数学建模的要求(6篇)
数学建模的要求篇1
【关键词】数学建模;模型优化;算法;转化模型
改革开放以来,我国对教育给予了高度的重视.数学建模作为高等院校数学专业极为重要的组成部分,其不仅能够促进数学与现实世界的联系,而且能够在一定程度上提升学生的逻辑思维能力与解决实际问题的能力,然而在数学建模过程中也普遍存在着优化模型求解的难题,因此,对数学建模过程中模型优化计算的探究有着重要的实用价值与研究意义.
一、数学建模相关概述
所谓数学建模,就是通过一系列的科学计算得出相应的结果,进而用来解决现实生活中的实际问题,并能够接受相关检验而建立起来的数学模型.当对某一个特定问题或实际问题进行分析的过程中,人们需要对与该问题相关的各项信息进行有效的调查,并在掌握基本信息的基础上,做出科学假设,对其内在规律进行有效分析,并能够通过数学符号语言进行相应的描述,进而建立完整的数学模型.改革开放以来,我国的计算机信息技术取得了前所未有的发展,数学建模在工程技术、自然科学等行业得到了充分的应用,且正朝着经济、金融、环境等各个领域渗透,已经成为现代社会一种新型的高新技术产品,在社会生产与生活中发挥着不可替代的作用.数学模型的建立需要对现实问题进行深入剖析,并强调对数学知识的灵活运用,其与计算机技术共同成为知识经济时代的重要工具.
二、数学建模过程中的模型优化算法
(一)对特殊关系式的巧妙处理
通过以往的数学建模可以发现,部分数学优化模型不能够直接通过软件技术进行结果输出,这很大程度上是由于模型目标函数中含有特殊的关系式,如不等式等,这些关系式无法采用软件直接求解,基于这一现象,可以充分利用0-1变量,并通过合成技术对这类问题进行计算.如原油的采购与加工类问题:
其模型目标函数出现了多个分段函数:
c(x)=10x,0≤x≤500,1000+80x,500≤x≤1000,3000+6x,1000≤x≤1500.
对于该模型,可以直接对其各个分段函数做出相应的处理,可以将x三个区间设由(0-1变量)进行控制,其函数值可以通过对三个区间的有效整合,对函数值进行合成,可以对函数图像进行探究,并结合函数值,引入变量yk和非负变量zk.基于特殊关系式模型,需要对以下问题进行深度分析:(1)有甲必不能有乙的排斥关系;(2)在m约束中共有k个有实际作用;(3)建模中含有绝对值的式子.
(二)降低可行域
在进行数学优化模型构建时,需要加强身体,能够充分利用题目中给出的各项信息,做出大胆的猜想与假设,也可以通过直接信息元素得出相关信息,增加约束条件,这不仅能够在一定程度上降低模型求解的难度系数,而且能够对问题的求解起到决定性作用.以某年生产车辆的安排为例,要想能够降低运输成本,必须保障使总运量以及出动卡车的数量达到最低,需要满足铲点与卸点在平均时间内完成目标,便可以称之为无冲突,并以此建立相关的数学模型.在这个过程中很容易将约束条件局限于电铲能力、产量任务等方面.因此,可引入变量0-1,并通过fi描述确定i号铲点的使用情况,实现对电铲数量的有效约束∑10i-1fi≤7,fi∈{0,1},除此之外,还可以适当增加对卡车数的相关约束:xij≤AijBij,分别采用xij,Aij,Bij代表铲点i到卸点j的发车次数、同行运行卡车数以及最多可运行次数等,然后通过卸点运行一周期所用的平均时间可以得出相应的结果.
(三)对模型的有效转化
通常,对于一些计算起来比较困难的数学模型,可以通过转化的方法,使模型的难度得到大大降低,然后再进行相应的求解计算,常用的转化方法有离散问题连续化、连续问题离散化等,以易拉罐下料问题为例,其决策变量采用的是整数形式,再加上生产数量的巨大,可以将其看作实数,进而转化为线性规划.再如飞行管理相关问题,可以进行非线性规划,通过已知条件:飞机速度等同,可以将这一距离约束问题转化成角度约束问题,便于计算.这些例子都在一定程度上体现了数学建模中模型转化的优越性.
(四)优化计算方法的灵活选用
1.三大非经典算法
在数学建模过程中,通常会遇到对非线性关系复杂数据进行拟合的参数,在这种条件下,可充分引入人工神经网络,这种方法不仅无需对相关函数关系进行假定,而且能够对复杂的非线性函数进行有效的模拟,能够对题目中的各
项数据进行充分有效的利用.另外,对于优化组合类问题,则可以采用遗传算法与模拟退火算法,如某年的钢管订购与运输问题,采用的是非线性规划模型,传统的算法很难顺利实现求解,而采用遗传算法则能够实现很快求得最优结果.
2.蒙特卡罗算法
数学建模中难免会遇到随机规划模型问题,对于此类问题可采用蒙特卡罗计算方法,例如:每份报纸价格为0.02元,某报童以该价格买进报纸,并以0.05元/份的价格出售,其每天的销售量与百分率如下表所示:
从题面上可以得知未销售的报纸以0.02元/份退还报社,所求的是报童每天买进多少份报纸才能保证其平均收益达到最大.对于这一问题,可采用模拟方法,做出相对合理的预测,然后通过数学建模对猜想进行验证,另外还可以对随机优化模型进行求解,这些都能够应用到实际生活中,实现对现实问题的有效解决.
3.支持向量机算法
支持向量机算法能够有效弥补神经网络在局部极值问题方面的缺陷,其在预测以及综合评价领域应用较为广泛,如1989年数学建模大赛中蠓的分类问题,已知两种不同类型蠓虫的触角长度与翅膀长度,要求对15只蠓虫进行分类鉴别,采用支持向量机的计算方法,通过二次规划模型的建立,可以求得一个分类函数,然后将相关数据带入便可求得结果,该计算方法快捷、有效.
结束语
近年来,社会各个行业对数学建模的应用日趋广泛,数学建模与优化方法的联系更加密切,在社会生产与生活中得到了前所未有的应用,在数学建模中,都不同程度地包含了最优计算思想,而这些最优理论又是通过具体的数学建模形成的,因此,必须加强对数学建模的重视,准确把握当前数学建模过程中存在的各项问题,实施科学的优化计算策略,提升其在社会实际问题中的作用与价值.
【参考文献】
[1]董文瑾.大学数学教学过程中数学建模意识与方法的培养[J].大科技,2014,24(2):28-29.
[2]李冬梅,陈东彦,宋显华.基于创新人才培养的数学建模考核方法探析[J].黑龙江教育:高教研究与评估版,2014,15(7):52-53.
[3]李晓玲,杨慧贤.浅谈独立学院数学建模教学的探索与研究[J].价值工程,2014,24(15):259-260.
数学建模的要求篇2
关键词:应用型人才;数学建模;教学平台
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2016)06-0035-03
一、对应用型人才内涵与数学建模实践活动的深入认识
应用型人才是一种能将专业知识和技能应用于所从事的专业社会实践的一种专门的人才类型,是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专业人才。在知识结构上,应用型人才更强调复合性、应用性和与时俱进,具有复合性和跨学科的特点。在能力结构上,应用型人才强调发现问题和解决问题的能力,要求具备解决复杂问题的实践能力;在素质结构上,应用型人才直接服务于各行各业,更强调社会适应性和与社会的共处能力。应用型人才的特点:强调实践,突出应用;终身学习,知识复合;科学态度,敢于创新;责任意识,团队协作。
数学建模就是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题;然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造过程。数学建模过程可用下图来表明:
因此,数学建模活动是一个多次循环反复验证的过程,是应用数学的语言和方法解决实际问题的过程。数学建模是一种联系数学与实际问题的桥梁,它突出了实践活动的重要特点,强调人才的培养应从侧重知识教育转向侧重应用能力培养。
二、应用型人才培养模式下数学建模活动在人才培养过程中的作用
应用型人才培养模式下,数学建模活动不仅包括学习数学知识,展示各应用领域中的数学问题和建模方法,提高学生学习数学的积极性,更重要的是培养学生应用数学知识解决实际问题的能力,创造有利于提高学生将来从事实际工作能力的环境。数学建模活动的教学内容和教学方法是以应用型人才培养为核心,内容取材于实际、方法结合于实际、结果应用于实际,对学生能力的培养体现在多个方面。
(一)培养学生分析问题与解决问题的能力
数学建模竞赛的题目一般由工程技术、经济管理、社会生活等领域中的实际问题简化而成,在数学建模活动中,要求首先强调如何分析实际问题,如何利用所掌握的知识和对问题的理解提出合理且简化的假设,如何将实际问题抽象为数学问题,即将实际问题“翻译”成数学模型。其次是如何建立适当的数学模型,如何利用恰当的方法求解数学模型,以及如何利用模型结果解决实际问题。对数学模型求解后,还要用数学模型的结果解释实际现象。这是一个双向“翻译”的过程,通过这个过程,让学生体验数学在解决实际问题中的作用,培养学生应用数学知识的意识和能力,从而提高学习数学的兴趣和应用数学解决实际问题的能力。数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。
(二)培养学生的创造精神和创新能力
创造精神和创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模问题的解决没有标准答案、不局限于唯一方法,不同的假设就会产生不同的模型,同一类模型也会有很多不同的数学求解方法。数学建模的每一步都给学生留有较大的空间,在数学建模活动中,要鼓励学生勤于思考、大胆实践,不拘泥于用一种方法解决问题,尝试运用多种数学方法描述实际问题,鼓励学生充分发挥想象力、勇于创造新方法,不断地修改和完善模型,不断地积累经验,逐步提高学生创新能力,数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。数学建模是培养学生创造性思维和创新精神的良好平台。
(三)培养学生的学习探索能力
心理学家布鲁纳指出:探索是数学教学的生命线。培养学生的探索能力,应贯串数学教学的全过程。这一点在普通的数学课堂上往往做不到。但在数学建模的教学过程中,通常会有意识地创设探索情境,引导学生以自我为主,进行调查研究、查阅文献、制定方案、设计实验、构思模型、分析总结等方面独立探索能力的训练,促进学生创新精神、科研能力和实践技能的培养。
(四)培养学生的洞察力和抽象概括能力
数学建模的模型假设需要根据对实际问题的观察和分析,透过现象看本质,将错综复杂的实际问题简化,再进行高度的概括,抽象出合理、简化、可行的假设条件。数学建模促进了对学生的洞察力和抽象概括能力的培养。
(五)培养学生利用计算机解决实际问题的能力
在数学建模中,很多模型的求解都面临着复杂的数学推导及大量的数值计算,同时所建模型是否与实际问题相吻合也常常需要通过计算或模拟来检验,能熟练使用计算机计算数学问题是对学生的必要要求。数学建模将数学、计算机有机地结合起来,逐步培养学生利用数学软件和计算机解决实际问题的能力。
(六)培养学生论文写作和语言表达的能力
数学建模的考核内容一般包括基本建模方法的掌握、简单建模问题的求解和实际问题的解决,考核方式往往采取闭卷与开卷相结合、理论答卷与上机实验相结合、笔试与答辩相结合的方法。因此,数学建模答卷需要学生具有一定的描述问题的能力、组织结构的能力以及文字表达的能力。而数学建模竞赛成绩的好坏、奖项的高低,其评定的唯一依据就是数学建模论文,假设是否合理,建模方法是否有特色,重点是否突出,模型结果是否正确,论文撰写是否清晰等是对论文成绩评定的主要标准。通过数学建模确实能培养学生的论文写作能力和语言表达能力。
(七)培养学生的交流与合作能力和团队精神
数学建模中的实际问题涉及多个学科领域,所需知识较多,因此集体讨论、学生报告、教师点评是经常采用的教学方式。数学建模竞赛活动是一个集体项目,比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,具有一定规模的建模问题一般都不可能由个人独立完成,这就需要三个人积极配合,协同作战,要发挥每个人的长处,互相弥补短处,是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。在此过程中,既要发挥好学生各自特点,又要有及时妥协的能力,目的是发挥整体的最好实力。作为对学生的一种综合训练,除了三个人都要有数学建模的基础知识外,成员之间的讨论、修改、综合,既有分工,又有合作。只有充分的团队合作,才能取得成功,凡是参加过竞赛的每一个人都能深刻体会到这种团队精神的重要性,认识到这一点对学生以后的成长是非常有帮助的。
数学建模在以上九个方面培养了学生的能力,促进了学生应用能力的养成。有目的、有计划、有针对性地开展数学建模教学将会使其对应用型人才的培养更具实效性。
三、应用型人才培养模式下数学建模三级教学平台的构建与实施
(一)将数学建模思想方法融入工科数学基础课,实现数学建模教学常态化
我们在开设《数学建模》选修课及必修课的基础上,积极探索将数学建模的思想方法融入到工科数学基础课教学之中,并进行了有益的教学实践。在相关课程的教学中,适当引入一些简单的实际问题,应用有关方法,通过建立具体的数学模型,利用模型结果解决实际问题。以向学生展示某些典型的数学方法在解决实际问题中的应用及应用过程,既巩固了相关知识又提高了处理问题的能力,比单纯的求解应用问题更有效。
1.在《高等数学》课程中,讲授函数的连续性时,引入方桌平稳问题,把实际问题转化为连续函数的零值点的存在问题;曲面积分时引入“通讯卫星的覆盖面积问题”,建立在距地面一定高度运行的卫星覆盖地球表面面积的曲面积分公式,并通过计算面积值确定为了覆盖地球表面所需卫星的最少数目;讲授微分方程时引入“交通管理中的黄灯时间问题”,通过简单分析黄灯的作用、驾驶员的反应等,建立汽车在交通路口行驶的二阶微分方程,通过求解方程计算给出应该亮黄灯的时间;在讲授无穷级数时,引入银行存款问题。
2.在《线性代数》课程中,讲授矩阵有关知识时引入“植物基因分布问题”,在简单地了解基因遗传的逐代传播过程基础上,引入基因分布状态向量,建立状态转移模型,通过矩阵运算求出状态解,进而分析基因分布变化趋势,确定植物变化特征。
3.在《概率论与数理统计》课程中,讲授随机变量时引入“报童的策略问题”,设定随机变量(购进报纸份数)、建立报童收益函数的数学期望、求数学期望的最大值,给出报童购进报纸的最佳份数。引导学生从实际问题中认识随机变量,并将其概念化,进而解决一定的问题。另外,还是学生认识了连续型和离散型随机变量在描述和处理上的不同。
总之,通过一些简单的数学建模案例介绍,让学生了解相关知识的实际应用,解决学生不知道所学数学知识到底有什么用,以及该怎么去用的问题;另一方面,使学生初步了解运用数学知识解决实际问题的简单过程和方法,并鼓励学生积极地去学数学、用数学。通过将数学建模思想融于低年级数学主干课教学中,培养学生的建模兴趣。激发学生科学研究的好奇心、参与探索的兴趣,培养学生学数学、用数学的意识。
(二)广泛开展学生数学建模课外科技活动,实现数学建模实践经常化
在数学建模课程教学和数学建模竞赛培训的基础上,以数学建模实验室为平台开展经常性的学生数学建模课外科技活动,包括教师讲座和问题研究。在每年三月初至五月初,开设《数学建模》课程,进行数学建模方法普及性教育;在五月下旬至六月末,开设数学建模讲座,内容主要包括一些专门建模方法讲解、有关案例介绍和常用数学软件介绍;在七月下旬至八月上旬,进行建模竞赛培训,准备参加全国竞赛。
全国竞赛之后,组织学生开展数学建模问题研究。问题来源于现有建模问题和自拟建模问题,其中自拟题目来自学生的日常生活、专业学习以及现实问题和教师研究课题等,针对自拟问题,建模组教师进行集体讨论,形成具体的建模问题;然后,教师指导学生完成问题研究,并尝试给出实际问题的解决方案。把这一活动与大学生科技立项研究项目结合起来。数学建模课外科技活动期间,实验室对学生开放、建模问题对学生开放、指导教师对学生开放。
从建模课程、建模讲座、竞赛培训、参加竞赛,到建模研究、学生科技立项等,数学建模活动从每年三月初开始至下一年的二月止,形成了以一年为一个周期的经常性的课外科技活动,实现了数学建模实践的经常化。很多学生从大一下学期开始连续一年半或两年参与建模活动,在思维方法、知识积累和建模能力等方面获得了极大的提高,为其后期的专业学习与实践打下了良好的基础。
(三)将数学建模思想方法引入专业教学与实践,实现数学建模应用专业化
无论是数学建模课程教学、数学建模讲座、建模竞赛培训,还是数学建模研究,所有过程大多定位于数学建模思想的传授、数学建模方法的应用,所针对的问题多数来自于社会生活、经济管理、工程管理等领域,专业背景不强。如何培养学生应用数学建模解决专业应用领域中的实际问题,这是数学建模应用的深层次研究问题,也是理工科专业学生创新型能力培养的重要内容,需要结合专业教学与实践得以实现。
首先,需要理工科专业教师的积极参与。数学建模教师主要承担数学建模和数学实验的课程教学、数学建模竞赛的培训与指导,教师队伍的构成基本上都是单一的数学专业教师,很少有其他专业的教师参与进来。教师队伍在知识的结构、实践动手能力上都有相当大的局限性,教师很难做到既了解实际问题、懂得专业知识,又熟悉有关算法与程序。因此,数学建模教师队伍需要在专业结构上多元化发展,吸引理工科专业的教师对数学建模的兴趣,引导其他专业教师的积极参与。
其次,要实现数学建模融入学生培养的各个环节和各个阶段,就必须在专业课教学、课程设计及毕业设计指导等阶段注重数学建模思想与方法的运用,注重对学生建模能力的培养。因此,通过一定的途径,比如,交叉学科教师间的交流活动、针对一些具体问题的教师共同探讨、建模教师帮助专业教师解决一些科研问题等,在专业教师中传播数学建模的思想与方法,使其了解数学建模的作用,并掌握一些数学建模知识。通过专业教师指导进入专业课学习、课程设计及毕业设计阶段的学生,去解决一些具有一定专业背景的实际问题,将数学建模的思想方法融入到工科专业领域,以实现数学建模应用的专业化。在问题解决的过程中,学生在专业领域的数学建模应用能力得以提高,专业教师对数学建模有了更深入的认识和了解,数学建模教师对专业理论知识也有了较多的理解,促进了数学建模向专业领域的应用拓展,并能逐步实现数学建模教学对创新型人才培养从通识性教育向专业性教育转换的目标调整。与专业老师相配合,实现在多学科教师共同研究指导下培养学生在专业领域中的数学建模能力的目的,也可逐步改善数学建模教师队伍的知识结构,为数学建模在专业领域中的深入应用探索思路。
四、结论与展望
数学建模在大学生创新能力培养中的重要作用已得到广泛共识,如何使这种作用得到充分发挥还需要深入探讨,本文从数学建模教学常态化、实践经常化和应用专业化的角度出发,我们探讨了数学建模教学的三级模式,更多的细节工作还有待于进一步探讨。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2013.
[2]钱国英,本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005,(9):54-56.
数学建模的要求篇3
一、数学建模在高等数学教学中的重要作用
数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,即数学建模。数学建模是指对现实世界的一些特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予了更为重要的意义。
二、数学建模思想在高等数学教学中的运用
高等数学教学的重点是提高学生的数学素质,学生的数学素质主要体现为:抽象思维和逻辑推理的能力;如今在一些教材中也渐渐的补充了与实际问题相对应的例子,习题。如:人大出版社中的第四章第八节所提到的边际分析与弹性分析,以及几乎各种教材中对于函数极值问题的实际应用的例子。其实这就是实际应用中的一个简单的建摸问题。但仅仅知道运算还是不够的,我们还要从具体问题给出的数据建立适用的模型。下面我们就具体的例子来看看高等数学对经济数学的应用。例:有资料记载某农村的达到小康水平的标准是年人均收入为2000元,据调查该村公400人,其中一户4人年收入60万,另一户4人20万,其中70%的人年收入在300元左右,其余在500左右。对于该村是否能定位在已经达到了小康水平呢。首先我们计算平均收入:60万,20万各一户共8人,300元共400×70%=280人,500元共400-288=112人。
平均收入为元
从这个数据我们可以看出该村的平均收入超过2000元,所以认为达到了小康水平,但我们在来看一下数据,有99.5%的人均收入低于2000千,所以单从人均收入来衡量是不科学的,那么在概率论中我们利用人均年收入的标准差a来衡量这个标准。
我们可以看出标准差是平均水平的六倍多,标准差系数竟超过100%,所以我们不能把该村看作是达到了小康水平。因此我们要真正的把高等数学融入到实际应用当中是我们高确良等教育的一个重点要改革的内容。为了在概念的引入中展现数学建模,首先必须提出具有实际背景的引例。下面我们就以高等数学中导数这一概念为例加以说明。
(1)引例
模型I:变速直线运动的瞬时速度
1、提出问题:设有一物体在作变速运动,如何求它在任一时刻的瞬时速度?
2、建立模型
分析:我们原来只学过求匀速运动在某一时刻的速度公式:S=vt那么,对于变速问题,我们该如何解决呢?师生讨论:由于变速运动的速度通常是连续变化的,所以当时间变化很小时,可以近似当匀速运动来对待。假设:设一物体作变速直线运动,以它的运动直线为数轴,则在物体的运动过程中,对于每一时刻t,物体的相应位置可以用数轴上的一个坐标S表示,即S与t之间存在函数关系:s=s(t)。称其为位移函数。设在t0时刻物体的位置为S=s(t0)。当在t0时刻,给时间增加了t,物体的位置变为S=(t0+t):此时位移改变了S=S(t0+t)-S(t0)。于是,物体在t0到t0+t这段时间内的平均速度为:v=当t很小时,v可作为物体在t0时刻瞬时速度的近似值。且当—t—越小,v就越接近物体在t0时刻的瞬时速度v,即vt0=[(1)式];(1)即为己知物体运动的位移函数s=s(t),求物体运动到任一时刻t0时的瞬时速度的数学模型。
模型II:非恒定电流的电流强度。己知从0到t这段时间流过导体横截面的电量为Q=Q(t),求在t0时刻通过导体的电流强度?通过对此模型的分析,同学们发现建立模型II的方法步骤与模型I完全相同,从而采用与模型I类似的方法,建立的数学模型为:It0=要求解这两个模型,对于简单的函数还容易计算,但对于复杂的函数,求极限很难求出。为了求解这
两个模型,我们抛开它们的实际意义单从数学结构上看,却具有完全相同的形式,可归结为同一个数学模型,即求函数改变量与自变量改变量比值,当自变量改变量趋近于零时的极限值。在自然科学和经济活动中也有很多问题也可归结为这样的数学模型,为此,我们把这种形式的极限定义为函数的导数。
(2)导数的概念
定义:设函数y=f(x)在点x0的某一领域内有定义,当自变量x在x0处有增量x时,函数有相应的增量y=f(x0+x)-f(x0)。如果当x0时yx的极限存在,这个极限值就叫做函数y=f(x)在x0点的导数。即函数y=f(x)在点x0处可导,记作f′(x0)或f′|x=x0即f′(x0)=。有了导数的定义,前面两个问题可以重述为:(1)变速直线运动在时刻t0的瞬时速度,就是位移函数S=S(t)在t0处对时间t的导数。即vt0=S′(t0)。(2)非恒定电流在时刻t0的电流强度,是电量函数Q=Q(t)在t0处对时间t的导数。即It0=Q′(t0)。
如果函数y=f(x)在区间(a,b)内每一点都可导,称y=f(x)在区间(a,b)内可导。这时,对于(a,b)中的每一个确定的x值,对应着一个确定的导数值f′(x),这样就确定了一个新的函数,此函数称为函数y=f(x)的导函数,记作y′或f′(x),导函数简称导数。显然,y=f(x)在x0处的导数f′(x0),就是导函数f′(x)在点x0处的函数值。由导函数的定义,我们可以推导出一系列的求导公式,求导法则。(略)有了求导公式,求导法则后,我们再反回去求解前面的模型就容易得多。现在我们就返回去接着前面模型I的建模步骤。
3、求解模型:我们就以自由落体运动为例来求解。设它的位移函数为s=gt2,求它在2秒末的瞬时速度?由导数定义可知:v(2)=S′(2)=*2gtlt=2=2tg
4、模型检验:上面所求结果与高中物理上所求得的结果一致。从而验证了前面所建立模型的正确性。
5、模型的推广:前面两个模型的实质,就是函数在某点的瞬时变化率。由此可以推广为:求函数在某一点的变化率问题都可以直接用导数来解,而不须像前面那样重复建立模型。除了在概念教学中可以浸透数学建模的思想和方法外,还可以在习题教学中浸透这种思想和方法。在这里就不一一列举。
通过数学建模的思想引入高等数学的教学中,其主要目的是通过数学建模的过程来使学生进一步熟悉基本的教学内容,培养学生的创新精神和科研意识,提高学生应用数学解决实际问题的思想和方法。
参考文献:
数学建模的要求篇4
关键词:数学建模;非专业素质;数学教学
中图分类号:G642文献标识码:A
民办高等教育近些年来得到了空前发展,独立院校以培养适应社会需要的高素质应用型人才为主要培养目标,不仅成为人们的一种共识,而且逐步渗透到独立院校的办学实践中。现在高等教育正由精英教育专向大众教育,培养实用型人才并兼顾少数精英的培养模式越来越被独立院校所认同。数学课程作为一门公共基础课程如何服务于这个目标成为基础课程改革的热点,将数学建模思想融入独立院校数学教学应是一个重要取向之一。
一、数学建模对大学生能力的培养
19世纪著名德国数学家H.G.Grassmann说过:“数学除了锻炼敏锐的理解力、发现真理以外,它还有一个开发训练头脑全面考虑科学系统的功能”。数学的思考方式具有根本的重要性,数学能为组织和构造知识提供方法,以至于当用于技术时就能使科学家和工程师们生产出系统的、能复制的、并且是可以传播的知识――分析、设计、建模、模拟(仿真)。
随着科学技术的发展,数学建模这个词?[越来越多地出现在现代人的生产、工作和社会活动冲,大学生则可以通过参加数学建模竞赛参与到数学建模中来。大学生数学建模竞赛起源于美国,我国从1989年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加。数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛。数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识。题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件。数学建模竞赛是能够把数学和数学以外学科联系的方法,通过竞赛把学生学过的知识与周围的现实世界联系起来,易于培养学生的下列能力:
(一)有利于学生动手能力的培养
目前的数学教学中,大多是教师给出题目,学生给出计算结果,问题的实际背景是什么?结果怎样应用?这些问题都不是现行的数学教学能够解决的。数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果。在这个过程中,学生必须根据所给问题对模型类型和算法选择作出决定,并对所建立的模型进行解释、验证。整个过程,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力,这有利于学生动手能力的培养,有助于学生毕业后快速完成由学生到社会人的角色转变。
(二)有利于学生知识结构的完善及自学能力的培养
一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机处理、Internet网、计算机检索等。数学建模涉及的知识几乎涵盖了整个自然科学领域,甚至涉及到社会科学领域。因此,数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养。同时,由于所需的这些知识没有哪一个专业能同时覆盖,这样就促使学生去自学相关的知识,从而培养学生的自学能力并拓宽学生的知识面。另外,数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力,从而完善学生的知识结构。
(三)有利于学生团队精神的培养
学生毕业后,无论是自主创业还是从事研究工作,都需要合作精神和团队精神。数学建模竞赛是一个合作式的竞赛,学生以团队形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷。竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力。在竞赛的过程中,3位同学充分分工与合作,共同完成模型的准备、假设、构成、求解、分析、检验、应用,到最后完成问题的解决。集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识。任何一个参加过数学建模竞赛的学生,都对团队精神带来的成功和喜悦感到由衷的鼓舞。
二、将数学建模思想融入数学教学中
数学建模给我们的教学模式提出了更多的思考,我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建。现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力,只有遵循现代的教学策略,才能培养出适应新世纪、新形势下的高素质复合型人才。知识的获取是一个特殊的认识过程,本质上是一个创造性过程。知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段。在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神。在学习、接受知识时,要象前人创造知识那样去思考,去再发现问题。在解决问题的各种学习实践活动中,尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力。数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法。因此,在数学教学中应该融入数学建模思想。如何将数学建模思想融入数学课程中,笔者认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中。主要抓好以下关键点:
(一)在教学中渗透数学建模思想
渗透数学建模思想的最大特点是联系实际。独立院校培养的主要是应用型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想。学数学主要是为了专业课程的学习打下基础以及培养思维方式,而现行的本科教材中实际案例都较少,教师应根据不同专业的特点选择合适的案例,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好地掌握知识,培养学生灵活运用和解决问题、分析问题的能力。数学教学中所涉及到的一些重要概念要重视引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学-的重要形式。这样,在传授数学知识的同时,使学
生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的,而是有现实的背景,有其物理原型和表现的。在教学实践中,我们选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后,作为课堂上的引例或者数学知识的实际应用例题。这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力。总之,在独立院校数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题。当然,这也对数学教师提出了更高的要求,教师要尽可能地了解各个专业的相关知识,搜集现实问题与热点问题等等,在课程教学及考核中适度引入数学建模问题。
实践表明,真正学会数学的方法是用数学,为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题。同时越来越多的人认识到。数学建模是培养创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力,培养学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神。在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题,这些应用题可以独立或自由组合成小组去完成,完成得好则在原有平时成绩的基础上获得“额外加分”。这种作法鼓励学生应用数学,有利于提高学生逻辑思维能力,培养认真细致、一丝不苟、精益求精的精神,提高运用数学知识处理现实世界中复杂问题的意识、信念和能力,调动学生的探索精神和创造力,从而使学生获得除数学知识本身以外的素质与能力。
(二)适时开设《数学建模和实验》课
数学建模竞赛之所以在世界范围广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展,数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术。为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等。与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟,它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析。在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理。计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用。
数学建模的要求篇5
在现在的世界,数学建模在各个区域都体现出重要的作用,不论是那个学科区域,数学建模都在当中发挥了不可小视的作用[4]。数学建模是运用数学知识、方法及语言,对需要解决的问题进行建模.对自己建立的模型经过推理、证明、计算,最终用数学软件来求解,对求出的结果同实际问题相符合。总之,数学建模在我国大学人才培养的作用表现在以下几个方面。
(一)有利于团队合作意识的培养
对于实际问题的复杂性.数学建模需要拥有许多数据和信息,用计算机软件对结果进行判断和检查,将结果和实际问题相比较,这个过程在短时间内,只靠一个人的力量是不能做完的。所以,数学建模有利于培养学生的团队意识,这方面恰好是社会对应用型人才培养的最低要求之一。
(二)有利于应用型能力的培养
因为数学建模中所牵扯的数据很多是杂乱无章的,因此。需学生能够进行选取,经过统一的归纳、整顿、加工、提取和总结,对已有条件进行判断,并对数学关系进行有效的描述,最终建立应由的数学模型.再通过所学的知识和方法对该模型求解[5]。为了缩小实际问题,需要对各个因素进行讨论,对可忽略不计的因素进行判断.这要学生必须对实际问题具有深刻地理解。让模型能接近完美、全方位地表现出这一实际问题,同时,还需要该模型好求解,为此,必须对该模型进行有效的改善,要求有更高的知识,发现更多的新问题。
(三)有利于学生综合素质及能力的培养
数学建模实际上是通过数学知识和方法求解社会实际问题的过程,要求学生有很好的数学知识和逻辑思维能力,还要对实际问题的背景有一定的了解,能够对所掌握的各种知识进行相互疏通。数学建模数据巨大而且复杂,因此对还要进行判断,概括,比较等多个过程,经过如此各种各样的培养学生的应变能力、分析和综合思考能力都得到提高,从而加强个人的多重素质和能力培养。
二、数学建模的思想方法
数学建模的要求篇6
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
工具/原料
调查收集的原始数据资料
Word公式编辑器
步骤/方法
数学建模建模理念为:
一、应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
二、数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
三、创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。建模论文主要包括以下几个部分:
一、摘要800字,简明扼要(要求用一两字左右,简明扼要(字左右句话说明题目中解决的问题是什么、用什句话说明题目中解决的问题是什么、么模型解决的、求解方法是什么、么模型解决的、求解方法是什么、结果如何、有无改进和推广)。有无改进和推广)。
二、问题的重述简要叙述问题,对原题高度压缩,切记不要把原题重述一遍。
三、假设1.合理性:每一条假设,要符合实际情况,要合理;2.全面性:应有的假设必须要有,否则对解决问题不利,可有可无的假设可不要,有些假设完全是多余的,不要写上去。
四、建模与求解(60~70分)1.应有建模过程的分析,如线性规划、非线模型中目标函数的推导过程,每一个约束条件的推导过程,切记不要一开始就抬出模型,显得很突然。2.数学符号的定义要确切,集中放在显要位置,以便查找。3.模型要正确、注意完整性。4.模型的先进性,创造性。5.叙述清楚求解的步骤。6.自编程序主要部分放在附录中(所用数学自编程序主要部分放在附录中。7.结果应放在显要的位置,不要让评卷人到处查找。
五、稳定性分析、误差分析、1、微分方程模型稳定性讨论很重要。2、统计模型的误差分析、灵敏度分析很重要。
六、优缺点的讨论1.优点要充分的表现出来,不要谦虚,有多少写多少2.对于缺点适当分析,注意写作技巧,要避重就轻。大事化小,小事化了。
七、推广和改进这是得高奖很重要的一环,如有创新思想即使不能完全完成也不要放弃,要保留下来。
八、文字叙述要简明扼要、条理清楚、步骤完整,语言表达能力要强。
九、对题目中的数据进行处理问题对题目中数据不要任意改动,因问题求解需要可以进行处理。如何处理,应注意合理性。1.先按题给条件作一次。2.发表自己见解,合理修改题目。
注意事项