当前位置: 首页 > 范文大全 > 办公范文

电镀工艺范例(3篇)

时间:

电镀工艺范文

关键词:铁/炭内电解反应器电镀混合废水一体化

随着科技的进步和环保技术的快速发展,许多新技术开始应用于环保行业了,其中以铁/炭内电解反应器为核心的技术在环保工程中应用越来越广泛。这种一体化处理技术以其独特的优势在电镀废水处理工程中具有广泛的应用前景。

1、一体化技术处理混合电镀废水工艺机理

破CN-、氧化还原Cr6+为Cr3+等预处理措施是传统电镀废水处理工艺中必须的,因其投资大、技术参数控制程度高、操作复杂等弊端,在工程设计与应用中具有一定的局限性。

相比起来,以为主体技术的工艺则避免了污水的分类收集、预处理等前期工序,废水可直接混合并进入独立设置的调节池内,进行水量水质调节,然后通过水力提升至铸铁/焦炭内电解反应器内,在一定条件下反应后进入下步工序。由于此类技术不需要对污水进行分类预处理,而是直接混合处理,因此亦名“一体化处理技术”,其典型的反应机理可表示如下:

阳极铸铁:

Fe-2eFe2+E0(Fe2+/Fe)=-0.44V(1)

Cu2++FeFe2++Cu(2)

阴极焦炭:

2H++2e2[H]H2E0(H+/H2)=0.00V(3)

O2+2H2O+4e2OH-E0(O2/OH-)=0.41V(4)

O2+4H++4e2H2OE0(O2/H2O)=1.22V(5)

不断生成的Fe2+在强氧化剂Cr6+作用下,生成具有良好絮凝作用的Fe3+,同时将Cr6+转化Cr3+,其反应为:

6Fe2++Cr2O2-7+14H+2Cr3++6Fe3++7H2O(6)

同时,如果污水中还含有氰化物,则可发生:

CN-+O2CNO-〔…N2〕(7)

通过以上一系列无数的内电解反应,污水中的重污染物物质得到了转化,继而在后续处理单元中得到更进一步去除。

2、工艺流程及主要设施说明

2.1、工艺流程

采用此技术的工程工艺流程如图1所示。

图1工艺流程图

Fig1Flowchartoftreatmentprocess

混合废水经厂区收集管道流至调节池,由耐腐蚀性一级污水泵提升至铸铁/焦炭反应器中,在空气辅助作用下,水中重金属离子及CN-等在铸铁/焦炭表面发生无数内电解反应,通过一系列(1)-(7)式中反应达到转化目的。出水经过自动控制系统投加碱液调节pH后自流至斜管沉淀池进行泥水分离,清水经过砂滤后即可达标排放或者回用。

斜管沉淀池排放污泥在浓缩池中浓缩后经压滤机脱水处理,干泥饼中含有大量重金属,属于危险废物,交由专门机构回收处理。

2.2、主要设计参数

2.2.1混合调节池

用以调节不规律排水,均衡水量水质。设置水力停留时间为8h,液位控制器控制提升泵运行。

2.2.2溶气罐

保证水气的充分混合,使污水中含有的氧气分子能在焦炭表面形成内电解环境。溶气罐设置水力停留时间为3~5min。

2.2.3铸铁/焦炭反应器

铸铁/焦炭反应器为本工艺的核心部件,污水中含有的重金属与溶解的氧气分子在其表面发生无数微电解反应〔见上(1)-(7)反应机理〕,良好的反应条件能够保证污水中的重金属以及氰化物等高危害污染物转化为低危害物质,继而在后续离子固化工序中得以去除。铸铁/焦炭反应器水力停留时间为45min,接触反应时间为25~30min。

2.2.4脱气池

脱除污水中大量的微小空气泡,避免带入反应池中被投加药剂包裹形成絮凝体而使絮凝体变轻上浮。水力停留时间为15min,设置机械搅拌加快脱气。

2.2.5反应池

分为二级反应,前段通过pH计自动控制系统投加氢氧化钠溶液调节pH值,重金属得以固化,后段投加PAM絮凝剂加速絮凝体的沉淀。两级反应时间均为15min。

此外,相对于其它工艺,铸铁/焦炭反应器本身生成的Fe3+具有良好絮凝作用,在控制pH为7-10的情况下,生成的絮凝体大而稳定,易于沉淀。

2.2.6斜管沉淀池

用以实现反应池出水中的泥水分离。表面负荷取1.0m3/(m2.h)。

2.2.7砂滤池

沉淀池出水中一般都含有微小的悬浮物质,这些通过机械作用强制固化的重金属物质可能会重新溶出而造成出水中重金属物质的超标,在沉淀池后设置砂滤池可以有效的将微小的悬浮物质除去。砂滤池设计流速以不超过1.0m/h为佳。

2.2.8清水回用池

暂存清水,提供砂滤池的反冲洗用水或者回用水。

3、结果与体会

3.1、影响水质因素

3.1.1铸铁/焦炭反应器对系统的影响

铸铁/焦炭反应器是本技术的关键处理设施,其主要参数的设计直接决定着系统出水效果的好坏。在水质一定的情况下,铸铁和焦炭的质量比、安装方式、焦炭粒径大小以及接触反应时间是关键设计参数。

在进水pH值为1~3的条件下,采用的铸铁:焦炭质量比约为1~1.5:1,分层安装,铸铁粒径细小(ф=5~15mm),焦炭以细薄块状最好;整个反应器接触时间为20~30min,提供空气量为0.1~0.13m3/min时,水样分析表明,在此条件下,污水中含有的高危险物质Cr6+及CN-等能够良好的转化为低危险、易除去的Cr3+及CNO-等。

3.1.2水中空气的影响

一体化处理池中出水含有大量的空气,在进行加药前必须尽量脱除。本工程设计之初由于没有充分考虑好脱气问题,在斜管沉淀池中经常发生污泥上浮现象,原因即为水中含有的空气在没有完全脱除之前已经被投加碱及PAM包裹在絮凝体内,造成污泥密度变小而上浮。脱气池设置较大的表面积及增加搅拌有利于快速脱气。

3.1.3pH值的影响

重金属沉淀对pH要求较高,所以采用pH自动控制器来投加NaOH量。

3.1.4砂滤流速影响

砂滤池主要将出水中可能含有的微小悬浮物除去,避免固化重金属重新溶解到清水中,过高的滤速不利于滤除微小的悬浮物。

3.2、工程投资与运行费用

以内电解技术为主体的污水处理工艺无论是伦理上还是工程应用上已经日渐成熟,尤其是此类技术为核心的一体化处理工艺应用于电镀废水处理工程更有着传统工艺无法比拟的优越性。一体化技术处理电镀废水不需铺设多种管路,避免了因分类收集作预处理带来的管路复杂、设备多、加药量大、控制要求高等弊端,因此工程投资费用省、运行费用低(表1)。

表1工程主要经济指标

Table1Maineconomicindexoftheengineering

序号

监测结果显示,本工艺对重金属的去除率均在95%以上,出水明显优于排放标准。

4、结论

4.1、本工程实例显示,一体化污水处理技术应用于电镀混合废水处理工程不仅投资省、运行费用低,而且操作简便、处理效果高效稳定。

4.2、本工程出水中Cr6+、总铜、总镍和总锌分别为0.002(Y)mg/L、0.24mg/L、0.21mg/L和0.13mg/L,去除率高达99.4%、98.4%、98.7%和95.8%,出水水质稳定达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中的一级标准,部分出水回用。

电镀工艺范文篇2

关键词:电解清洗工艺、过程要素、要素控制

0引言

镀锌机组接受上道冷轧来料带钢后,带钢表面存在轧制油以及运输过程中产生氧化铁皮,如果轧制油和铁粉超过一定值,在退火时不能完全分解掉,将在钢板表面形成结碳等缺陷,这些表面缺陷影响了镀层的粘附性。通过有效的表面清洗清除这些表面缺陷保证了后续涂镀后的带钢表面质量。而电解清洗是整个清洗系统中的重中之重,电解清洗同时具有化学清洗和机械清洗两方面的功能,最大程度的对带钢表面进行去污除油。为了保证清洗的有效性,必须对清洗过程中的各个工艺参数进行控制,同时为了提高效益,保证清洗有效性的同时还要使其高效,这就对各工艺制度和现场操作人员提出了更高的要求。

1电解脱脂液化学脱脂

1.1碱性化学脱脂除油机理

化学清洗主要是用固定组分的脱脂剂配制成清洗介质.去除带钢表面粘附的污垢。脱脂剂主要由表面活性剂和作为助洗剂的氢氧化钠、碳酸钠、硼酸钠、硅酸钠等碱性化合物组成[1]。利用脱脂剂的皂化作用和乳化作用将带钢表面的油脂除去。

a皂化作用[2]:金属表面油污中的动植物油(主要成分是硬脂酸),与碱生成硬脂酸钠(即肥皂)和甘油,溶解进入碱性溶液,俗称皂化反应,以除去工件表面油污[2]。

b乳化作用[2]:脱脂剂的重要组分是表面活性剂,矿物油靠其乳化作用而除去。表面活性物质吸附在界面上,憎水基团向着金属基体,亲水基团溶液方向,使金属与溶液间界面张力降低,从而在流体动力等因素的作用下,油膜破裂变成细小的珠状,脱离金属表面,分散乳化以及分散到溶液中形成乳浊液。

c浸透作用(润湿分散作用)[2]:皂化与乳化作用均系从油污表面逐步进行,而使碱性溶液浸透油脂内部,达到并润湿带钢表面,增进了脱脂除油的效果。

1.2电解化学脱脂控制因素

化学脱脂过程控制主要是对脱脂液的控制,既要考虑到脱脂液脱脂过程中的有效性,也要从成本控制的方面考虑到脱脂的高效性,因此,过程控制中需要关注脱脂液浓度、温度、压力和影响脱脂液消耗的因素。

1.2.1浓度控制

碱液中碱含量的增加,可加速皂化反应的进行,有利于油污的去除,但也不宜过高[2]。浓度过高,会使肥皂的溶解度和乳化液的稳定性下降,反而降低了清洗效果,同时也会造成脱脂剂的浪费。

1.2.2温度控制

随着温度的上升,附着在金属表面的油脂粘度不断下降,流动性增加,所以油脂容易脱离,同时,随着温度的提高,清洗剂的导电性能增加并且促进碱的皂化反应,从而提高清洗性。但过高的温度和过低的温度都会导致泡沫的急剧增加[2]。

1.2.3泡沫的损失

皂化反应的过程中会产生大量的泡沫,而这些泡沫会从循环槽的溢流口流失,此外循环槽液位的高度也影响到泡沫的流失[2]。为了防止泡沫的流失造成脱脂液的消耗,一方面选择低泡的表面活性剂,减少泡沫的产生,也可以添加消泡剂来消除产生的泡沫;另一方面,更加合理的控制槽内的液位给泡沫存在于槽内的空间,使得一部分泡沫自行破裂。

1.2.4为维护槽液清洁程度的排放

槽液的清洁程度直接影响到泡沫的产生和带钢清洗后的清洁程度,直接影响槽液的使用寿命,因此维持一定程度的槽液清洁度来保证泡沫的产生量和带钢的清洁程度,同时尽可能少的对碱液进行排放[2]。

2电解机械脱脂

电解清洗依靠在带钢表面产生的气泡附着在油污上,由于浮力作用,气泡将油污带离带钢表面。

2.1电解机械脱脂原理

电解脱脂时钢板本身并不直接带电,而是借助于通直流电夹持带钢的电极栅板的电磁感应,使带钢带电而发生电解反应。生产实践证明,电化学除油的速度是化学除油速度的数倍,而且油污清除效果好。主要原因是电化学除油时,不论带钢作为阴极还是阳极,其表面上都析出大量气体,实际上是电解水的过程[3]。

电流从极板经过脱脂液到达带钢,然后在带钢内部继续前进,到达与出口部分的极板相对应的位置,并从带钢又经脱脂液到达另一极板。在入口部分与阳极极板相应的带钢,相对于阳极来说,电位为负,则为阴极。

在同样电流下,阴极清洗在钢丝表面产生的气体体积是阳极清洗的两倍,气体对油污的作用是阳极清洗的两倍,因此,阴极电解清洗产生的机械擦刷作用及对清洗液的搅拌作用都比阳极电解清洗大

2.2电解机械脱脂过程影响因素

2.2.1极板间距

间距的大小影响着电路产生的阻抗值,间距愈小电荷运动阻力愈小,有效能量愈大。反之,电荷运动阻力愈大,无效能耗愈大[2]。

Ei=D/(Q0-302)

式中,D为电流密度,H为带钢与极板间距,Q为电解质导电率

为了提高有效能,尽量减小极板间距,但是如果带钢与极板间距太小,由于带钢垂度或板形不好、高速运行张力波动等因素,容易造成带钢与极板接触,产生电弧击穿带钢现象,通常极板的间距在5公分左右。

2.2.2电解时间

由于油污的脱离需要一定量的气泡附着于污物的表面,而电解产生气泡需要一个量的积累过程。如果极区长度太短,电解时间短,带钢表面产生的气泡少达不到清洗效果。

2.2.3电极切换

电极切换的主要作用是防止阴极产生的大量氢气累集导致爆炸。同时,也是为了极板能够自清洗,在电解过程中极板表面本身也产生气泡,长时间累计形成一层氧化膜,阻碍了电流的传导。电极切换有效防止了极板表面太脏而造成的清洗效果变差。现场生产中通常生产一卷带钢后进行一次极性的切换。

2.2.4清洗液的流速

极板间的电解质的流动带走了气泡,同时进行了电解质的更换,增加了电导作用的有效性。具体方法一方面可增加在线槽的溢流;另一方面可以选择合适的带钢速度,带动液体的流动,速度的选择要与电流密度相匹配。

2.2.5极板长度

极板的长度必然大于来料的最大宽度,但是该长度对于窄料来说可能过宽,由于边部积聚效应,边部的电流大于中部电流,造成清洗不均。立式电解清洗可加边缘罩,另一方面可以通过变频控制控制极板不同部位的电流。

3总结

为了能够达到需要的清洗效果,首先在最初的设计过程中必须进行综合考量,进行合理的设计。同时在后续的生产中,根据实际的生产情况来制定合理的工艺规程,保证脱脂液的清洗效果,保质同时高效,以提高整体电解清洗效率,降低生产成本。

参考文献:

[1]贾明镜.浅论八钢热镀锌机组脱脂清洗工艺.金属材料与冶金工程,2010年8月,第38卷第4期:25-28,31.

电镀工艺范文

【关键词】中性镀镍;柠檬酸钠;镀层硬度

1.绪论

1.1电镀液成分及其作用

(1)镍盐。镀镍镀液的镍盐可以采用硫酸镍和氯化镍,其中硫酸镍的溶解度大、纯度较高、价格低廉。工业用的硫酸镍有NiSO4·7H2O和NiSO4·6H2O两种,前者镍含量20.9%,而后者的镍含量为22.3%[1]。在光亮镍镀液中,一般含量是240g/L~300g/L。硫酸镍含量低,镀液分散能力好,镀层结晶细致,但阴极电流效率和极限电流密度低,沉积速度慢,硫酸镍含量高,允许使用的电流密度大,沉积速度快,但镀液分散能力稍差。

(2)阳极活化剂。化合物中的氯离子为阳极活化剂。在镀镍镀液中,若不加氯离子或氯离子含量不足时,阳极容易钝化。阳极钝化对电镀生产极为不利,加入或适当补充氯化镍或氯化钠后,氯离子能够吸附在阳极表面,降低阳极电位,去极化作用非常显著。氯离子还能增加溶液的导电性,使镀层表面光滑、结晶细致、分散能力得到改善。但氯离子含量不能过高,使镀层粗糙或形成毛刺。

(3)硼酸。硼酸在镀镍液中是一种缓冲剂[2]。每种镀液,在一定的条件下,pH值只有维持在一定的范围内,金属才能更好的沉积,硼酸就是起稳定pH值的作用[3]。在电镀过程中镀液中H+放电,会使镀液的酸度下降,此时,硼酸水解产生H+,以保证pH值维持在工艺范围内。

1.2工艺条件的影响

(1)温度:本工艺宜在25~35oC操作,45oC仍能得到合格镀层。不过,过高温度易使柠檬酸盐水分解而产生沉淀,溶液挥浊而不稳定,镀层发灰无光,有针孔和毛刺;过低(

(2)pH值:当镀液pH低于1时,为强酸性,高于12时为强碱性,而pH在1~12之间时一般都应标明允许的pH范围。对微酸性镀液,采用适当的较高pH,可减少光亮剂用量与消耗量,同时减弱铁件、铜件等的掉件腐蚀而减少杂质积累。对于单金属碱性条件下的配合物电镀,一般随着pH升高,配合能力增强。在相同的配合比下,可通过对pH的调整来控制配合强度。但对镀锌压铸件、浸锌铝件,即使对氰化镀铜,pH也不能大于10.5,否则这类两性金属会溶解。对于配合物合金电镀,pH会影响镀层合金组分的比例,要求较为严格。

(3)电流密度:提高生产效率角度讲,希望采用的阴极电流密度大些好,但实际允许值受多种因素的制约,包括浓差极化(如搅拌强度的影响)、电化学极化的影响(过大时镀层易烧焦),液温、主盐浓度对传质速度的影响,工件复杂程度与装挂方式的影响,阴极电流密度越大、越接近烧焦处的镀层光亮整平性越好,故条件允许时宜采用尽可能大的阴极电流密度[5]。

2.实验内容

2.1基体镀前处理

镀前处理主要是去除零件表面的浮灰、残渣、油脂、氧化皮等各种腐蚀产物,即使肉眼看不到的氧化膜也应完全除去,使基体金属呈现出洁净的表面,接受金属离子的沉积,以获得完整、致密的镀层。

2.2电解液组成及工艺条件

表2-3电解液组成及工艺条件

实验以直流稳流源为电镀电源,阳极为65mm×50mm×5mm电解镍,阴极为100mm×10mm×0.1mm铜箔,阴极施镀面积为60mm×10mm,镀层平均厚度控制在30μm。

2.3电镀镍工艺流程

电镀镍的工艺流程为:剪切基体材料打磨除油蒸馏水洗酸浸蚀蒸馏水洗吹干称重施镀蒸馏水洗吹干称重测试。

2.4镀层硬度测定

利用HXD-1000TMC自动转塔显微硬度仪测量镍镀层的硬度(载荷200gf,保荷时间15s),每个样品都选取3个点进行测量,最后取平均值并分析其标准偏差。

3.实验结果分析与讨论

图3-1为不同质量浓度的柠檬酸钠在不同阴极电流密度条件下对镍镀层硬度的影响。由图3-1可知,镀层的硬度随柠檬酸钠质量浓度的增加而下降且当柠檬酸钠质量浓度为100g/L和阴极电流密度为1.0A/dm2时,镀层的硬度最大(约102HV)。

图3-1柠檬酸钠质量浓度对镀层硬度的影响

4.结论

本文在中性镀镍电解液中,采用柠檬酸钠作为镍配位剂,控制镀液温度为45℃,在柠檬酸钠含量分别为100g/L、120g/L、150g/L、180g/L的条件下,改变阴极电流密度,考察柠檬酸钠含量对镍镀层硬度的影响。结果表明,镍镀层的硬度随柠檬酸钠质量浓度的增加而下降且当柠檬酸钠质量浓度为100g/L和阴极电流密度为1.0A/dm2时,镀层的硬度最大(约102HV)。[科]

【参考文献】

[1]何建波,吴肖安等.电镀镍磷合金研究现状及前景[J].浙江工业大学学报,1999,3,(01).

[2]张静韵.电镀工工艺学(中级本)[M].北京:科学普及出版社,1984.

[3]陈范才等.现代电镀技术[M].中国纺织出版社,2009.