煤化工污水处理技术(6篇)
煤化工污水处理技术篇1
【关键词】煤技术使用现状发展
一、我国煤炭开发和使用现状
18世纪以来,煤炭资源逐渐成为人类社会最经常使用的能源,在世界能源结构中居于不可动摇的地位,被誉为黑色的金子、工业的粮食。
煤炭作为我国重要的化石能源,为经济的蓬勃发展作出贡献的同时,由于落后的燃煤技术、观念和装备,使煤炭资源的利用率普较低,加上不合理的开采利用导致污染严重,从而使环境与经济之间的矛盾日益突出,成为制约地区经济发展的桎梏之一。
二、我国洁净煤技术的发展
为了从根源上改变日益加深的生态恶化,提高煤炭的能源效率,实现经济和生态的协调发展,我国在煤炭开发、加工、燃烧、利用的技术及装备等方面进行了一系列研究和推广,使以煤炭洁净加工和利用为重点的的洁净煤技术迅猛发展,不断推进着洁净煤技术的工业化和产业化。
洁净煤技术源于20世纪80年代的美国,是指在煤炭开发利用的全过程中,旨在减少污染物排放和提高利用率的煤炭开采、加工、燃烧、转化、利用和污染控制等综合技术的总称。洁净煤技术主要包括洁净开采技术、燃前净化加工与转化技术、燃中处理及集成技术、燃后净化处理技术。我国的洁净煤技术主要包括四个技术领域、19项技术:煤炭加工领域:指煤炭利用前阶段,包括选煤、型煤、配煤、水煤浆技术;煤炭高效燃烧及先进发电领域:循环流化床、增压流化床联合循环发电、煤气化联合循环发电、低NOx燃烧、常规超临界与超超临界发电技术、中小型工业锅炉改造;煤炭转化领域:煤炭气化、煤炭液化、多联产、燃料电池;污染控制与资源化再利用领域:烟气净化(脱除SO2、NOx)、烟气净化(控制烟尘和颗粒物)、电厂粉煤灰综合利用、煤层气、矿区生态环境技术。
三、我国洁净煤技术的现状
(一)燃烧前的净化加工技术
(1)选煤。煤炭洗选是利用煤和杂质、矸石的密度、硬度等性质差异,通过机械筛分、人工拣矸、物理化学选煤、微生物选煤等方法,使煤和杂质有效分离,加工成质量均匀的煤炭产品。
目前我国的大型浮选床技术、离心力复合立场选煤技术、微细介质重介质旋流器等均可有效地降低硫分和灰分的含量,优化产品结构,提高产品的综合竞争力。
(2)型煤。型煤加工是指一种或数种散煤或低品位煤与一定比例的石灰固硫剂、黏结剂、助燃剂、节能减排增效剂等通过加压等过程加工成为具有一定形状、尺寸和强度的煤制品。
型煤按照用途主要分为民用型煤和工业型煤,民用型煤主要以黄土为黏结剂,加工工艺比较简单,热量稳定性较强。工业型煤是原煤通过添加煤焦油沥青作为黏结剂,石灰作为固硫剂来减少热量的流失。
(3)配煤。配煤是将不同品质的煤经过筛选、破碎、按比例配合等过程,改变煤的岩相组成、物理特性、燃烧性能,从而达到优化产品结构、提高燃烧率、降低污染物排放的目的。动力配煤目前已经成为适合中国国情的洁净煤技术,有效地调整煤炭中硫分、灰分、含氮量、氯、氟等有害元素的含量,减少污染物排放。
(4)水煤浆。由于水煤浆含硫量和灰分较低,燃烧效率相对较高,加上NOx、SO2、烟尘等的排放量低,逐渐成为一种洁净的煤基燃料和新型煤代油燃料。我国在水煤浆工艺技术方面处于国际先进水平,先后完成了动力锅炉、电厂锅炉、轧钢加热炉、热处理炉、干燥窑等水煤浆工程试验,工业成套应用技术也得到推广。
(二)煤炭高效洁净燃烧技术
(1)循环流化床燃烧技术。目前,国外的循环流化床锅炉技术正逐渐朝大型化方向发展,我国也已经具备设计制造75t/h循环流化床锅炉的能力,并在循环流化床基础研究方面取得突出成就,完成了专用设计软件。
(2)燃煤联合循环发电。联合循环发电技术包括煤气化联合循环发电、常压流化床燃煤联合循环发电及增压流化床燃煤联合循环发电等。我国在煤气化循环发电关键技术方面,特别是IGCC工艺、煤气净化、余热系统方面都做了深入研究,加强了技术宣传和技术转化。
(三)煤炭转化为洁净燃料技术
(1)煤的气化技术。煤炭气化是指在常压或者加压下,通过空气、蒸汽和氧气等气化剂与煤炭发生反应,从而生成热值低或热值高的煤气,在煤炭气化过程中,可以有效地脱除硫分、氮、灰分等,形成洁净的气体燃料。目前完全气化技术已经日益完备,并广泛应用于农用化肥和城市民用煤气等领域。
(2)煤炭液化技术。煤炭液化是在一定条件下,将固体煤炭转化为洁净的液体燃料。目前煤炭的液化技术主要有直接液化和间接液化两种方式,直接液化是直接将煤炭转化为液体洁净燃料或原料,而间接液化是指先将煤炭气化,然后再将煤气液化。我国在煤炭间接液化方面已经完成MFT合成汽油新工艺的工业试验。
(3)燃料电池。燃料电池是目前最引人瞩目的能源装置之一,不仅可以有效控制温室效应、保护生态环境,同时可以解决严峻的能源枯竭问题,成为21世纪的理想技术,它的推广会促进经济的发展,特别是汽车产业和公共汽车领域。
(四)污染物排放控制与废弃物处理
(1)烟道气净化。烟道气净化是利用烟气中飞灰颗粒与烟气密度及电性质的差异,使用水膜除尘器、袋式除尘器、电除尘器等去除飞灰颗粒、脱硫脱氮。目前烟道气净化技术方面处于起步阶段,许多中小型锅炉没有安装除尘器,因此,研制适合我国中小锅炉使用的除尘器是提升烟道气净化技术的关键。
(2)粉煤灰综合利用。粉煤灰作为燃煤电厂排出的工业废渣,是一种放错地方的资源。如果不加以处理,就极易产生灰尘烟尘,污染环境,产生温室效应,甚至会污染水系统,导致河流淤塞。
我国的粉煤灰综合利用技术比较成熟,不仅被用作水泥、混凝土的掺合料,还可以制造烧结砖、蒸压加气混凝土、空心砌砖,也可制作出微生物复合肥改良土质。
煤化工污水处理技术篇2
【关键词】:煤化工;废水处理;活性污泥法
中图分类号:X703文献标识码:A文章编号:
引言
煤化工废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水,属于焦化废水的一种。水质成分复杂,污染物浓度高。废水中含有大量的酚类、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,属较难生化降解的高浓度有机工业废水。对煤化工废水的处理,单纯靠物理、物理化学、化学的方法进行处理,难以达到排放标准,往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。因此煤化工废水的处理,一直是国内外废水处理领域的一大难题。
一、煤化工废水处理技术
煤化工废水处理通常可分为一级处理、二级处理和深度处理。这里的一级、二级处理的划分与传统的城市污水处理的概念上有所不同,这里所述的一级处理主要是指有价物质的回收,二级处理主要是生化处理,深度处理普遍应用的方法是臭氧化法和活性炭吸附法。
1、煤化工废水有价物质的回收
煤化工废水中有机物质的回收一般指的是对酚和氨的回收,常用方法有溶剂萃取脱酚、蒸氨等。
(1)酚的回收
回收废水中酚的方法很多,有溶剂萃取法、蒸汽脱酚法和吸附脱酚法等。新建焦化厂大都采用溶剂萃取法。对于高浓度含酚废水的处理技术趋势是液膜技术、离子交换法等。
(2)氨的回收
目前对氨的回收主要采用水蒸气汽提-蒸氨的方法。污水经汽提,析出可溶性气体,再通过吸收器,氨被磷酸氨吸收,从而使氨与其他气体分离,再将此富氨液送入汽提器,使磷酸氨溶液再生,并回收氨。
二、煤化工废水处理方法
煤化工废水在进行出处理前根据不同的水质特点设置调节池以调节水质水量,设置隔油池或气浮池进行除油,经以上的与处理后可采用下面的方法进一步进行处理。
1、活性污泥法
活性污泥法是采用人工曝气的手段,使得活性污泥均匀分散并悬浮于反应器中和废水充分接触,并在有溶解氧的条件下,对废水中所含的有机底物进行着合成和分解的代谢活动。在活动过程中,有机物质被微生物所利用,得以降解、去除。同时,亦不断合成新的微生物去补充、维持反应器中所需的工作主体——微生物(活性污泥),与从反应器中排除的那部分剩余污泥相平衡。
活性污泥法处理的关键是保证微生物正常生长繁殖,为此须具备以下条件:一是要供给微生物各种必要的营养源,如碳、氮、磷等,一般应保持BOD5:N:P=100:5:1(质量比)。煤化工废水中往往含磷量不足,一般为0.6~1.6mg/L,故需向水中投加适量的磷;二是要有足够氧气;三是要控制某些条件,如pH值以6.5~9.5、水温以10~25℃为宜。另外应将重金属和其他能破坏生物过程的有害物质严格控制在规定范围之内。
2、生物铁法
生物铁法是在曝气池中投加铁盐,以提高曝气池活性污泥浓度为主,充分发挥生物氧化和生物絮凝作用的强氧化生物处理方法。工艺包括废水的预处理、废水生化处理和废水物化处理三部分。预处理包括重力除油、均调、气浮除油;生化处理过程包括一段曝气、一段沉淀、二段曝气、二段沉淀;物化处理工艺流程包括旋流反应、混凝沉淀和过滤等工序。
在生物与铁的共同作用下能够强化活性污泥的吸附、凝聚、氧化及沉淀作用,达到提高处理效果、改善出水水质的目的。生物铁法的生产运行工艺条件包括:营养素的需求、适量的溶解氧、温度和pH值控制、毒物限量及污泥沉降比等。
3、炭—生物铁法
目前,国内一些厂家的处理装置由于超负荷运行或其他原因,处理后的水质不能达标,炭—生物铁法是在原传统的生物法的基础上再加一段活性炭生物吸附、过滤处理。老化的活性炭采用生物再生。
该工艺流程简便,易于操作,设备少,投资低。由于炭不必频繁再生,故可减少处理费用。对于已有生物处理装置处理水后不符合排放标准的处理厂,采用炭—生物铁法进一步处理以提高废水净化程度也是一种有效的方法。
4、缺氧—好氧(A—O)法
用常规的活性污泥处理煤化工废水,对去除酚、氰以及易于生物降解的污染物是有效的,但对于COD中难降解部分的某些污染物以及氨氮与氟化物就很难去除。
A—O法内循环生物脱氮工艺,即缺氧—好氧工艺,其主要工艺路线是缺氧在前,好氧在后,泥水单独回流,缺氧池进行反硝化反应,好氧池进行硝化反应,废水先流经缺氧池后进入好氧池。与传统生物脱氮工艺相比,A—O工艺具有流程简短、工程造价低;不必外加投入碳源等优点。同时也存在着脱氮率不高(85%左右)等不足。
三、高新技术处理煤化工废水的研究
目前,国内在处理煤化工废水的新技术主要有以下几种
1、新物化法
新物化法是指在常温下利用废水中有害物质与专门为处理废水而开发的药剂(污水灵)发生反应,经过4次不同加药处理过程和处理设施,最终实现COD、BOD、NH3-N、SS均达到排放要求。该技术最大的缺陷是废水中有毒有害物质只是形态的转移,另外该技术的成熟性还需要经工程实践的考验。
2、HSB法处理焦化废水
HSB(HighSotutionBacteria)是高分子均群的英文缩写。目前国内初步试验得出以下结论:HSB耐受废水中有毒有害物质性好;处理后污泥少、出水色度好;加碱量为传统方法的1/3~1/5,运行费用较低,但对种菌特性,生存条件、净化功能尚未完全了解,有待进一步研究与实践。
四、煤化工废水深度处理
经过酚、氨回收,预处理及生化处理后的煤化工废水,其中大部分污染物质得到了去除,但某些主要污染指标仍不能达到排放标准,因此需要进一步的处理——深度处理,来使这些指标达到排放标准。
1、活性炭吸附法
煤化工废水经以上步骤处理后COD的去除率效果不是很理想,出水浓度较大,有时高达601mg/L左右,很难达标排放,为使废水达标排放,可使用活性炭降低废水中COD的浓度。
废水处理中活性炭吸附主要对象是废水中用生化法难以降解的有机物或用一般氧化法难以氧化的溶解性有机物,包括木质素、氯或硝基取代的芳烃化合物、杂环化合物、洗涤剂、合成燃料、除萎剂、DDT等。当用活性炭吸附处理时,不但能够吸附这些难分解有机物,降低COD,还能使废水脱色、脱臭。因此吸附法在废水的深度处理中得到了广泛的应用。
2、混凝沉淀法
混凝是给水处理中一个重要的处理方法。混凝法可以降低废水的浊度、色度,去除多种高分子物质、有机物、某些重金属毒物和放射性物质等,去除导致富营养化的物质如磷等可溶性无机物,并且它能够改善污泥的脱水性能。具有设备简单,操作简便,便于运行,处理效果好的优点;缺点是运行费用高,沉渣量大。
结语
深入研究煤化工废水的先进处理技术,既是当前经济建设面临的现实问题,也是将来进行技术攻关的重点,只有不断提高现有处理技术的处理能力、增强新技术的经济技术可行性,将各种方法有机地结合起来,取长补短才能找到治理煤化工废水的最佳方法。其中化学氧化法具有去除率高,占地面积小、无二次污染的特点,是煤化工废水处理的发展趋势。吸附法和混凝法是煤化工废水深度处理的可靠方法,应着力进行新型吸附剂和混凝剂的开发。
参考文献
[1]查传正等.煤化工生产废水处理工程实例[J].化工矿物与加工,2006,(3).
煤化工污水处理技术篇3
国内水煤浆在电站锅炉、工业锅炉、工业窑炉中的应用已有很多成功的范例[1-5]。近年来,燃烧用水煤浆技术已被成功移植到气化水煤浆领域,极大地改善了化工合成企业的生产技术指标,提高了企业的经济效益。截至2010年底,全国燃烧用水煤浆的燃用量已突破3000万t,气化水煤浆用量达到8000万t以上。随着以水煤浆气化为龙头的煤化工产业的快速发展,气化水煤浆的应用规模将保持强劲的增长势头。过去10a中国水煤浆技术及工业应用已向纵深发展,如扩大难以制浆煤种的应用,实现产业化生产,污泥制浆,燃烧水煤浆技术向气化领域移植等[6]。
1扩大制浆煤种
随着水煤浆技术的发展及应用规模的不断扩大,原有易于成浆的煤种,主要是中等变质程度的炼焦煤,包括焦煤、肥煤,两者的资源储量均较低。在制浆前需洗选加工制取洗精煤以降低其灰分,提高了水煤浆热值,增加了制浆成本。
为了保持炼焦工业的可持续发展,合理利用炼焦煤,降低水煤浆生产成本,必须采用不需要洗选的动力煤制浆。神华集团为了扩大神华煤的利用范围,委托国家水煤浆工程技术研究中心对神华煤制取高质量分数水煤浆的可行性进行了大量基础及工业生产的实验研究。表1~表4分别为煤的工业分析,元素分析,灰成分分析以及灰熔融性、燃点和密度分析。此外,还对神华煤的煤岩显微组分、煤的表面性质进行了研究[7]。神华煤具有低灰、特低硫、中高发热量、化学反应活性优良等特点,是优良洁净的动力用煤品种之一。但神华煤的变质程度较低,其内水含量、O含量和O/C原子比高、可磨性较差,属于难成浆的煤种。灰组成中CaO和Fe2O3含量偏高,SiO2含量和Al2O3含量偏低,灰熔融性ST低于1250℃。
根据煤炭成浆性模型和评定煤成浆性指标D与煤的内在水分和可磨性指数的最优回归方程:D=7.5+0.5Mad-0.05HGI,D值越大越难成浆。结合上述各表数据经计算可知神华煤属于难成浆煤种。通过配煤和煤的改性、专用添加剂研制和制浆工艺调整,使神华煤能够制出高质量分数水煤浆。通过实验室研究、半工业实验和工业性试生产及工业性燃烧实验,取得了巨大的技术性突破[8]。目前,神华煤制取燃烧用高质量分数水煤浆的生产厂已达5座,总生产能力已近千万吨。表5为神华煤制备高质量分数水煤浆工艺技术应用情况。
2生物质水煤浆研究及应用
随着中国城市经济的发展及人口不断增长,环境污染愈加严重。全国每年废水排放量约为400多亿t,年排放城市污水污泥(干)约为550万~600万t。预计污泥排放量将以10%的速度递增。由于含有一定量的有机质,国内城市污泥利用途径及所占比例大致为农业利用44.83%、土地填埋31.03%、混合填埋3.45%、焚烧3.45%、绿化3.45%、未处理13.79%。虽然农用比例较高,但由于污泥中含有重金属,均高于农耕土壤中的含量,如大量和长期使用会影响人类健康。工业废弃物的排放也对环境造成污染,如造纸黑液,其年排放量约40亿t,已成为制约造纸行业发展的严重问题。
将城市污泥与造纸黑液作为水煤浆原料既节省了污泥干燥消耗的大量能源和高额黑液处置费用,又降低了水煤浆生产成本。国家水煤浆工程技术研究中心对利用污泥及造纸黑液制取生物质水煤浆作了系统研究。首先为了脱除城市污泥的臭味、改善污泥煤浆的成浆性、增加污泥的配入量,对污泥进行了改性处理。污泥经碱化处理可明显改善其物化特性,提高其稳定性。经多次筛选,发现利用碱性造纸黑液中含有的木质素作为改善水煤浆的分散剂,可以节省添加剂的用量,最终实现以废治废的效果。
经实验室各种实验条件的研究、专用添加剂的制备、污泥煤浆工业放大生产实验和污泥煤浆燃烧实验[9]发现:
(1)实验室研究以兖州煤为原料加入20%改性污泥制得质量分数为64.4%、表观黏度1200mPa•s、发热量大于16747.2kJ/kg、平均粒径为50μm的污泥水煤浆。
(2)采用分级研磨制浆工艺,在工业生产条件下验证了实验室的研究结果。
(3)制浆成本核算表明:污泥煤浆可100%节约用水;节约添加剂成本40%~50%;制浆成本降低21.88%。此外节省了城市污泥和造纸黑液的环境治理费用。
(4)污泥煤浆在工业锅炉中燃烧实验结果表明:锅炉负荷可在45%~100%下连续调节,燃烧效率98.66%。
3气化水煤浆领域推广燃烧用水煤浆生产技术
由于原德士古气化水煤浆制浆技术难以适应中国的煤质特性,在提高水煤浆质量分数方面有困难,尤其是低变质煤种制气化水煤浆,目前德士古制浆技术很难达到60%以上的质量分数,从而影响了气化技术指标和经济指标。国家水煤浆工程技术研究中心对兖矿鲁南化肥厂制浆工艺特点进行了技术分析,并结合其拥有的国家专利和低质煤制浆经验,对其原有的水煤浆制浆工艺进行了技术改造,实现了提浓的预期目标[10]。
鲁南化肥厂年产80万t尿素、20万t甲醇,以神木煤为制浆原料,日处理煤量2000t,采用棒磨制浆工艺。图1为鲁南化肥厂棒磨制浆工艺。由表7可以看出,原鲁南水煤浆粒度级配不合理、平均粒度偏大,从而影响成浆质量分数。
根据低阶煤成浆特性和堆积效率理论,采用国家水煤浆工程技术研究中心的分级研磨级配制浆工艺专利技术。图2为分级研磨级配制浆工艺。表8为鲁南化肥厂制浆工艺改造后实际生产运行结果与原有工艺对比。由表8可见,分级研磨级配制浆工艺的水煤浆质量分数在煤种、添加剂及用量相同条件下,制浆质量分数可提高3%~5%,系统产能提高30%以上。按水煤浆质量分数提高3%计算,每生产1000m3(CO+H2)比煤耗降低30kg煤炭,比氧耗降低30m3,极大地改善了水煤浆气化的各项经济技术指标。
4结论
煤化工污水处理技术篇4
[关键词]煤化工;污染;治理;措施
中图分类号:X784文献标识码:A文章编号:1009-914X(2016)09-0230-01
煤化工是一个重要的污染源,要发展煤化工,必须同时解决由此产生的污染问题。煤化工的发展应力求把污染、能耗降到最低限度,控制在生态、环境、资源容量可承载能力的范围内。煤化工的发展决不能以浪费资源、牺牲环境和破坏生态为代价。
一、我国煤化工污染现状
1、焦化废气的污染
焦化污染物是煤炭行业造成环境污染的首要污染物,这是因为焦化产业依然存在,有许多的焦化污染物质严重地污染着环境,如焦化废气等。一般来说,焦化废气主要是煤的干馏、结焦等加工过程中产生的烟气、废气、粉尘、煤尘等,尤其是出焦时焦炭与空气燃烧所形成的一氧化氮、一氧化碳和二氧化碳对环境污染更为严重。气体污染物的排污环节比较复杂,并且种类很多、毒性很大,非常不利于控制和处理。这些污染气体在微风的环境中很容易弥散在空中,造成严重的空气污染,影响自然环境质量的同时,更对人们的健康造成了影响和损害。
2、焦化废水的污染
焦化废水对于环境的影响也很大,它主要是在煤炭的焦化以及焦化回收的过程当中产生的废水、水蒸气和煤气一起从焦炉排除,进而形成许多的焦化废水。这类废水一旦流入江河就会对生物的生存造成威胁,如果使用被焦化废水污染了的水进行农田灌溉,既会使农作物减产甚至枯死,还会造成土地盐碱化。
3、噪声的污染
一般来说,煤炭化工企业的噪声污染并不是很严重,对于周围居民的生活也不会产生太大的影响。但是局部的一些高噪声的设备却很常见,如果缺乏相应的操作和合理的安排,往往会对作业的工人产生一定的影响,长此以往也会严重影响煤炭从业人员的身体健康。
4、焦化废渣的污染
焦化废渣主要包括除尘器收回的煤尘等细小的碎渣,或者是分离过程中产生的焦油渣等。这些废渣的成分相当复杂,露天堆置时一旦遇到下雨或者刮风,就会对空气、土壤以及水造成污染,给人们的健康带来严重的威胁。
二、关于煤化工污染的治理措施
1、淘汰落后产业和生产力
要严格执行相应的产业政策,淘汰落后产业和生产力。我国的各级政府以及相关的责任部门应该对于落后的产业和生产力实行严格的淘汰制度,同时进行严格的执法,对于相应的产业提出必要的产业政策。环保部门应该督促执行相应的标准,对于那些新兴起的煤炭行业给予严格把关,一旦出现污染较大并且缺乏相应环境保护能力的产业要实行淘汰制度,反对地方保护主义的出现。
2、强化管理能力
煤炭企业主管部门的相关领导应不断提高思想认识,加强对企业的管理。企业领导要不断加强对焦化污染物处理的重视程度,不能单纯地追求经济利益而放弃环保。从事环保工作的人员应增强责任意识,与相关部门一起有效推进环境保护,严格落实进行的审查制度。对厂内进行设备的严格审查,对于一些污染严重的企业要坚决予以关停。
3、焦化废水降解与深度处理
焦化废水中酚类物质较多,通过对酚类物质的检测处理,进行浓度转移,并设计处理工艺进行酚类物质去除,控制在0.1mg・L-1。酚类物质的转移能够降低污染物浓度,并进行讲降解处理。另外,对焦化废水进行深度处理,主要是对残余污染成分进行消除。目前主要应用方法为对COD构成研究,并通过O3/UV催化流床反应器,将废水中各种污染指标降低。降低浓度的同时也对废水进行消毒处理,实现废水回用。
4、厌氧生物处理技术应用
该技术应用能耗较低,且对焦化废水中高浓度污染物处理具有较大优势。厌氧主要针对发酵性细菌、产停产乙酸细菌等。厌氧过程同时能够对多种难以降解的物质进行降解,包括多氯联苯等。高氯带同系物中的脱氯变化需要在厌氧条件完成。厌氧生物处理需要建立在负荷高以及剩余污泥少等的条件下,厌氧发硬条件相对更加严格,为此,启动相对更加缓慢。采用水解进行生物降解,其主要是利用非严格厌氧完成对有机物的分级降解,其中碱性水解菌在水中不具有溶解性特征。能够将大分子物质进一步降解。
5、生物强化技术应用
经过预处理后的煤化工厂的废水,还要进一步采用生化处理的方法。这种处理方法主要是应用好氧生物法处理原理。但是,由于煤化工厂中的废水中杂环类化合物含量比较高,经过这种生化处理后的废水,水中的COD和氨氮指标有时会很高,有时又很高,难以控制在一个稳定的范围内。因此,近年来在这方面有了很大的改善,出现了生物炭法和生物流化处理法。其中,生物炭法的操作步骤是:首先在生物进化水中加入少量的粉末性活性炭,然后和回流的污泥融合在一起,在曝气池内,采用污泥脱水装置,从污泥浓缩池中排出的剩余污泥,然后对废水进行处理。在曝气池内,因为活性污泥对粉末活性炭的表面的影响,粉末活性炭因为表面积大,吸附能力也很强。这项技术的优势就是可以促进活性污泥和粉末活性炭发生氧化,加快溶解。这样,就可以有效降低基质的浓度,其中,COD的降解去除率也会相应增加。据了解,在生物炭法系统内部,活性炭吸附处理COD的动态吸附容量一般控制在200%左右。生物炭法的优势是处理生物法无法自然降解的有毒害的污染物,包括有机物。
生物炭法在处理煤化工废水中的高浓度大分子有机物方面,有着很好的处理效果。生物流化床处理法PAM,这种处理方法的原理是在在特殊的结构填料的基础上,采用生物流化床技术,在相同的生物处理单元中发挥作用,然后结合生物膜内法和活性污泥法。这种废水处理工艺的工作原理是污染物侵入到生物膜的内部,微生物的吸附能力较强,可以悬浮在悬浮填料表面,形成一层微生物膜层。因为这种微生物的产量很高,可以大量使用,所以使用这种处理方法在反应池内可以增加生物的浓度,也可以大幅度提高有机污染物的降解效率。
6、积极推广清洁及生产技术
因焦化生产工艺中生产环节十分的复杂,排放出的污染物和废水特别的多,这就给企业在处理污染的问题上增加了很多的经济负担。若要想从根本上解决问题就必须开创一条清洁生产之路。研究新的工艺技术,并贯穿于整个生产过程中,使排放物得以有效的控制与治理。
把水进行循环的使用,在废水的处理中,先进行过程处理再进行集中处理,建立除盐水站,增设旁滤装置,让循环水不再予以污染。建立生活污水处理系统,把产生的水用于循环水的补水、卫生用水以及绿化用水,将蒸氨废水进入生化的处理系统,熄焦处理后的生物脱酚废水,使设备的腐蚀予以减少。
7、加强国际的合作,并对污染少、高效率的技术装备予以开发
中国的煤化工产业的技术在近几年有了很大的进步,但这些是远远不够的,还应该对高效率低污染的技术设备予以开发,如:可借鉴其他国家的水平室炼焦炉的制作方法,并予以改进,使高效率低污染的炼焦新炉型得以研制。
总而言之,煤炭行业的发展一直都是我国国民经济的重要组成部分,只有更好地实现对于煤炭行业的污染治理,才能有效地对环境进行保护,进而促进煤炭行业的又好又快发展。
参考文献
[1]游建军,熊珊,贺前锋.煤化工废水处理技术研究及应用分析[J].科技信息.2013(02).
[2]何锋.煤化工废水的来源与特点及其相应的处理技术探究[J].科技视界.2012(23).
煤化工污水处理技术篇5
关键词:燃煤电厂环境问题防治技术
前言:火电以煤为主要燃料,是我国高耗能、高污染的行业之一。与发达国家相比,我国能源利用效率低、污染物排放量高,单位千瓦发电量能耗平均高20%以上。因此,认识燃煤电厂产生的主要环境问题,并采取有效的防治技术,对清洁生产、发展循环经济有着重要的意义。
1.主要环境问题
燃煤电厂的生产工艺环节中由于煤炭的燃烧将向大气、水体和土壤中排放各种污染物质,并对生态环境造成一定影响,其中大气污染是最主要的环境问题。
1.1大气污染物排放
燃煤电厂大气污染物排放来源于锅炉,从烟囱高空排放,主要污染物是颗粒物、SO2、NOX、CO和CO2。而重金属、未燃烧的碳氢化合物、挥发性有机化合物等物质的排放量较小。另外,烟气脱硝系统中还原剂液氨/氨气在运行过程中氨逃逸也会对大气环境产生不良影响。
1.2水污染物排放
燃煤电厂会向河流、湖泊及海洋环境排放废水(包括冷却水和废水),这些排放可能会带来水污染问题。废水主要是外排冷却水,来源于凝汽器,主要污染是热污染,另外还有少量的污水,来源于含油污水、输煤系统排水、锅炉酸洗废水、酸碱废水、脱硫废水和生活污水等,主要污染物是有机物、金属及其盐类、颗粒物和重金属。
1.3固体废弃物
燃煤电厂会产生各种固体废物和副产品。具体包括:底灰和灰渣、飞灰、脱硫残渣和副产品,碳酸钙)、硫酸盐和飞灰的混合物残渣、水处理污泥、SCR脱硝催化剂。
1.4噪声排放
电厂主要噪声源为磨煤机、锅炉、汽轮机、发电机组和直接空冷的风机,其对环境的影响表现在对电厂附近居民带来的噪声干扰,夜间干扰尤为突出。
2.燃煤电厂污染防治可行技术
2.1大气污染物减排技术
大气污染物减排技术是指末端控制措施,即用来控制向大气中排放污染物的措施,如除尘、脱硫、脱氮技术等。
2.1.1除尘技术
燃煤电厂除尘技术包括电除尘器、袋式除尘器和电袋组合式除尘器,这三种除尘器都是效率很高的颗粒物去除装置,电厂选择使用何种除尘器主要取决于燃料类型、电厂规模、锅炉类型和配置。为降低燃煤电厂锅炉烟尘初始浓度,还需要燃用洗选煤并调整好锅炉运行工况。
2.1.2脱硫技术
按脱硫工程是否加水和脱硫产物的干湿状态,烟气脱硫又可分为湿法、半干法和干法三种工艺。湿法脱硫技术成熟,效率高,Ca/S比低,运行可靠,操作简单,但脱硫副产物的处理比较麻烦,烟温降低不利于烟气扩散,工艺比较复杂,占地面积和投资较大;干法、半干法的脱硫产物为干粉状,处理容易,工艺较简单,投资一般低于传统湿法,但用石灰作脱硫剂的干法、半干法的Ca/S比高,脱硫效率和脱硫剂的利用率较传统湿法低。
2.1.3脱氮技术
燃烧过程中NOx的控制是根据燃烧过程中NOx的生成机理,通过改进燃烧技术来降低燃烧过程中NOx的生成与排放,主要途径有:①降低燃料周围的氧浓度,包括减小炉内过剩空气系数,以降低炉内空气总量;减小一次风量及挥发分燃烬前燃料与二次风的掺混,以降低着火区段的氧浓度等。②在氧浓度较低的条件下,维持足够的停留时间,抑制燃料中的氮生成NOx,同时已生成的NOx被还原分解。③在空气过剩的条件下,降低燃烧温度,以减少热力型NOx的生成。
2.2水污染防治技术
火电厂废水种类很多,水质、水量的特性差异很大,与电厂的生产工艺、水处理工艺及管理水平有很大关系。按照废水的不同来源,火力发电厂的废水包括循环水排污水、灰渣废水、工业冷却水排水、机组杂排水、煤场及输煤系统产生的含煤废水、油库冲洗水、化学水处理工艺废水、生活污水、脱硫废水、脱硝废水等。
废水处理应结合生产工艺、环境保护统一考虑,通过系统和综合的分析找出比较经济、合理的处理方案。其原则是:改进和优化生产工艺,尽可能在生产过程中减少废水的排放量和控制废水中污染物的浓度;在水力输灰系统中考虑灰水或渣水的再循环系统,以便重复利用,做到不排或少排废水;清污分流,一水多用。同时,还要对火电厂的水源、用水和排水作全面规划管理,选择最优的全厂用水分配。
2.3固体废物综合利用及处置技术
粉煤灰综合利用是指采用成熟工艺技术对粉煤灰进行加工,将其用于生产建材、回填地面、建筑工程、提取有益元素、制取化工产品及其他用途。当由于条件所限不能综合利用时,粉煤灰将被运至储存场堆存。粉煤灰储存必须采取必要的防尘防渗措施,防止储灰过程的扬尘和对地下和地面水体的影响,避免二次污染。
2.4噪声治理技术
燃煤电厂噪声基本上以点源为主,较易控制。为了更有效地控制和降低电厂噪声对厂区和周围环境的影响,设备选型与布置原则如下:源头控制,即在生产中尽量采用低噪声设备,如低噪声的磨煤机、送风机、引风机、脱硫风机等;优化布置强噪声设备宜集中、低位、室内布置,并应对车间厂房内部进行隔声、吸声处理。
煤化工污水处理技术篇6
煤化工废水主要来源于煤炼焦、煤气净化和化工产品回收利用等生产过程。这种废水中的水质以酚和氨为主,其中还含有300多种污染物质,主要有焦油、苯酚、甲酸化合物、氨、氰化物、COD、硫化物等,其中氨氮200-500mg/L,是一种具有难降解有机物的工业废水,十分典型。而CODcr的含量甚至高达5000mg/L。废水中易降解有机物主要是萘、呋喃、咪唑类等酚类和苯类,而难降解有机物则主要是喹啉、异喹啉、联苯等。煤化工废水的色度和浊度较高的原因是废水中含有各种生色集团和助色集团物质来使其色度和浊度高。
二、煤化工废水处理方法
煤化工废水处理工艺路线基本遵行:物化预处理+A/O生化处理+物化深度处理。
1.预处理
废水预处理大多是用隔油、沉淀、气浮等物化法,其中隔油法分为重力分离型、旋流分离型和聚结过滤型,而重力分离型又分为平流式(API)、斜管式(CPI)、平流斜管式(API-CPI)、平行波纹板式(CPS)、斜交错波纹管式(OWS)隔油池和重力沉降分离隔油罐等;气浮法则包括溶气气浮、扩散气浮和电解气浮等。若工业废水中含较高浓度的酚和氨,则需要对酚和氨进行回收预处理。对于酚的预处理方法一般有蒸汽脱酚法、吸附脱酚法、溶剂萃取法、液膜技术法、氧化法和离子交换法等,工业上常用溶剂萃取法做酚的预处理,溶剂为异丙基醚;对于氨来说,一般采用蒸汽汽提-蒸氨法。
2.生化处理
煤化工废水经过预处理后,再进行生化处理,一般采用厌氧/好氧法、厌氧/缺氧/好氧法、、生物接触氧化、载体生物流化床、序批式活性污泥、上流式厌氧污泥床和在活性污泥曝气池中投加活性炭等进行处理。一般来说,当用好氧法处理过后,需要针对废水的特性再进行再处理。
(1)厌氧/好氧法:厌氧/好氧是利用微生物的硝化和反硝化的作用进行脱氮、脱碳的原理的普通活性污泥法改进的方法。污水经过预处理后,在进行厌氧/好氧法处理,COD质量浓度和氨氮的质量浓度均会下降,其中较难降解的有机物萘、喹啉和吡啶的去除率分别为67%,55%和70%,而一般的好氧处理这些有机物的去除率不到20%。采用厌氧固定膜-好氧生物法处理煤化工废水,也得到了比较满意的效果。
(2)厌氧/缺氧/好氧法:厌氧/缺氧/好氧法中的厌氧处理,是为了把废水中难以降解的有机物变为链状化合物,长链化合物变为短链化合物。这种方法用于焦化废水处理,当焦化废水经过处理后,废水中的COD质量浓度、挥发酚的质量浓度和氨氮的质量浓度均会大幅度的降低,比如说:COD质量浓度会由3257mg/L降至143.5mg/L。
(3)载体生物流化床:载体生物流化床主要是运用生物膜法和活性污泥法基本原理由鼓风曝气系统和填料及筛网系统组成。利用载体生物流化床,不仅能够在生化处理前端高负荷脱除COD,生化处理后端高负荷脱除氨氮,而且还能代替BAF进行深度处理。载体生物流化床投资成本少,仅是活性污泥曝气池投资成本的70%,并且所占的面积也相对较小,仅仅占活性污泥曝气池的一半。其密度低,填料易丢失,需要专业人员进行专业性的技术操作。
(4)序批式活性污泥:序批式活性污泥是根据好氧、厌氧微生物自身的代谢机能,在进行好氧和厌氧交替反应过程中降解污水中的有机物和氨氮等污染成分的原理对传统活性污泥法进行改良后的产物。应用序批式活性污泥处理后的污水能够达到《合成氨工业水污染物排放标准》中一级排放的标准。
(5)上流式厌氧污泥床:上流式厌氧污泥床能够使大部分的有机物转化成甲烷和二氧化碳,并且能够利用反应器上部的分离器分离气体、液体、固体。生化法能够较好地去除废水中的苯酚类和苯类物质,但是对于一些难降解的有机物比如说喹啉类、吲哚类、咔唑类等效果较差。所以,近年来对煤化工污水防治技术研究方兴未艾,出现了生物膜反应器、湿式氧化、等离子体处理、光催化和电化学氧化等先进技术,这些技术已在某些煤化工企业得到实施或取得试验成果,由于应用成本普遍较高,所以还未大规模推广应用。
3.深度处理
经过生化处理的煤化工废水,出水的CODcr、氨氮等质量浓度大幅度下降;但是,因为存在难降解有机物,生化处理后的COD、色度等仍然没有达到可以排放的标准,因此,需要继续进行深度处理。深度处理方法主要有:超滤、反渗透、混凝沉淀、絮凝沉淀、活性碳吸附和化学氧化、MBR等。有研究发现,强化生物脱碳脱氮以臭氧生物活性碳技术作为深度处理单元和回收工艺来处理煤化工废水后,废水中的高COD、高氨氮质量浓度大幅度下降,具有很好的处理效果,其水质可以达到《城市污水再生利用工业用水水质》的标准。(1)臭氧生物活性碳技术通过对臭氧生物活性碳技术在深度处理过程中的强化生物脱碳脱氧及回用工艺处理煤化工废水时,发现了此工艺技术对于COD、高氨氮中所含油不容易降解煤化工废水的处理时,有着非常良好的废水处理效果,处理出来的水质符合《城市污水再生利用工业用水水质(》GB/T19923-2005)标准。
4.膜浓缩废水的蒸发处理技术
煤化工废水进行浓盐水处理时所用的浓盐水主要是来源于双膜处理后的反渗透浓水,含有盐质量浓度为3000-25000mg/L。一般采用膜浓缩和热蒸发技术来进行浓盐水的再浓缩。把含盐量较高的盐度提升到50000到80000mg/L之后,就进行蒸发处理,通常使用的是机械蒸汽压缩再循环技术,处理废水的过程中,所需要的热能,是由蒸汽冷凝以及冷凝水冷却时所产生的热能。处理过程中不会流失潜热。处理过程中只需要消耗一些废水(蒸发器内的)以及所产生的蒸汽和循环的冷凝水还有电能等。蒸发器将盐含量提升到了20%之上。所排出来的盐卤水被输送到蒸发塘通过自然地蒸发,结晶干燥后成固体,运到堆填区埋放。膜浓缩技术经常用于浓盐水处理的前段,可以将废水中的盐质量浓度提高到50000-80000mg/L,膜浓缩技术处理成本较低、规模大、技术成熟,能够减小浓盐水处理后续蒸发器的规模,这样能够降低成本并节约资源。伴随着环境保护的呼声高涨,在未来的煤化工业的发展中也将是低成本投入、高产量回报,降低污染,进行可循环的发展。使污染物可以减少量化、得到循环利用,提升资源的可使用率,将经济实现可持续化发展。
三、结语