当前位置: 首页 > 范文大全 > 办公范文

光学论文范例(3篇)

时间:

光学论文范文篇1

1990年初的欧洲光化污染非常严重,臭氧超标形势严峻。1993年欧洲环境委员会(EEA)成立,同时成立了欧洲环境信息和观测网络(Eionet),目前有32个成员国和6个合作国建立了586个地面臭氧监测站开展30多项针对光化污染的研究监测。在加强地面臭氧污染监测的同时,欧盟还加强了对形成臭氧前体物质排放量的统计和监测。目前,欧盟各成员国必须每年向欧盟环保局报告臭氧前体物质如挥发性有机物(VOC)、NOx、CO、NH3等的排放量,并确保上述污染物的排放量不超过欧盟确定的目标值。1990年美国国会通过清洁空气法修订案,美国EPA要求各州或地方在臭氧污染问题严重地区必须开始建立光化学评估监测站(PAMS),全面监测臭氧、臭氧前体物及部分含氧挥发性有机物(VOCs)以了解臭氧高污染发生的原因。除了光化学评估监测站(PAMS)外,美国有州和地方空气监测网(SLAMS)以及国家空气监测网(NAMS)承担臭氧污染监测。目前美国建有约1200个臭氧监测站形成了光化污染常规监测网,用以光化污染状况监测评估、污染预警、前体物状况和区域输送分析。2000年左右,我国部分城市如北京、上海、广州、重庆等开始开展臭氧监测,并在该领域做了一些探索。2008年国家正式开展臭氧监测试点工作,北京、天津、沈阳、青岛、上海、重庆和广东省参与试点,监测的参数有臭氧、臭氧前体物(SO2、NO2、CO),部分站配有VOCS、NMHC监测设备和气象仪。2013年京津冀、长三角、珠三角等重点区域以及直辖市和省会城市均开展GB3095—2012《环境空气质量标准》新增指标(PM2.5、CO、O3等)监测。2013年初,全国范围内74个重点城市建成的496个国控站点均已开展O3自动监测,形成国家监测网络。此外,如北京、上海、重庆、广州、南京、武汉等地根据需要建设有针对大气复合污染监测的综合监测实验室(超级站),除常规臭氧及其前体物外,还有光化烟雾污染的重要监测因子:细粒子颗粒物、NOy、VOCS、NMHC、大气稳定度、紫外辐射以及气象参数等。

2光化污染自动监测技术

开展大气光化学污染监测主要是开展臭氧以及对生成臭氧(光化烟雾)的主要前体物质和光化污染生成物的监测(NOx、NOy、CO、SO2、甲烷/非甲烷总烃、高沸点/低沸点臭氧前体物、有机气溶胶等),同时对太阳辐射强度以及城市的气象(风速、风向、温度、相对湿度等)、空气扩散条件等进行同步观测。本文根据自动监测技术的发展,对光化污染较为前沿的自动监测新技术进行介绍。

2.1O3、NOX、SO2和CO监测

O3是光化反应产生的最直接、最重要的污染物,常常作为光化烟雾污染强弱的指标,NOx=NO+NO2,NO2的存在是产生光化反应的必要条件,而SO2和CO是光化污染反应的重要前体物。以上4种参数监测技术从20世纪80年代开始发展至今,目前已非常成熟,本文就不再赘述。

2.2臭氧柱浓度的监测

柱浓度是指污染气体在空间上的垂直分布浓度,长期监测污染物的柱状浓度可以反映其在空间中的浓度变化趋势,对开展城市空气质量监测,研究区域空气污染分布以及污染通量传输具有重要作用。目前监测污染物柱状浓度主要使用的是被动DOAS监测技术,利用污染物的吸收光谱不同,采用光谱拟合技术得到污染气体的斜柱浓度,即污染气体沿光路的积分浓度,结合辐射传输模型计算出大气质量因子以及污染物的垂直柱浓度。

2.3总反应性氮氧化物NOy

总反应性氮氧化物NOy=NOx+NOz=NOx+NO3+2N2O5+HNO3+HNO4+HONO+PAN+MPAN+硝酸盐+烷基硝酸盐。对环境空气中总反应性氮氧化物NOy进行监测可以帮助了解大气中总反应性氮氧化物的组成特征以及形成光化学烟雾的机理。在监测方法上NOy与NOX相同,均为化学发光法,监测方法的区别在于:NOy的钼转化炉在样品气采样入口处,所有的含氮氧化物在采集入口处根据电磁阀的切换,一路通过钼转化炉全部转化为NO,参与化学发学反应得到NOy值,一路不通过钼转化炉直接参与化学发光反应得到NO值;而NOX的钼转化炉在仪器内部,样品气通过采样管进入仪器后,大部分非NO2的含氮氧化物已经挥发或反应成其它物质而不能被捕获。

2.4非甲烷总烃(NMHC)和挥发性有机物(VOCs)

(1)非甲烷总烃(NMHC)监测非甲烷总烃(NMHC)通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8),是形成光化学烟雾污染的重要前体物,长期观测NMHC,通过光化烟雾反应动力学模型和轨迹模式绘制EKMA曲线,如图1所示,以了解当地光化污染是受NHMC控制还是受NOX控制,以便做相应的污染防治工作。非甲烷总烃自动监测方法主要是采用气相色谱法,气相色谱的分离原理实质上是利用样品中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次的分配(吸附-脱附-放出),由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。非甲烷总烃常常和甲烷一起检测,检测器一般采用氢火焰离子检测器(FID)。氢焰检测器(FID)是以氢气和空气燃烧的火焰作为能源,利用含碳氢化合物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。(2)挥发性有机物(VOCs)监测挥发性有机物(VOCs)是指沸点在50~260℃、室温下饱和蒸气压超过133.32Pa的易挥发性有机化合物。大多数VOCs化合物(如低碳数的烯烃、烷烃)具有大气化学反应活泼性,是形成光化学烟雾污染的重要前体物,VOCs日益成为表征城市大气污染的重要指标。VOCs自动监测方法主要也是采用气相色谱法,使用在线气相色谱分析仪,一般可以检测低沸点(C2~C5)项目:乙烷,乙烯,丙烷,丙烯,异丁烷,正丁烷,反式-2-丁烯,顺式-2-丁烯,1-丁烯,异戊烷,正戊烷,1,3-丁二烯,反式-2-戊烯,1-戊烯,异戊二烯。可检测高沸点(C6~C12)项目:苯,甲苯,乙苯,间、对二甲苯,邻二甲苯,1,3,5-三甲苯,1,2,4-三甲苯,1,2,3-三甲苯,2,2,4-三甲基戊烷,正己烷,正庚烷,2-甲基庚烷,辛烷等,检测器分别采用的是氢焰检测器(FID)和离子化检测器(PID)。光离子化检测器(PID)原理是使用紫外灯(UV)光源,将有机物“击碎”成可被检测器检测到的正负离子(离子化),所形成的分子碎片和电子由于分别带有正负电荷,从而在2个电极之间产生电流,根据电流信号的强度检测该组分的浓度。在被检测后,离子重新复合成原来的气体,因此PID检测器是一种非破坏性检测器。

2.5PAN/PPN在线监测

PAN(过氧乙酰硝酸酯)和PPN(过氧丙酰硝酸酯)是大气光化烟雾的特征污染物,对人体健康、植物及生态环境有极大的危害。PAN和PPN可以作为光化学反应的指示物,其浓度的获得对于正确估算光化学臭氧产生率十分重要。PAN/PPN在线气相色谱1992年开始研发,经过多次升级后于近几年从德国传入我国。其原理是样品气在低于室温的毛细管柱进行气相色谱分离后,由电子捕获器(ECD)检测。其动态的校准单元是基于NO校准气流的光化学合成PAN或PPN。

2.6OH•(羟基自由基)监测

OH•是大气中最重要的氧化剂,它控制了绝大多数大气痕量组分的氧化去除,尤其是在光化学烟雾的产生、城市大气中二次气溶胶的生成等过程中起着重要作用。虽然我国对城市大气中的常规气相污染物和颗粒物已有一些测量和研究,但对于城市大气污染产生的机制了解得并不十分清楚,而对城市大气OH•的系统测量基本上属于空白。对OH•的测量应用较广泛的技术是激光诱导荧光LIF法。LIF方法是基于OH•在308nm附近存在尖锐吸收光谱的物理特性,使用窄带激光器在此波段内照射含OH•的气体样品使得OH•产生共振荧光,在入射激光的正交方向上对307~311nm波段内荧光光子进行计数,结合标定实验导出的灵敏度,从而定量测定大气中OH•的浓度。

2.7PM10、PM2.5、PM1(颗粒物)监测

伴随光化烟雾还会有大量细粒子即二次细颗粒物(secondaryfineparticulatematters,SFPM)产生,如硫酸盐、硝酸盐、铵盐、黑炭(BC)以及有机碳(OC)等,因此对光化污染监测需对颗粒物PM10、PM2.5、PM1进行长期监测。颗粒物自动监测方法主要有β射线法、微量振荡天平法、光散射法以及β射线法联用光散射法等。β射线法、微量振荡天平法经过30多年的发展已经比较成熟,光散射法是近几年发展起来较新的技术。其原理如下:半导体激光源以高频率产生绿色激光照射样气室,其频率足够快,保证在样气中的颗粒物质量浓度在一定范围(0.1~1500μg/m3)内,不会错过穿过气室的任何颗粒物。如有颗粒物存在,激光照在上面会发生散射,在同一平面上与激光照射方向成90°角的检测器会收到被对面的反射镜聚焦的散射光,其强弱与颗粒物的直径大小有关系。光散射法单独使用不但可以测量颗粒物质量浓度,还可以测量不同粒径大小颗粒物(如直径从0.25~32μm)的数量浓度。光散射法也可以和β射线法联用,可以使颗粒物监测仪在短时间内的分辨率、准确度和精确度有很大提高。

2.8太阳辐射观测

光化烟雾反应与太阳辐射直接相关,一般太阳辐射越强,大气光化反应就越厉害,臭氧浓度会更高,因此对太阳辐射进行长期观测是很有必要的。目前测量太阳辐射光谱特性的仪器是太阳辐射计,它可用于同时测量不同波长的太阳直接辐射、天空散射辐射、地面反射辐射或太阳总辐射等辐射量,可以计算出大气中水气、臭氧以及氮氧化物等污染气体分子在整个大气层中的总含量,反演出气溶胶粒子谱和光学特性等参数。

2.9大气稳定度

大气稳定度是指叠加在大气背景场上的扰动能否随时间增强的量度。大气稳定度是影响污染物在大气中扩散的极重要因素。当大气层不稳定,热力湍流发展旺盛,对流强烈,污染物易扩散,但是全层不稳定时,湍流受到抑制,污染物不易扩散稀释,特别当逆温层出现时,通常风力弱或无风,低空像蒙上一个“盖子”,使烟尘聚集地表,造成严重污染。目前使用普遍的大气稳定度自动仪主要是基于β射线测量方法的24h自动采样和PM10颗粒物质量浓度在线监测仪器。同时,仪器在设定的每个采样分析周期中,通过盖革计数器测量所收集颗粒物样品中氡元素之放射性大小,获得大气稳定度值(与样品中氡元素之放射性大小正相关)及相关参数。

2.10气象综合观测

有利于光化反应的的气象条件除了太阳辐射强、大气稳定外,还有低湿度、低风速和高压,因此气象综合观测是必不可少的。气象监测参数包括风向、风速、温度、湿度、压力、雨量等。比较常用的机械式的气象传感器使用时间长活动部位会有结垢和腐蚀等问题,影响数据准确性,且故障率比较高。目前有一种采用超声风新技术的一体式气象仪,其风向、风速使用超声风原理,雨量传感器使用雨鼓声学振动压力感应式或多普勒方式,压力、温度和湿度传感器集成在内部(电容传感器),这类一体式传感器集成化好、维护量极低、数据较为准确和稳定。超声风工作原理:风传感器有3个等间距的超声波变换器位于同一水平面上,它们组成一个变换器阵列。通过测量超声波从1个变换器传播到另外2个变换器所用的时间来确定风速和风向。风传感器测量沿变换器阵列所形成的3条路径的传送时间(双向),此传送时间取决于沿超声波路径的风速。如果风速为零,则正向和反向传送时间相同。当风向与声音路径的方向相同时,上风向传送时间将变长,而下风向传送时间将变短。雨鼓声学振动压力感应式的原理是:其传感器上部为不锈钢鼓面,内部为空腔,空腔内部设置了高精确性的微震动传感器。在监测雨量的时候,可以将每个微弱的雨滴到鼓面的震动转变为电信号,通过仪器内部计算模块进行准确计算得出实时降雨强度。多普勒方式测雨量是根据雷达气象学原理,降水强度与降水粒子的反射因子有关,也与降水粒子的含水量有关,而反射因子与回波强度有关,回波强度与基本反射率和回波厚度有关,因此多普勒方式依据降水粒子的基本反射率、回波厚度和降水含量来定量估算降水强度。

2.11遥感监测

遥感监测技术也是这几年迅速发展起来的新技术,它是以卫星、飞机、地面基站等方式,将工作平台从地面上升到高空,因此可以得到大面积的动态信息,具有整体性和宏观性的特点,被用来弥补地面环境监测的不足。遥感监测技术主要是通过物体对大气中各种频率电磁波的辐射或反射,不与物体进行直接接触,远距离辨识及测量目标对象的一种监测技术。大气环境遥感主要监测对象是大气中的O3、C02、S02、CH4等与大气环境质量和全球环境变化密切相关的大气可变组分以及气溶胶、有害气体、沙尘暴等大气杂质。在对臭氧遥感监测中,使用较广泛的传感器有TOVS、TOMS等。其中,TOVS探测器选用9.6!m作为探测通道,通过测量地面发射的电磁辐射在臭氧9.6!m吸收带处被大气中臭氧吸收的强度来探测大气中臭氧的含量。TOMS是通过测量后向太阳紫外辐射中的4个光谱通道的辐射值(其波长分别为312、317、331和339nm),其中臭氧的最强吸收(312nm)辐射和最弱吸收(331nm)辐射的比值就可以反演出大气中臭氧的总量。

2.12其它监测

除以上监测项目外,可以根据当地实际情况,对气溶胶化学组分进行监测,如在线测量可溶性阴阳离子浓度,有助于对细颗粒物的成分进行来源解析。另外还可以对OC/EC(有机碳/元素碳)进行监测(热化学法),其中EC直接来源于化石燃料的不完全燃烧,是一次人为大气污染的很好的指标。OC则包括污染源直接排放的一次有机碳POC和碳氢化合物通过光化学反应等途径生成的二次有机碳SOC,常常用OC/EC的值来判断二次污染程度,因此准确测量OC、EC的值,对于追溯大气气溶胶污染来源及气溶胶的形成与变化过程有很重要的意义。

3结语

光学论文范文

1.一般资料:

随机抽取于2012年5月在我院进行发光免疫分析的40例检测者,年龄分布为25~55岁。调查的40例患者均为发光免疫检测,全身均无系统性疾病和药物过敏史。现将40例检测者随机分为实验组和对照组,实验组人数20人,男9人、女11人,对照组人数20人,男13人、女7人。分组完全按照随机分组的方法来进行分组,不考虑年龄、性别及疾病。显示结果具有统计学意义。

2.纳入和评价标准:

纳入标准:年龄在25~55岁的发光免疫检测者;没有免疫缺陷等疾病、智力正常、自然状况一切正常;排除标准:存在感觉功能缺陷;先天性的疾病;高血压等。

3.方法:

实验组采用化学发光法进行检测,对照组采用生物发光法进行检测,即常规的生化检测。两组的用药方法用量相同,均对照组:生物发光法;实验组:化学发光法,根据就检测者检测出抗原抗体的速度进行评价。

4.效果评价标准:

观察检测抗原抗体的数量和灵敏度作为评估标准。

5.统计学处理:

采集到的数据采用SPSS15.0软件进行统计学分析,百分率(%)表示计数资料,定性资料的比较采用χ2检验,成组设计的t检验用于组间比较,当P<0.05时,可认为差异有统计学意义。

二、结果

数据显示P值小于0.05,表示调查结果具有统计学意义,即表明化学发光法检测抗原抗体的速度快于生物发光法。

三、讨论

光学论文范文

“阳光体育”理念下,健美操教学需要起到锻炼身心的作用,健美操教学内容改革应该遵循下面的指导思想:以促进学生身心健康为中心,以传授体育运动技术为方向,以培养学生兴趣为出发点,以发展学生个性、强化体育意识、培养体育能力、促进终身体育习惯养成为最终目标来构建新的健美操教学内容体系。所以,改革健美操教学内容应该注意:第一,增加激发学生兴趣、促进学生个性发展的内容。当前高校健美操教师非常重视不同种类健美操教学,如拉丁健美操、街舞、搏击操、啦啦操等。经过实验发现,这些辅助内容能激发学生兴趣,提升锻炼情绪,促进阳光体育理念的贯彻。为鼓励学生长期参与运动,应该以培养兴趣和运动能力为方向,所以应该鼓励学生自主创新、运动实践,重视对学生运动技术的教学,如健美操原理方法、健美操练法、健康养护方法等,都可以作为培养学生运动能力与自学能力的教学手段。鼓励学生不断吸取新知识与新方法,促进身心健康与体育健身能力共同发展。第二,增加实用性和健康教育的相关内容。健美操教学应该从理论学习出发,由表及里,引导学生深入学习运动原则方法、体质评价、科学健身方法、运动处方等,构建完善的健美操学习内容体系,鼓励学生每天“阳光体育一小时”,真正实现“阳光体育”运动视角下的健美操教学。

2、健美操教学方法改革

为培养学生能力,鼓励学生养成终身体育、阳光体育健身的习惯,应该改革健美操教学方法,引导学生感受到体育健身的乐趣,调动学生热情,形成健康的体育健身习惯。第一,合作教学方法。为强化学生自主创新、亲身实践的精神和能力,可以实施合作学习方法。结合“高校健美操创编研究”相关理论,将学生分为几个小组,每小组4-8人,进行健美操舞蹈创编与表演竞赛。在集体协作学习模式下,小组成员相互监督、鼓励与帮助,克服部分学生的平庸和懒惰心理,提升学生思想境界与道德情操。小组合作学习模式,小组是一个整体,学生需要将自己融入到集体中,无形之中增加了学生的主人翁意识和责任感。在创编竞赛的准备过程中,学生积极挖掘自身潜力,克服生理和心理上的不适,积极参与合作交流与互助实践,通过不断战胜自我、完成挑战,增强了学生的自信心、自尊心,从而培养了学生坚强的意志品质。第二,课外拓展学习法。课外拓展训练是课堂的延伸,它能有助于学生完成教学成果,达到教学目标。课外拓展训练是学生自发组织的学习活动,在教师指导的训练理念下,以体育比赛的形式展开,学生通过课内与课外相结合的学习形式,展开小团体模式的练习过程。之后学生参与到学校、校与校之间的比赛过程中,可以是以健美操为主题的比赛,也可以是担任球赛啦啦队、参与文艺演出等,如此通过课外拓展学习模式,使得学生真正践行阳光体育理念。

3、健美操评价方法改革

教学评价是为教学目的而服务的,改革教学评价方法,实施全新的教学评价策略,有助于促进阳光体育运动理念的落实,引导学生形成终身体育理念。所以,健美操教学应形成科学、多维的教学评价体系,从学生学习态度、进步幅度、合作互助情况、技术与技能提升情况等多方面进行评价,评价以激励学生锻炼动力为目标,引导学生形成终身体育和阳光体育健身理念。改革评价方法应该注意:第一,制定全面、科学的评价方法。基于健美操教学目标,结合“阳光体育”和“终身体育”教学理念,根据学生实际情况,教师选择考试内容与人数。健美操教学考核内容尽量少选择记忆性内容,应该以学生自主创编考试为主,分析学生对体育理念的理解,体育技能、体育训练方法的掌握。可以选择一整套动作简图,学生在规定时间根据图例进行自学、自练,实施考核,这样能全面评价学生的体育技能与学习能力。第二,课内与课外评价相结合。结合“阳光体育一小时”健身理念,根据学生是否坚持完成学习任务来实施评价,展开学生自评、学生互评、教师评价的综合评价方法。学生互相监督,根据学生的实际情况,对学生坚持锻炼的持续时间、频率等作记录,教师监督,对特殊学生放宽评价标准。根据课外锻炼情况实施科学评价,再结合课上体育技能、进步情况、组织能力、合作态度等展开综合评价。通过科学、全面的评价,缓解学生学习压力,提升学习主动性、积极性,强化学生身心素质,提升综合能力。

4、总结