInstituteofTechnology,Wuhan,Hubei430073)

AbstractForthedifficultiesfacedbystudentsinMaterialsprofessionaltolearnquantummechanicsphysicscourse,byasummaryofteachingpracticeinrecentyears,fromtheteachingcontent,teachingmethodsandmeansofexplorationandpractice,studentsmobilizetheenthusiasmandinitiative,andachievedgoodteachingresults.

Keywordsquantummechanics;teachingcontent;teachingmethods

0引言

量子力学是研究微观粒子(如原子、分子、原子核和基本粒子等)运动规律的物理学分支学科,它和相对论是矗立在20世纪之初的两座科学丰碑,一起构成了现代物理学的两块理论基石。相对论和量子力学彻底改变了经典物理学的世界观,并且深化了人类对自然界的认识,改造了人类的宇宙观和思想方法,它使人们对物质存在的方式及其运动形态等的认识产生了一个质的飞跃。

量子力学是材料物理专业一门承前启后的专业基础必修课:量子力学的教学必须以数学为基础,包括线性代数、概率论、高等数学、数理方法等,其又是后续课程材料科学基础、固体物理、材料物理、纳米材料等的理论基础。可见,量子力学课程在材料物理专业的课程体系中占有非常重要的地位,学生掌握的程度直接影响后续专业课程的学习。作者近年来一直从事量子力学的教学工作,针对量子力学课程教学过程中存在的现象和问题,进行了较深入细致的思考与探讨,在实际教学过程中对本课程的教学方法进行了探索与实践,收到了较好的教学效果。

1量子力学教学面临的难点

量子力学研究的是微观粒子的运动规律,微观粒子同宏观粒子不同,看不见,摸不着,只有借助于探测器才能察觉它的存在和属性。材料物理专业学生之前学习的基本上是经典物理,而量子力学理论无法用经典理论进行解释,学生对此感到难于理解。因此,经典物理的传统观念对学生思想的束缚,构成了学生学习量子力学的思想障碍;量子力学可以说无处不“数学”,由于材料物理专业学生在数学基础方面与物理专业学生相比较为薄弱,在学习过程中普遍感到数学计算繁难,对大段的数学推导表现出畏难情绪。可见,量子力学对数学的精彩诠释却构成了学生学习量子力学的心理障碍。这两大障碍势必会影响量子力学和后续课程的学习。在这种情况下,我们应当怎样开展量子力学教学从而使学生重视并努力学好该课程就成了一个严峻的挑战。

2明确教学重点和难点、有的放矢

要讲授一门课程,首先应该对课程内容有一个清晰的认识。量子力学的内容可以包括三个方面:一是介绍产生新概念的历史背景及一些重要实验;二是提出一系列不同于经典物理学的基本概念与原理,如波函数、算符等概念和相关原理,是该课程的核心;三是给出解决具体实际问题的方法。三部分内容相互联系,层层推进,形成完整的知识体系。作为引导者,教师应在这三部分内容的教学过程中帮助学生成功地突破两大束缚。第一部分内容教师应考虑如何引导学生入门,从习惯古典概念转而接受量子概念。在讲授这部分内容时要将重点放在“经典”向“量子”的过渡上,引出量子力学与经典力学在研究方法上的显著不同:经典力学是将其研究对象作为连续的不间断的整体对待,而量子力学将其研究对象看成的间断的、不连续的。学生在学习这部分时应仔细“品尝”其中的“滋味”,以便启发自己的思维自然地产生一个飞跃,完成思想的突破。第二、三部分是量子力学学习的重点与难点,并且涉及大量的数学推导,教师应采取适当的教学手段,突出重点,强调难点。在物理学研究中,数学只是用来表达物理思想并在此基础上进行逻辑演算的工具,不能将物理内容淹没在复杂的数学形式当中。通过数学推导才能得到的结论,只需告诉学生,从数学上可以得到这样的结果就可以了,无需将重点放在繁难的数学推导上,否则会使学生本末倒置,忽略了对量子力学思想的理解。这样的教学可以帮助学生突破心理障碍,不会一提量子力学就想到复杂的数学推导,从而产生抵触情绪。成功地突破这两大障碍,是学习量子力学的关键。

3教学方法的改革

3.1利用现代技术改进教学手段

传统的板书教学能够形成系统性的知识框架,教师在板书推导的过程中,学生有时间反应和思考,紧跟教师的思路,从而可以详细、循序渐进地吸收所学知识,并培养了良好的思维习惯。但全程板书会导致上课节奏慢,授课内容有限。目前随着高校教学改革的推进,授课学时相继减少,对于传统教学方式来讲,要完成教学任务比较困难。这就要借助现代科技手段进行教学改革,包括多媒体课件的使用和网络教学。但是在量子力学教学中,一些繁杂公式的推导,如果使用多媒体课件,节奏会较快,导致学生目不暇接,来不及做笔记,更来不及思考,不利于讲授内容的消化吸收。鉴于此,对于量子力学课程,教学过程应采用板书和多媒体技术相结合的方式,充分发挥二者的优势,调动学生的学习积极性。

3.2建设习题库

量子力学课程理论抽象,要深入理解这些理论,在熟练掌握教材基本知识的基础上,需要通过大量习题的演练,循序渐近,才能检验自己理解的程度,真正学好这门课程。因此在教学过程中,强调做习题的重要性。有针对性地根据材料物理专业量子力学的教学大纲和教学内容,参考多本量子力学教材和习题集,利用计算机技术建设量子力学习题库,题型包括选择、填空、证明、简答和计算题等,内容涵盖各知识点,从简到繁、由浅至深。题库操作方便,学生可自行操作,并对所做结果进行实时检查,从而清楚自己掌握本课程的程度。这一方式在近几年的教学中取得了良好的教学效果。

3.3加强与学生互动,调动学生的学习积极性

教学是一个师生互动的过程,应让学生始终处于主动学习的位置而不是被动的接受。量子力学课程的学习更应积极调动学生的积极性,因此教师应在教学过程中加强与学生的互动。增设课前提问、课后讨论环节,认真批改作业,积极发现学生学习过程中存在的问题,并及时对问题进行深入讲解,解决问题。另外,由于量子力学是建立在一系列基本假定基础之上的,抽象难懂,鉴于学生难接受的情况,在授课时注意理论联系实际,尽可能进行知识的渗透和迁移,将量子力学在实际中的应用穿插于教学之中,丰富教学内容,开拓学生视野,从而调动学生的学习兴趣和积极性。

4结语

通过近年来教学经验的总结和探索,形成了一套适合材料物理专业量子力学课程教学的方法,该方法教学效果良好。在近几年的研究生入学考试中,学生量子力学课程的成绩优秀,说明采用这样的教学方法是成功的。

资助项目:武汉工程大学2010年校级教学研究项目(X201037)

量子力学的理论篇6

本书共25章:1.引言;2.数学综述;3.量子力学的规则;4.基本定律与和波动力学间的关联;5.量子力学规律的进一步说明;6.一维波动力学的后续发展;7.角动量的理论;8.三维波动力学:氢原子;9.对束缚态问题的时间无关近似;10.微扰理论的应用:氢原子的束缚态;11.相同粒子;12.原子的结构;13.分子;14.物质的稳定性;15.光子;16.非相对论带电粒子与辐射间的相互作用;17.微扰理论中的其它课题;18.散射;19.特殊相对论和量子力学:KleinGordon方程;20.狄拉克方程;21.相对论自旋-1/2粒子与外部电磁场的相互作用;22.狄拉克场;23.相对论电子、正电子和光子之间的相互作用;24.弱相互作用的量子力学;25.量子测量问题。每章的结尾有练习题。书的末尾有3个附录、引文的出处、参考书目和主题索引。

本书著者EugeneD.Commins是美国加州大学伯克利分校物理系的退休教授,是该校优秀的研究生导师。他的主要研究领域是实验原子物理学。他是美国国家科学院(NAS)院士,美国科学促进会(AAAS)成员,美国物理学会(APS)成员。他曾多次获得教学奖,包括2005年美国物理学教师协会颁发的奥斯卡金奖,这是对有杰出贡献的物理教师的最高奖。他发表过不少论著。不幸的是,本书出版后不久,作者去世了(1932-2015)。

本书的内容在许多方面与其它的量子力学教科书不同。传统的量子力学大多是在直角坐标或极坐标中讨论或展开量子力学问题,而本书较多地在希尔伯特(Hilbert)矢量空间探索量子力学问题,还利用了与传统量子力学的对应关系,数学工具不同,因此对量子力学各种关系的表征也不同。本书是物理系大学生和研究生的教科书和参考书。也是物理学家有价值的参考书。