当前位置: 首页 > 教育文档 > 教学工作总结

初中数学优秀教案(精选5篇)

时间:

初中数学优秀教案 篇1

学习目标:

1、进一步理解平均数、中位数和众数等统计量的统计意义。

2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。

一、知识点回顾

1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。

2、样本1、2、3、0、1的平均数与中位数之和等于___、

3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是。

4、数据1,6,3,9,8的极差是

5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。

二、专题练习

1、方程思想:

例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________、

点拨:本题可以用统计学知识和方程组相结合来解决。

同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:

2、分类讨论法:

例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;

点拨:做题过程中要注意满足的条件。

同类题连接:数据-1 , 3 , 0 , x的极差是5 ,则x =_____、

3、平均数、中位数、众数在实际问题中的应用

例:某班50人右眼视力检查结果如下表所示:

视力0、1 0、2 0、3 0、4 0、5 0、6 0、7 0、8 1、0 1、2 1、5

人数2 2 2 3 3 4 5 6 7 11 5

求该班学生右眼视力的平均数、众数与中位数。发表一下自己的看法。

4、方差在实际问题中的应用

例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:

甲:5 8 8 9 10

乙:9 6 10 5 10

(1)分别计算每人的平均成绩;

(2)求出每组数据的方差;

(3)谁的射击成绩比较稳定?

三、知识点回顾

1、平均数:

练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?

2、中位数和众数

练习:1、一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。

2、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

A、24、25 B、23、24 C、25、25 D、23、25

3、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

得分50 60 70 80 90 100 110 120

人数2 3 6 14 15 5 4 1

分别求出这些学生成绩的众数、中位数和平均数。

3、极差和方差

练习:1、一组数据X 、X …X的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )

A、 8 B、16 C、9 D、17

2、如果样本方差,

那么这个样本的平均数为。样本容量为。

四、自主探究

1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2、

则:101、102、103、104、105、的平均数是,方差是。

2、4、6、8、10、的平均数是,方差是。

你会发现什么规律?

2、应用上面的规律填空:

若n个数据x1x2……xn的平均数为m,方差为w。

(1)n个新数据x1+100,x2+100, …… xn+100的平均数是,方差为。

(2)n个新数据5x1,5x2, ……5xn的平均数,方差为。

五、学后反思:

xxx

初中数学试卷讲评优秀教案 篇2

一、教材内容及设置依据

【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用

本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理

【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

四、关于教学方法的选用

根据本节课的内容和学生的实际水平,本节课可采用的方法:

1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

五、关于学法的指导

“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

六、课时安排:1课时

教学程序:

一、复习铺垫:

首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

1、45+(-23)2、9-(-5)

3、-28-(-37)4、(-13)+0

5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1、6-(-1、2)-2、58、(-42)+57+(-84)+(-23)

从四排学生中个推选一名学生代表板演6、7、8、题。

通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

二、新知探索:

1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作

上升4、5千米+4、5千米

下降3、2千米-3、2千米

上升1、1千米+1、1千米

下降1、4千米-1、4千米

此时飞机比起飞点高了多少米?

让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

①4、5+(-3、2)+1、1+(-1、4)②4、5-3、2+1、1-1、4

=1、3+1、1+(-1、4)=1、3+1、1-1、4

=2、4+(-1、4)=2、4-1、4

=1千米=1千米

教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

初中数学优秀教案 篇3

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:

引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

初中数学优秀教案 篇4

教学目标

(一)教学知识点

1、利用方程解决实际问题。

2、训练用配方法解题的技能。

(二)能力训练要求

1、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力。

2、能根据具体问题的实际意义检验结果的合理性。

3、进一步训练利用配方法解题的技能。

通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性。

教学重点

利用方程解决实际问题

教学难点

对于开放性问题的解决,即如何设计方案

教学方法

分组讨论法

教具准备

投影片二张

第一张:练习(记作投影片2、2、3A)

第二张:实际问题(记作投影片2、2、3B)

教学过程

Ⅰ、巧设情景问题,引入新课

[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程。下面我们通过练习来复习巩固一元二次方程的解法。(出示投影片2、2、3A)

用配方法解下列一元二次方程:

(1)x2+6x+8=0;

(2)x2-8x+15=0;

(3)x2-3x-7=0;

(4)3x2-8x+4=0;

(5)6x2-11x-10=0;

(6)2x2+21x-11=0、

[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、

(4)、(6)、

[师]各组做完了没有?

[生齐声]做完了。

[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对。

[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4、解方程(3)时,在配方的时候,他配错了,即

x-3x=7,

x2-3x+32=7+32应为(-23

2)2、

[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?

[生乙]方程(3)的解为x1=

[师]好,继续。3?237,x2?3?237、

[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解。××同学解的对,其解为x1=52,x2=-32、

[生丁]××同学做的是方程(2)、(4)、(6)、他解的完全正确,即

方程(2)的解:x1=5,x2=3,

方程(4)的解:x1=2,x2=

方程(6)的解:xl=32,12,x2=-11、

[师]利用配方法求解方程时,一定要注意:

①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提。

②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1、

另外,大家在利用配方法求解方程时,要有一定的技能。这就需要大家不仅要多练,而且还要动脑。尤其是在解决实际问题中。

这节课我们就来解决一个实际问题。

Ⅱ、讲授新课

[师]看大屏幕。(出示投影片2、2、3B)在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?

[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法。

[生甲]我们组

的设计方案如右图

所示,其中花园四

周是小路,它们的

宽度都相等。

这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2m或12m、

[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由。

[生乙]甲组的设计符合要求。

我们可以假设小路的宽度为xm,则根据题意,可得方程(16-2x)(12-2x)=1

2×16×12,

也就是x2-14x-24=0、

然后利用配方法来求解这个方程,即

x-14x=-24,

x2-14x+72=-24+72,

(x-7)=25,

x-7=±5,

即x-7=5,x-7=-5、

∴x1=12、x2=2、

因此,小路的宽度为2m或12m、

由以上所述知:甲组的设计方案符合要求。

[生丙]不对,因为荒地的宽度是12m,所以小路的宽度绝对不能为12m、因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2m、

[师]大家来作判断,谁说的合乎实际?

[生齐声]丙同学说得有理。

[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题。因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解。这一点,丙同学做得很好,大家要学习他从多方面考虑问题。接下来,我们来看其他组设计的方案。

[生丁]我们组

的设计方案如右图。

我们是以矩形

的四个顶点为圆心,以约5、5m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地。

因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为xm,根据题意,可得

πx2=22

1

2×12×16、

解得x=±96

?≈±5、5、

因为半径为正数,所以x=-5、5应舍去。因此,由以上所述可知,我们组设计的方案符合要求。

[生戊]由丁同

学组的启发,我又

设计了一个方案,

如右图。

以矩形的对角

线的交点为圆心,以5、5m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地。

[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子。

[师]同学们设计的方案都很好,并能触类旁通,真棒。其他组怎么样?

[生庚]我们组

设计的方案如右图。

顺次连结矩形

各边的中点,所

得到的四边形即

是作为花园的场

地。

因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24m2(即1

2×6×8),所以四

个直角三角形的面积之和为96m2,则剩下的面积也正好是96m2,即等于矩形面积的一半。因此这个设计方案也符合要求。

[生辛]我们组设计的方案如下图。

图中的阴影部分可作为建花园的场所。

因为阴影部分的面积为96m,正好是矩形面积的一半,所以这个设计也符合要求。

[生丑]我们组

设计的方案如右图。

图中的阴影部

分可作为建花园的

场地。

经计算,它符合要求。

[生癸]我们组的设计方案如下图。

2

图中的阴影部分是作为建花园的场地。

[师]噢,同学们能帮癸组求出图中的x吗?

[生]能,根据题意,可得方程

2×1

2(16-x)(12-x)

=1

2

2×16×12,即x-28x+96=0,

x2-28x=-96,

x2-28x+142=-96+142,

(x-14)2=100,

x-14=±10、

∴x1=《差异网·www、》24,x2=4、

因为矩形的长为16m,所以x1=24不符合题意。因此图中的x只能为4m、

[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案。

接下来,我们再来看一个设计方案。

Ⅲ、课堂练习

(一)课本P55随堂练习1

1、小颖的设计方案如图所示,你能帮助她求出图中的x吗?

解:根据题意,得(16-x)(12-x)=

212×16×12,即x-28x+96=0、

解这个方程,得

x1=4,x2=24(舍去)、

所以x=4、

(二)看课本P53~P54,然后小结。

Ⅳ、课时小结

本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性。另外,还应注意用配方法解题的技能。

Ⅴ、课后作业

(一)课本P55习题2、51、2

(二)1、预习内容:P56~P57

2、预习提纲

如何推导一元二次方程的求根公式。

上面内容就是差异网为您整理出来的7篇《初中数学优秀教案》,希望可以启发您的一些写作思路。

初中数学优秀教案 篇5

一、教学目标

知识与技能:使学生了解正数与负数是从实际需要中产生的;

过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

二、教学重点和难点

负数的引入和意义

三、教学过程

创设情景,生活实例引入,观察猜想,合作探究

(一)、从学生原有的认知结构提出问题

大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

为了表示一个人、两只手、……,我们用到整数1,2,……

为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4。87、……

为了表示“没有人”、“没有羊”、……我们要用到0。

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

(二)、师生共同研究形成正负数概念

某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多。

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的。

又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的。

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量筒明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

运进纲物 吨,记作+ ;运出货物 吨,记作— 。

教师讲解:什么叫做正数?什么叫做负数。

强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号

(三)、运用举例 变式练习

例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

—11,4,8,+73,—2,7, , ,—8,12, — ;

正数集合 负数集合

此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合

课堂练习

任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

正数集合:{ …},

负数集合:{ …}

四、课堂小结

由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃

五、作业布置

1。北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

2。在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的?

3。在下列各数中,哪些是正数?哪些是负数?

—16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。

4。如果—50元表示支出50元,那么+200元表示什么?

5。河道中的水位比正常水位低0。2米记作—0。2米,那么比正常水位温0。1米记作什?

6。如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

7。一物体可以左右移动,设向右为正,问:

(1)向左移动12米应记作什么?(2)“记作8米”表明什么?