当前位置: 首页 > 范文大全 > 办公范文

自动化和电气自动化的区别范例(3篇)

时间:

自动化和电气自动化的区别范文篇1

关键词:化工企业爆炸危险环境电气设计

中图分类号:F407文献标识码:A

一、爆炸危险环境论述

化工企业爆炸危险环境的电力设计要遵循的原则是预防为主,优先保障人身和财产安全,按照安全适用、技术先进、经济合理的方针采取防范措施。尤其是生产加工、转运、贮存过程中容易出现的爆炸性气体环境时,必须进行爆炸性气体危险环境的电力设计;如果是爆炸性粉尘、可燃性粉尘环境,要进行相关的爆炸性粉尘环境电气设计。首先了解一下爆炸性气体环境在什么情况下出现爆炸情况:存在可燃气体、可燃液体或蒸汽,且和空气的混合浓度在爆炸极限内;存在引爆的火花、高温或电弧。这两个条件必须同时出现。防止爆炸性气体混合的方法主要有:布置露天的工艺装置制作环境;注意机械通风;设置自动仪器检测装置;及时预警。爆炸性粉尘主要分为四种:爆炸性粉尘,在氧气很少下能着火,如镁粉、铝粉、铜粉等;可燃的导电粉尘,如石墨、焦炭、锌粉,与氧气发生反应而燃烧;可燃非导电粉尘,聚乙烯、木质、硫磺、小麦等粮食粉尘;可燃纤维,棉花纤维、麻纤维、人造纤维等。主要预防方法为:设置危险物料专用容器;作业环境露天或保持通风;机械除尘;爆炸危险区域设置多个出口;定期除尘;限制产生高温或电火花设备的使用等。

二、爆炸危险区域的范围划分

搞好易燃易爆环境电气设计的首要任务就是对生产场所正确地进行爆炸危险区域划分。这一点直接影响到下面的一系列设计工作,如:主要电气设备的选型、电线电缆的选择与敷设、安装标准等,直接涉及生产和人身安全,应当根据释放源的级别和位置、易燃物质的性质、通风条件、障碍物及生产条件、运行经验等因素。

1、建筑物内部释放源

封闭厂房通风不良时,以厂房为界,厂房内划为1区。当易燃物质重于空气时如释放源距离建筑物外墙小于12m时,以释放源为中心,半径为15m,高度为7.5m的范围内(厂房外)划为2区。如释放源距离建筑物外墙大于等于12m时,通向露天的门、窗外3m以内的空间,在自然通风良好的条件下也划为2区。当易燃物质轻于空气时,如释放源距离建筑物外墙小于1.5m时,以释放源为中心,半径为4.5m,高度为7.5m的范围内(厂房外)划为2区。如释放源距离建筑物外墙大于等于1.5m时,通向露天的门、窗外3m以内的空间,在自然通风良好的条件下也划为2区。封闭厂房通风良好时,以厂房为界划为2区。其它爆炸危险区域的范围同通风不良时。一般生产车间均属于封闭式厂房。在爆炸危险区域内如若采用了机械通风,通常可认为是通风良好的状态。

2、生产装置区的释放源,当易燃物质重于空气时,以释放源为中心,半径为15m的范围内划为2区。当易燃物质轻于空气时,以释放源为中心,半径为4.5m的范围内划为2区。

3、重于空气的易燃物质贮罐

3.1、固定式贮罐。在罐体内部未充隋性气体的液体表面以上的空间划为0区。以放空口为中心,半径为1.5m的空间和爆炸危险区域内的地坪下的坑、沟划为1区。贮罐无堤时,距离贮罐的外壁和顶部3m的范围内划为2区。当贮罐周围设围堤时,贮罐外壁至围堤,其高度为堤顶高度的范围内划为2区。如贮罐外壁至围堤距离小于3m时,爆炸危险区域应划出围堤外。

3.2、浮顶式贮罐,在浮顶移动范围内的空间划为1区。贮罐无堤时,距离贮罐的外壁和顶部3m的范围内划为2区。贮罐在堤内,如贮罐外壁至围堤距离大于等于3m时,其水平距离从贮罐外壁延伸至围堤的范围内划为2区;否则应距贮罐外壁3m范围内都划为2区。

4、非爆炸危险区域

爆炸性气体环境内的车间,采用正压或连续通风稀释措施后,车间可降为非爆炸危险环境。易燃物质可能出现的最高浓度不超过爆炸下限值的10%;在生产过程中使用明火的设备附近,或炽热部件的表面温度超过区域内,易燃物质引燃温度的设备附近;以及在生产装置区外,露天或开敞设置的输送易燃物质的架空管道地带,但其阀门处按具体情况定。

三、易燃易爆环境中的配电设计

1、负荷分级

关于负荷分级,我们不仅要参照《工业与民用配电设计规范》,更要根据实际的易燃易爆环境的生产工艺及安全要求对负荷进行分级。正常情况下,这类负荷大都划分为一、二类负荷,但标准别强调在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应为特别重要的负荷。如,在工业生产中关断正常电源来处理安全停产所必须的应急照明、通信系统和保证安全停产的自动控制装置等。

2、供电电源的设计

针对化工、石化行业较多的为一级负荷情况,配电设计应由两个独立电源供电,当一个电源发生故障时,另一个电源应不致同时受到损坏,以保持继续供电。对于一级负荷别重要的负荷,还必须增设应急电源。常用的应急电源有发电机组、干电池、蓄电池以及专用的馈电线路等,应根据产品的生产工艺允许的中断供电的时间来选择:

(1)UPS不间断电源。适用于中断供电时间为毫秒级的负荷;

(2)EPS应急电源。适用于中断供电时间为0.25S以上的负荷。

(3)带有自动投入装置的专用馈电线路,适用于中断时间1.5S或0.6S以上的应急电源。

(4)快速自启动的发电机组,适用于中断时间为15S以上的负荷。

(5)蓄电池。适用于容量不大的特别重要负荷,有可能采用直流电源直接供电者。

在实际的设计中,亦可根据实际情况略作变动。

3、厂区、车间的变配电所和控制室的设计

对于易燃易爆环境,除了符合正常相关国家标准规范的要求外,还要注意以下几点:

(1)不应设在有爆炸危险的区域内。当为正压室时,可布置在1区、2区内。

(2)对于易燃物质比空气重的爆炸性气体环境,位于1区、2区附近的变电所、配电所和控制室的室内地面,应高出室外地面0.6m。

(3)不应设在有火灾危险区域的正上面或正下面。

(4)变配电所如果与火灾危险区域的建筑物毗连时,应符合下列要求:电压为1~10kV配电所可通过走廊或套间与火灾危险环境的建筑物相通,通向走廊或套间的门应为难燃烧体;变配电所与火灾危险环境建筑物共用的隔墙,应是密封的非燃烧体。管道和沟道穿过墙和楼板处,应采用非燃烧性材料严密堵塞,变压器室的门窗应通向无火灾危险的环境。

四、建立电气安全评价体系

对于易发生火灾爆炸等重大损失事故的化工企业,应将电气火灾和爆炸、雷电危害、静电危害作为电气安全评价的重点。首先要对电气设备固有安全性进行评价,电气设备的固有安全性能直接影响了化工企业的电气安全状况,电气设备的固有安全性应从六个方面衡量:

(1)绝缘

绝缘是利用绝缘材料对带电体进行封闭和隔离。长久以来,绝缘一直是作为防止触电事故的重要措施,良好的绝缘也是保证电气系统正常运行的基本条件。双重绝缘兼有工作绝缘和附加绝缘,还有加强绝缘是基本绝缘经改进后在绝缘强度和机械性能上具备了与双重绝缘同等防触电能力的绝缘。

(2)屏护

屏护是一种对电击危险因素进行隔离的手段,即采用遮栏护罩护盖箱匣等把危险的带电体同外界隔离开来,以防止人体触及或接近带电体所引起的触电事故。屏护还起到防止电弧伤人、防止弧光短路或便利检修工作的作用。

(3)间距

间距是指带电体与地面之间、带电体与其它设备和设施之间、带电体和带电体之间必要的安全距离。间距的作用是防止人体触及或接近带电体造成触电事故,避免车辆或其它器具碰撞或过分接近带电体造成事故,防止过电压放电及各种短路事故以及方便操作。

(4)安全特低电压

安全特低电压兼有防护直接接触电击和间接接触电击的作用。其防护原理是通过对系统中可能作用于人体的电压进行限制,从而使流过人体的电流受到抑制,将触电危险性控制在没有危险的范围内。

(5)安全装置

安全装置是在电气设备发生故障或问题时自动启动的,用来防止触电事故以及有关的火灾爆炸和机械伤害等。它是防止事故发生的最后一道屏障,也是保证用电系统安全运行的关键,因此是电气设备固有安全性的较重要的因素之一。

结语:化工企业因其工艺的特殊性,往往处于危险生产环境,因此电气设计人员应引起重视,熟悉有关的设计规范,掌握所选电气产品的性能。针对构成爆炸的基本条件采取完整的防范措施,杜绝爆炸事故的发生。

参考文献

自动化和电气自动化的区别范文

1.1耦合模拟CONTAM是目前应用最广泛的网络模型,由美国国家标准和技术研究院(NationalInstituteofStandardsandTechnology)下属建筑火灾研究实验室(BuildingandFireResearchLaboratory)开发,主要用于研究建筑物内多区域空气流动和污染物传播,也可用来建筑加压送风防烟及局部排烟系统的分析。它将建筑物内各房间认为节点,节点具有相同的物理参数,比如温度、压力等,节点连线将各区域连通起来,比作开启的门、窗户或者门缝、窗缝。每个节点是1个控制体,利用质量与能量守恒方程对建筑物内的空气流动、污染物分布及压力分布进行计算,特别适合于远离着火房间的烟气流动分析[11]。为了得到起火房间、电梯竖井等区域内各物理参数的详细分布,实现了多区网络软件CONTAM与CFD0场模拟软件的耦合,目前可对1个区域进行场模拟,其他为网络区域模拟,两者之间的耦合如图1所示。1.2典型建筑模型设“典型建筑”为20层的高层建筑,每层层高为3m,每层面积500m2,楼梯间面积15m2,电梯竖井面积10m2,如图2所示。设楼层为1个区域,其各物理参数均匀分布,楼梯间与电梯井独立设置,忽略电梯轿厢的影响。楼梯间与楼层之间的疏散门尺寸均为1.6m×2.0m,疏散门缝隙面积为0.0184m2[12],电梯门尺寸为2.0m×1.2m,其缝隙面积在场模拟计算中简化为当量孔口面积。由于CONTAM模型只是对各区域质量守恒方程求解,未考虑能量方程,所以火源及烟气等相关参数用其他热模型代替。CONTAM模型与CFD0模型耦合计算中,本文设定电梯竖井为CFD区域,采用标准k-ε湍流模型进行计算,网格数为20×100×600,竖井壁面为恒定温度40℃(室外环境温度为20℃)。将起火房间简化为“标准火源”[4,10,13],假定起火楼层压差为10Pa,温度为500℃,作为计算采用的“标准火源”;网络模型中对烟气的传热未进行计算,考虑到竖井内的烟囱效应,假设存在一个热源在竖井内模拟热烟气的运动,发热量0.1MW;模拟过程中门窗均关闭,模拟状态为稳态,不考虑外界风的影响。考虑到建筑火灾的随机性与多变性,计算结果的绝对值不是本文研究的重点,重点探讨的烟气在竖井内流动趋势以及各因素对竖井中和面位置的影响。

2正交实验

在“标准火源”下对“典型建筑”火灾中的烟气控制进行场-网模拟,研究竖井顶部开口面积、各楼层加压送风、电梯门密封性及不同着火楼层对电梯竖井内烟气流动的影响。为了减少实验次数,且不影响实验结果的前提下,采用正交实验的方法进行计算,实验的目标值是竖井中和面位置与排烟量,各影响因素及水平如表1所示。各楼层暖通空调设备进行加压送风,一般舒适性空调送风量为4.0~6.0次/h,取送风量分别为0次/h、1.0次/h、2.0次/h、3.0次/h;电梯门缝的宽度体现了电梯门的密封性,一般缝隙宽度为3.0~12.0mm,取缝隙宽度分别为3.0mm、6.0mm、9.0mm、12.0mm。所进行的正交实验如表2所示,L1644表示16次实验,4个水平,4个因素。

3计算结果及分析

3.1电梯竖井内烟气温度分布电梯竖井内的烟气温度分布对烟囱效应的影响很大,在网络计算中经常设定为常数,会导致计算结果产生较大的误差[4,10]。采用场网耦合模拟的方法,电梯竖井采用场模拟,充分考虑烟气在竖直方向上的分布,其它区域为充分混合区域。一般而言,着火层位于1层,着火层以上楼层数更多,烟气更容易侵入各楼层,此时对建筑火灾是最不利的,取电梯门缝宽度6.0mm、各楼层送风量3.0次/h、竖井顶部开口面积为0.2,即在“典型建筑”的“标准火源”条件下,Case12算例计算得到的竖井内烟气分布如图3所示。其中,图3a为电梯竖井场模拟计算得到的Y=2.5m截面上的温度场分布,图3b为电梯竖井内烟气温度分布沿竖井高度方向上的变化。由图3可知,电梯竖井内的烟气温度沿建筑高度方向基本呈指数规律衰减,且沿高度方向出现诸多波动,这是由于各楼层与电梯竖井之间空气或烟气进行置换的原因。在初始阶段,着火层进入的冷空气较多,温度梯度较大;随着烟气竖直向上运动,温度变化较平缓。其他算例得到电梯竖井的烟气温度,在着火层以上,变化趋势与图3相同。3.2影响因素分析根据表1对“标准火源”条件下的“典型建筑”烟气控制进行场-网模拟,分析各个因素对排烟量与电梯竖井中和面位置的影响。3.2.1电梯竖井排烟量通过电梯竖井顶部开口排烟量的计算结果如表2所示。根据正交实验表的因素影响分析,对自然排烟量影响效应曲线如图4所示。由图4可知,不同的竖井顶部开口面积、电梯门缝宽度、各楼层送风量、着火层位置计算得到的自然排烟量均值的变化分别为:0~15.700kg/s、9.200~11.501kg/s、7.718~13.258kg/s、9.955~11.342kg/s。对电梯竖井自然排烟量影响的重要程度依次为竖井顶部开口面积、电梯门缝宽度、各楼层加压送风量、着火层位置。3.2.2电梯竖井中和面位置各实验计算的电梯竖井排烟中和面位置如表3所示。根据正交实验表的影响因素分析,对电梯竖井中和面位置的影响效应曲线如图5所示。由图5可知,不同的竖井顶部开口面积、电梯门缝宽度、着火层位置、各楼层送风量,竖井中和面位置均值的变化分别为:4.50~19.00m、13.50~15.75m、10.75~17.75m、12.25~16.00m。对电梯竖井自然排烟量影响的重要程度依次为竖井顶部开口面积、电梯门缝宽度、着火层位置、各楼层加压送风量。3.3竖井顶部开口面积的影响由图4与图5可知,竖井顶部开口面积对自然排烟量与中和面位置影响最明显。为了分析不同竖井顶部开口面积的影响且不失一般性,着火层、电梯门缝宽度、各楼层送风量取因素水平的中间值。在“典型建筑”的“标准火源”条件下,取着火层在6层,电梯门缝宽度9mm,各楼层送风量为2次/h,对不同竖井顶部开口面积进行场网模拟计算。不同竖井顶部开口面积下,自然排烟量计算结果如图6所示。由图6可见,自然排烟量随着竖井顶部开口面积的增大而增加。开口面积较小时,自然排烟量随之增加迅速;开口面积较大时自然排烟量增加比较平缓。不同竖井顶部开口面积下,电梯竖井内外烟气压差如图7所示,图中P0可用来确定中和面的位置。由图7可见,除着火层之外,各楼层烟气的压差沿建筑高度方向基本呈线性分布。随着竖井顶部开口面积比的增加,中和面的位置逐渐上移,当顶部开口面积比为30%时,中和面位置位于19层,这样1~18层冷空气进入竖井,20层有少量烟气侵入。开口面积比>30%时,中和面位置位于建筑总高度之上,烟气不会侵入各楼层,提高了建筑的安全性,有利于人员疏散。

4结论

自动化和电气自动化的区别范文

关键词:石油化工;防爆技术;电气设计;安全

DOI:10.16640/ki.37-1222/t.2017.14.051

石油、天然气及其产品作为石油化工生产的原料,存在一定的危险性。这些石油化工产品大部分都属于易燃烧易爆炸的物品,如果所在环境有一点火花,那后果不堪设想。而电气设备在运行过程中就特别容易产生火花,例如:漏电、短路、静电、电火花等等,都特别容易产生火花。而这些火花的产生就很可能引起爆炸或火灾,这样不仅仅会给企业带来巨大的财务损失,更重要的是会让企业员工的生命安全受到威胁。因此,石油化工企业在电气安全方面要比普通场所的电气设计要求高得多,爆炸和火灾这么危险的存在,让我们不得不时时刻刻警惕,注意安全,注意防范。我们必须把防爆安全放在首位,然后再去考虑设计方案。

1石油化工企业电气防爆区域划分

我们不能因为石油化工企业里有易燃易爆品,就把整个企业整个工厂就都划分为爆炸危险区域,这是一种十分不合理的做法。我们要用合理的、科学的方法来划分爆炸危险区域。根据不同等级的危险区域,在进行下一步的安排。只有充分了解电气防爆区域等级,我们才可以作出合理的防爆设计。

1.1根据危险源进行划分

查看生产工厂中是否存在易燃易爆炸的危险物品,这是划分爆炸危险区域的前提条件。如果有这些易燃易爆炸的危险物品的话,我们就要对这个区域进行保障,加大监管防范力度,来确保安全。如果没有,我们也不可掉以轻心,我们也应当做好防备,以防万一。

1.2根据性质和级别进行划分

爆炸危险区域按爆炸物的性质进行分类,一般来说我们会分为气体类、液体类、粉尘类三大种类,当然也会出现混合物。至于分级,一般会按爆炸物持续的时间、出现的次数、危险的程度来分为三个等级。

1.3根据危害程度进行划分

仔细查看爆炸危险区域所处的位置和周围的环境及条件,看它周围都是怎样的建筑物,是否存在另一个爆炸危险厂房。它的通风条件如何,周围所处环境是否允许通风,通风是对爆炸危险区域有好处,还是有坏处?如果爆炸燃烧时会释放有毒气体,那么是否会造成无法想象的后果。如何通风,通风的条件怎样,都是我们需要考虑的方向。它周围是否有阻碍物,又或者周围是否有其它危险的厂房。

2石油化工企业电气防爆设计

2.1电气防爆设计及设备选型

在电气设备使用过程中,很可能会出现电弧或电火花的外泄,为了防止这种情况的发生,我们要努力降低电气设备表面的温度,石油化工企业防爆厂房的选择一般分为三种,隔爆型、增安型、还有正压型。还有在电气设备选型前,我们一定要正确的查看和分析爆炸危险区域的等级,还有爆炸危险物品的种类和分级。通过这些条件限制,我们尽量选择相对合适,符合生产环境的电气设备。而我们必须知道我们所选择的电气设备的级别和组别,不能低于石油化工生产环境以及爆炸危险品的级别和组别,如果爆炸危险物品存在两种或两种以上的混合物,那么我们就该选择的电气设备的防爆级别较高的。

2.2电气防爆设计的细节

电气防爆设计就必然会有配线设计,所以配线的质量一定要采用特别好的,可以采用阻燃的或者防爆的电缆,来确保以后的安全生产。由于配线的放置特别隐蔽,又不容易检查,所以这个步骤往往让人忽略。假设我们有好的电气设备,但我们却没有好的配线来配合启动运用它,那么再好的电气设备也会失去它存在的意义。首先我们要确保配线的型号,选择合适的尤为重要,其次是电线入口的处理,电气的线路应该直接埋地或者放置在较高处,当然要考虑实际情况和危险爆炸物的状态。最后所有电气配线中间都不要有接头,以免日后不必要的麻烦。

3爆炸危险区域加强通风设计

有时有效的通风可以降低爆炸危险物的物质浓度,从而降低危险事故的发生。自然通风是基于建筑物的设计而产生的,事后是无法靠人工改变的,而人工通风和局部人工通风可以靠专业的通风设计人员来改变的。有效的通风方法无疑是以上总结的三点。防爆设计不仅仅要靠电气防爆设备,有时也要考虑周围环境的影响。

4静电处理设计

在石油化工厂房里有很多的电气设备、金属容器、金属管道、操作设备等等,都特别容易产生静电。为了预防不产生静电,首先工作人员都要穿防静电服,先确保工作人员的人身安全,然后整个厂房都要采取静电接地的措施,防爆厂房内各种设备都可以直接与静电接地的线做可靠的电气连接,尽量避免静电的产生。

5加强相关工作人员的培训

企业要举办一些活动和课程,来让自己的工作员工学习了解相关的知识,提高他们的安全意识,以及万一发生危险事故后的做法和对应措施。电气设备维保人员的基本素质和检测水平,这些都是特别重要的。良好的开头很重要,日后的维护更重要。所以加强对自身员工的培养,是很有必要的。

6结束语

石油化工产业确实是一个特殊行业,它存在着极大的危险性,生产环境也是处于危险之中的,因此所有的工作人员都要提高自身的工作素质,为他人的安全着想,更是为自己的安全负责。尤其是电气设计人员,必须熟悉相关设计,了解所有设备产品性能,知道如何选择如何设计,既要降低成本发展经济,又要有所成效。而石油化工企业电气防爆设计的施工,必须遵守相关规定,认真严格的完成。石油化工产业在我经济发展中占有重大地位,它的安全问题自然不能小觑,毕竟只有安全的生产才可以创造出更大的经济价值。而这些成功的前提就是要把电气防爆设计做好,这才是写本文的最终目的。

参考文献:

[1]张海松.石油化工企业电气安全设计分析[J].化工管理,2016(30)

:138.