计算机硬件的研发范例(3篇)
计算机硬件的研发范文
关键词:计算机硬件维护硬件管理
中图分类号:TP303文献标识码:A文章编号:1007-9416(2016)04-0000-00
随着计算机逐渐走入人们的视线并渐渐成为人们生活不可或缺的一部分,如何对计算机的硬件进行管理和维护,以延长计算机的使用寿命就成为了人们关注的话题。因为我们知道计算机的核心正是计算机的硬件,只有硬件保持健康的状态,计算机才能够稳定的运行。由此可见对计算机硬件进行日常维护和管理的重要性。下面本文将首先对计算机硬件的构成进行详细的介绍。
1计算机硬件的主要构成
计算机硬件主要由外部设备和内部硬件组成。外部设备主要指的是键盘、鼠标、显示器等。内部硬件包括了CPU、内存以及硬盘。这些内部、外部硬件分别承担了控制、存储、运算、输入、输出等功能,所以计算机硬件系统才是整个计算机的核心,无论是计算机硬件系统中哪一个小的环节不能够正常的执行自己的功能,那么整个计算机就不能正常的工作。
2计算机硬件维护的原则
对于计算机硬件的维护,整体上需要遵循“预防为主,防治结合”的原则。也就是在日常使用计算机的过程中养成良好的习惯,正确使用计算机。比如,将计算机放置在通风的位置,避免阳光直射;定期为计算机清理垃圾,保持计算机的清洁;在使用软件的时候,一定要从正规的渠道,购买正版的软件;在关机时使用系统进行关闭,然后切断电源,不要直接关主机的开关。平时使用计算机的过程中注意到以上几点便是对计算机硬件系统最好的维护。
当计算机硬件系统出现问题后,则需要遵循以下的原则:先外设后主机;先电源后部件;静态在前,动态在后;先简单后复杂。
3计算机硬件问题分析
计算机硬件问题的原因飞卫计算机内部原因以及计算机外部原因,下面本文就将分成两部分对计算机硬件问题产生的原因进行仔细的分析。
3.1计算机内部原因
在计算机内部原因中又分成了设备冲突、软件原因两种。
设备冲突产生的原因是计算机在工作时,必须要调用系统的资源,但是在实际应用过程中,很有可能因为计算机新装入的板卡和原来的资源发生冲突,导致计算机不能够正常的工作。其实由于计算机操作系统能够视情况而定的自己对计算机系统资源进行统一的调用。也就是平时所说的即插即用,但是在实际应用时可能会出现非即插即用和即插即用混合使用的情况,所以在这些情况之下,计算机可能因为一时之间不能够合理协调,这样资源冲突就发生了。
计算机软件原因中最为突出的便是计算机病毒。我们知道,计算机系统需要软件与硬件的相互配合才能够进行正常的应用。在很多情况下,计算机硬件故障多半是由于软件故障导致的,其中尤为常见的便是计算机病毒。说起计算机病毒,大家并不陌生,因为每台计算机中都会安装杀毒软件,但即便如此,计算机病毒也能够有机可承的对计算机发动袭击,破坏计算机的软件以及硬件。
3.2计算机外部原因
除了计算机内部的原因之外,计算机外部原因也会对计算机硬盘系统造成损害。和一般的用电器相同,如果计算机使用的外部用电环境恶劣。比如,电压不稳或者经常停电等,这样计算机的硬件就会或多或少受到损害。除此之外,计算机硬件设备还会因为电磁干扰受到损害。在我们生活的周围存在着各种各样的电磁干扰,就像是在变压器或者变频空调的周围都会产生电磁干扰,当处于这种环境之中时,有些计算机莫名其妙的重新启动或者是显示器出现偏色等故障,这就表明了此台计算机的抗电磁干扰能力较弱同时周围可能有电磁干扰源的存在。
4计算机硬件管理和维护的基本技术措施
4.1计算机主机的管理和维护
计算机的主机是计算机的重要组成部分。因为在计算机的主机之中包含着CPU、主板、显卡等关键组件,所以计算机主机在平时一定要做好相应的管理工作,一方面,计算机关机的时候要先将系统关闭,接着再关闭电源,这样可以保护系统的安全,防止由于先关闭电源造成文件丢失或者损毁的现象。另一方面,当计算机处于开机状态的时候不能够随意的挪动主机也不要直接接触内部的主板,防止不慎短路。导致主机烧毁。除了以上两个方面,我们都应当注意将液体远离主机,虽然这是一个大家都知道的细节,但总会因为不注意,或者因为方便,办公时就顺手将饮料放置在计算机的周围,一旦将饮料弄洒就会给计算机硬盘造成损害。
当计算机主机出现故障的时候,很有可能是CPU故障、主板故障、内存故障。CPU故障很多时候是由于过热导致的,一旦发生故障多需要专业人士进行专业的处理,所以本文不多介绍。
4.2计算机外部硬件的维护技术措施
上文中已经提到过计算机外部的硬件设备包括了显示器、鼠标和键盘。下面笔者将对这三方面的维护进行详细的介绍。
平时应当将显示器至于水平的桌面上,并且保持显示器位置的干燥整洁。当显示器表面出现灰尘时,不要随意用湿棉布进行擦拭,最后一点提醒大家注意的就是,在拔出电源之前,首先要将显示器的显示开关关闭,否则,显示器很可能被电流脉冲击坏。
鼠标是我们平时使用最多的外部设备之一,并且很多用户的鼠标使用寿命都很低。在使用鼠标时,最好为其配备鼠标垫,而且要避免对鼠标线进行拉扯。
键盘是另一个常用的外设。在使用键盘的时候不要用力的敲击按键,更为重要的是不要在使用键盘的时候吃零食,尤其不要吃瓜子等零食,避免瓜子皮或者食物的碎屑进入到键盘缝隙。并且要定期对键盘进行清洁工作,因为如果键盘很长时间不进行清洁,灵敏程度就会被大大降低。
5结语
计算机硬件的管理和维护工作对于计算机而言有着重要的意义,而计算机已经成为了我们生活中不可或缺的一部分,所以,与其等到计算机硬件设备损坏之后再后悔,不如在平时就对计算机做好维护和保养工作,延长计算机的使用寿命。
参考文献
[1]次仁德吉.计算机硬件管理和维护研究[J].电脑知识与技术,2015,18:13-14.
[2]丁杰.关于计算机硬件维护与管理创新的探讨[J].信息与电脑(理论版),2014,04:226.
[3]王新博.计算机硬件的维护与管理创新探究[J].信息与电脑(理论版),2014,03:199-200.
[4]李智峰.计算机硬件维护与管理创新研究[J].科技传播,2014,13:233-234.
计算机硬件的研发范文篇2
【关键词】计算机硬件组装故障排除
前言:计算机在使用过程中会出现很多故障,其中分为软件故障与硬件故障。根据计算机出现的问题来判断是软件问题还是硬件问题,并给出对应的解决办法。根据软件的损坏程度来判断计算机出现的问题,相对于软件是损害在处理过程中是简单的多,因此在排除硬件故障时要需要专业的维修人员进行记录,方便对计算机故障的从而在维修过程中不断的积累经验。
一、计算机硬件组装
在安装计算机时,要注意几下机构安装过程:(1)CPU:将CPU与内存安放到计算机主板,并将主板装入到机箱内。将主板上跳线来设置CPU的类型,CPU后面还有两个插座,将插座按照CPU对应口插入,再将第二个口插入;(2)内存:目前在市场上最常见的主板内存都采用了插槽DIMM结构,在插入过程中出版上显有DIMM-DIMM3字样,DIMM的内存条较长,以免在安装过程中太过用力掰坏。将DIMM的槽向外掰开,槽内可以卡住内存条就可以;(3)主板:连接这CPU风扇电源,将主板的键盘口、鼠标口、耳麦口等与机箱背面的挡片的孔对齐,将其固定在主板上就可以;(4)电源线:在连接过程中选用ATX电源比较方便,其共有三种输出接头,较大的主板电源插头是独立的,只要准主板插座就可以了。而保证电源接头方向是固定的。
要想将计算机的硬件更好的安装起来,专业技术人员要注重对计算机硬件组装虚拟试验系统功能的研究,在研究过程中还要注意以下几点:(1)实验限制条件:由于技术人员对虚拟试验训练场所设置的比较单一,从而在组装过程中缺少灵活性,在实际中很难正常安装。所以在安装计算机硬件时,要加强对专业人员的虚拟试验的培训;(2)缺少跟踪器:在培训技术人员安装过程中,缺少对试验过程的记录,从而导致在发生问题时找不到解决办法,对此,在培训技术人员时要根据实验结果进行反复的开发研究,从而有助于技术人员在以后安装过程中更加顺利。同时技术人员还要注重对实验系统的开发与运行环境的研究。在培训技术人员时,要建立一个3DSMAX的虚拟场景,对安装的过程中进行操作,从而保障计算机硬件更好的安装。
在建立虚拟场景时,还要注重对系统结构的构建,采用B/S结构,其主要分为应用层、互交层与数据管理层,从而保证技术人员在安装计算机硬件时的准确性。将计算机的硬件安装应用到虚拟实验系统中,可以减少在实际安装过程中经费损失和硬件的耗损。
二、计算机硬件的故障排除法
1、插拔替换法。插拔替换在检查软件是否故障中是最有效的方法。还有很多的专业技术人员用此方法排除计算机的任何故障。其操作方法非常简单就是将计算机的显示器、显卡、硬盘、键盘出现的问题给拆下来,安装到另一个计算机上,如果另一计算机不能正常运行就知道是哪里出了错误。没有没有那么就继续插拔替换,直到发现问题为止。
2、直接观察法。主要通过对计算机的看、听、摸、闻。看,观看系统板下面的插头,看插座是否断开,表面是否烧焦,芯片是否裂开,同时还要擦看主板间是否存在异物。听,听计算机的电源风扇、软硬盘电机、显示器的工作声音是否正常。摸,用手触摸CUP、显示器、硬盘、主板等设备温度是否正常,从而判断出哪一问题影响设备正常运行。闻,闻主板、卡板中是否存在烧焦气味,从而发现问题的所在处。
3、软件检测法。诊断软件是一项专门对硬件设备进行故障检查的一种软件。该软件可以查找出计算机故障的原因,还会检测计算机各个设备运行的问题,如果发现问题会及时给出详尽报告,并方便人们解决[4]。
4、系统最小化检测。系统最小化将指在维修过程中根据各角度对计算机的基本运行状态进行判断。系统最小化有两种形式,是硬件最小化系统由计算机的电源、主板、CPU组成。在这个系统中是不需要进行任何信号连接的,只有电源的主板进行电源连接。同时还要根据电源内扬声器发出的声音来判断计算机核心组成部分是否存在着问题,能否正常工作。软件的最小系统是由计算机电源、主板、CPU、内存、显示器等装有系统的硬盘而组成的。因此,小系统主要对计算机系统的判断从而确定其是否能正常使用。
三、总结
综上所示,计算机硬件日常工作受到组成工作的实际性影响,并且组装也是计算机出现硬件故障的主要原因。本文仅仅对于计算机硬件维护工作中的问题及方法简单性分析,仅仅针对的是计算机硬件常见并且较为突出性问题,还存在一定不足,希望计算机研究人员能够提高对于计算机硬件的重视程度,解决计算机硬件存在的问题,减少计算机硬件出现故障的次数,满足人们对于计算机使用的需求。
参考文献
[1]李成学.《计算机组装与维护》课程实践教学研究[J].吉林农业科技学院学报,2013,02:56-58.
计算机硬件的研发范文
关键词:人工智能;计算机体系结构;硬件;软件
人工智能是让机器模拟人类思维和行为方式,从而让其在某些方面达到人类智能的水平。它的研究涉及了多门学科知识,是一个跨学科的研究领域。但是计算机硬件和软件的发展,是人工智能实现的基本保障。本文从计算机体系结构入手,介绍了计算机硬件和软件的发展过程和趋势,以及对人工智能发展起到的作用。
1计算机的体系结构
计算机体系是一个多级层次结构,通常将其分为硬件和软件两大部分。硬件部分主要有输入/输出设备、存储器和CPU。软件有系统软件和应用软件两类。现代集成技术使得计算机的体积越来越小,但是性能却越来越强。硬件作为计算机基本的组成部分,是作为物理底层为上层软件的运作提供了基本的环境支持。在计算机体系设计中的一个核心问题就是如何提高计算机硬件运行和服务的效率,使上层软件的运行更加快速和流畅。随着上层软件种类和功能的不断增加,对底层硬件的要求越来越高。硬件和软件的兼容、配合以及交互成了体系设计最大的问题。分布式体系结构提升了硬件的处理能力,但同时增加了系统结构的复杂性和操作性。如今,随着网络技术的发展,云平台区块链技术的成熟,计算机体系从传统的单机系统扩展为以网络结构为基础的多系统多体系平台。这种模式从理论上看,大大增加的了系统结构的复杂性,但对于用户体验而言,这种复杂性完全可以忽略,用户不需要对其有更多地了解,也不需要投入更多的成本。相反,用户体验到的是方便、快捷、高效的运行环境。集群计算机体系结构就是一个典型的案例。它通过以太网或InfiniBand网络作为内联方式,使用Linux操作系统和并行编程接口,采用价格比较低的服务器为运算节点,整个系统较之前系统的成本明显降低,而且公开性和操作性都比较强[1]。软件作为计算机体系结构中的上层应用,在20世纪80年代前,只是为专门的计算机而定制的小程序,功能比较简单更没有形成产业。20世纪80年代后,随着计算机硬件集成化程度提高,计算机体积变小个人电脑普及,各种功能齐全的软件也应用而生,软件开发逐渐标准化产业化。进入21世纪后,英特网普及,开源社区发展迅速,开源软件开始流行,软件开发也逐渐向网络化、智能化的方向发展。其开发策略也从原来面向过程的编程转化到了面向对象的编程,开发的软件功能更强大也更具有人性化,为人类在生活生产中解决很多实际问题。计算机体系结构的发展使得计算机能够以更低的成本,更好的互动,在网络环境下发挥更好的性能。为人工智能的发展提供了更有效的运行环境。
2计算机硬件的发展
1946年,第一代电子管计算机研制成功,它的主要特征是体积大、耗电大,运算速度慢;1959年第二代晶体管计算机诞生,与电子管相比晶体管寿命长、体积小、运算速度快;1965年第三代集成电路计算机产生,集成电路技术使计算机在性能和结构方面都有了很大的提升,其主要的代表就是IBM公司研制的360系列计算机;1971年以后,是大规模集成电路和超大规模集成电路的计算机,以英特尔公司推出的x86系列和奔腾系列微处理器为标志,它不仅大大缩小了计算机的体积,而且还提高了计算机的处理能力。在处理器的研制上,英特尔公司不断刷新着主频记录,处理器一直以摩尔定律的速度在发展,其处理能力每18个月到24个月就增加一倍。1972年的8080处理器,主频2MHz每秒处理50万条指令;1978年的8086处理器,主频8MHz每秒处理80万条指令;1982年的80286处理器,主频12MHz每秒处理270万条指令;1989年的486DX处理器,主频25MHz每秒处理2000万条指令;1993年的奔腾处理器,主频233MHz每秒处理4.35亿条指令;1997的奔腾Ⅱ处理器,主频333MHz每秒处理7.7亿条指令;2000年奔腾Ⅳ处理器,主频已经达到1.4GHz[2]。当英特尔还在一心追求处理器高主频的时候,另一家公司NVIDIA在1999年8月了一种专门做图像运算工作的微处理器GPU(GraphicProcessingUnit)。GPU采用的是一种全新的架构模式,它将几何转换与光照功能以硬件的形式集成在图形芯片中,由图形芯片直接负责几何转换和光照操作,这使得处理器性能大大提高。与CPU相比,GPU在高清视频、数码照片处理、3D渲染等方面的表现非常优越。GPU的诞生,使得对处理器的研制从追求高主频转换成追求高性能,NVIDIA与ATI两大公司为此展开了激烈的竞争。直到2008年,随着大数据云计算的兴起,以及智能手机的广泛应用,市场对高性能已不再是唯一的诉求,性能适中的轻量级GPU成为了下一个发展方向[3]。随着人工智能技术的发展,神经网络的规模越来越大,采用多处理器集成的架构模式使得算法实现的装置体积巨大。为此,2015年,谷歌推出了TPU(TensorPro-cessingUnit),它是一种专用于神经网络计算的处理器,主要用于深度学习、AI运算,其算力较GPU有很大的提高。AlphaGo是第一个战胜围棋世界冠军的人工智能机器人,最初它内部安装了1202个CPU和176个GPU用于运算处理。2015年引入TPU之后,与李世石对战的AlphaGo,只有48个TPU负责所有的计算任务。存储器是计算机硬件的另一个主要组成部分。在计算机体系中一般采用外存、缓存、内存多级存储策略。外存容量大成本低但相对读取速度慢,通常用来保存需要长久存放于计算机内的大量数据,例如系统安装的软件、用户的资料、数据库等;缓存是为了提高数据读取的命中率而引入的一种机制;内存数据读取的速度与CPU相当,可以和CPU直接进行数据的交换,是CPU处理数据的来源。但因为内存是通过大量的晶体管构成寄存器来保存数据的,所以采用的硅片面积比较大,制造成本高,在系统中容量配置相对小些。但是随着电子制造技术的提升,现在pc机硬盘的配置可以达到1TB,内存容量如果是64位操作系统一般都在4GB。计算机存储器容量的增加可以满足人工智能时代海量数据的存储。随着计算机硬件的发展,计算机输入系统也呈现多样化形式。数据来源不再是单纯的以键盘输入为主的模式。摄像机微型化之后,计算机系统普遍都安装了摄像头,通过摄像头可以实现视频的采集;而在计算机系统中安装声音采集器可以实现语音输入。传感器可以模拟人类感官让计算机可以像人类一样从自然环境中获取信息,常见的有触觉传感器、视觉传感器、力觉传感器、温湿度传感器和超声波传感器等。计算机的这些新型输入方式更接近于人类日常生活的习惯,也使计算机用起来更人性化,智能化。计算机硬件的这些特性是人工智能发展的基本保障。
3计算机软件的发展
计算机语言是计算机软件开发的主要工具,也是解决实际问题的手段。20世纪50年代,为了方便人们操控计算机的运行,机器指令顺应而生。它采用的是二进制编码,增加了计算机的可操作性,但对用户而言可读性不高,调试难度大。汇编语言是第二代计算机语言,用字母和单词(add、sub等)代替一些特定的指令,增加了程序的可读性,但它是直接面向硬件的操作指令,程序的可移植性差。之后,出现的高级语言其表现形式更接近于数学语言和自然语言,可读性强。而且不依赖于计算机硬件,能在不同的机器上运行,可移植性强。计算机语言的发展,极大地促进了计算机在各个领域的应用和普及,给人们的日常生活带来了翻天覆地的变化。随着人工智能的出现,计算机语言也逐渐向智能化、网络化的方向发展。1956年达特茅斯会议提出“人工智能”概念之后,1958年麦卡锡和明斯基的人工智能项目组,开发了LISP语言。LISP使用表结构来表达非数值的计算问题,实现技术简单是使用最广泛的人工智能语言。1972年一种基于谓词逻辑的编程语言Prolo生,它是面向逻辑面向用户的一种编程语言,主要用于描述知识的逻辑关系和抽象概念,也称为描述性语言。Prolog依照人的思维逻辑,运用数理逻辑中的谓词逻辑来描述解决的问题方法,告诉计算机“要做什么”而不是“怎么做”。Prolog编写的程序更接近于自然语言,逻辑性强易写易读易于正确性证明。1982年,由LarryWall设计的Perl语言是运行在Unix环境下的一种脚本语言。Perl对文件和字符有很强的处理能力,主要用于大型网站开发。20世纪90年代初,荷兰人Rossum设计了Python语言,其语法清晰、简洁,并且拥有大量第三方函数模块,编程简单但功能强大,很快成为了人工智能主要的编程语言[4]。在大数据背景下人工智能发展更加迅速,随之而来的是计算机需处理的海量数据,而且这些数据来源广泛,特点多样,若是利用传统的算法进行数据的分析处理,确定数据的有效性和安全性,需耗费大量的时间,也导致整个系统运行变慢,性能下降。而人工智能语言编写的软件利用模糊逻辑粗糙集理论在不影响系统性能的情况下,可以对海量数据实现快速推理和分析,挖掘数据深层次的价值,得出其背后隐藏的规律,有效地帮助人类作出合理的决策。进入21世纪后,网络高速发展,开源软件由于开放二次开发的权力,具有低成本高安全的特性受到了各国企业和政府的支持得到迅速发展。开源软件是在遵守一个开源协议的前提下,将程序的源代码公开,允许其他人学习修改和,也可转化成任何形式的实用软件的一类软件。截至2006年底,全球研发和应用开源软件的企业占到了总数的50%以上。而人工智能开源软件(OpenCV、NLTK、CNTK、TensorFlow等)在自然语言处理、计算机视觉、机器深度学习等领域中也扮演着重要的角色。
4结语
人工智能的发展涉及生物学、神经学、仿生学、电子科学、计算机科学等学科,是多学科交叉融合发展的领域。用来支持人工智能实现的计算机系统,也逐渐表现出一种软中有硬、硬中有软的混合模式。现场可编程门阵列(Field-ProgrammableGateArrays,FPGA)就是一种典型的代表。基于现场可编程门阵列的系统设计,其硬件功能的实现可以通过软件设置来完成,通过调试软件参数就可以实现硬件功能的改进。这种全新的软硬件设计理念使计算机系统具有更强的灵活性和适应性,提高了人工智能的应用效率,为人工智能构建了一个更具可扩展性的大脑。
参考文献
[1]刘细妹.计算机体系结构现状及发展趋势研究[J].计算机产品与流通,2019(3):98.
[2]付华.浅析计算机硬件发展史[J].电脑知识与技术,2016(13):249-250.
[3]Janlen.光影之路GPU架构发展史[J].微型计算机,2011(33):99-117.
