土壤重金属污染现状范例(12篇)
土壤重金属污染现状范文篇1
关键词:重金属;土壤污染;土壤修复
中图分类号:X131.3文献标识码:A
据农业部数据显示,在全国140万公顷污水灌区中,有64.8%的灌区受重金属污染,其中,轻度污染46.7%,中度9.7%,严重8.4%。重金属污染土壤,污染物滞留时间长、移动性差、不能被降解,并可经水、植物等最终影响人类,治理和恢复难度相当大。
一、该地区污染状况及成因
1、概况
该地区位于某大型冶炼厂的西部,距厂区最近500米,存在引工业废水灌溉现象。该地区土地多为抛荒地。
2、样品采集与测定
1.2.1样品采集
采样人员由环科所、环保局、冶炼厂和当地群众代表等组成,遵照环境样品采集技术规范,按面积随机设采样点。
(1)土壤样品:每个采样点采集表层0-20cm土壤样,部分样点采集亚表层(20-40cm)土壤。
(2)水样样品:采集土壤同时,采集田间及井水、河沟水等。
(3)稻米样品:水稻成熟时采集1个本区稻米样品。
1.2.2监测项目及测定方法
(1)测定项目
必测项目:Pb、Zn、Cu、Cd、As、PH
选择项目:Ni、Cr、氟化物、Hg
(2)测定方法
采用国标法和美国环保局推荐分析方法。
3、土壤环境质量状况
1.3.1调查区土壤监测结果
调查区土壤样品测定结果见表1-1
表1-1调查区农田表层土壤监测结果
对照国家《食用农产品产地环境质量评价标准》,该地区土壤铜元素超标100%,镉元素超标87.5%,一个样品的砷超标。
4、土壤污染成因
1.4.1用污水灌溉。经污水灌溉进入土壤的重金属以不同方式被土壤截留固定。冶炼厂废水虽有处理,但曾有过超标排放,不符合农灌标准,用该工业废水灌溉是土壤重金属污染的主因;
1.4.2气中重金属来自运输、能源、冶金和建材生产而造成的粉尘和气体。除汞外,重金属大多是以气溶胶形态进入大气,经降水和自然沉降进入土壤。结合实际,冶炼厂废气重金属沉降污染不容忽视。
二、土壤重金属污染修复技术
1、工程措施
工程措施主要有换土、客土及深耕翻土等,通过与污土的相混合,降低土壤所含有的重金属,减轻重金属对植物-土壤系统的毒害,进而让农产品符合国家食卫标准。换土和客土用于重污染区,深耕翻土则在轻污染土壤应用。工程措施具有稳定、彻底等优点,但其投资高、工程量大,破坏土体结构,造成土壤肥力下降。此外,还需要对所换污土做处理。
2、物理修复技术
2.2.1电动修复
在电场作用下,经电渗透、电迁移或者电泳,把土壤污物带到电极两端,通过收集系统将重金属元素收集起来集中处理。此技术能够有效地去掉重金属,并步入商业化发展。因为电流可以打破所有金属-土壤键,其对于铅、镉、砷、铜等极为有效。影响电动修复的关键是土壤PH值,可控制PH值改善修复。
2.2.2电热修复
通过高频电压产生的电磁波对土壤加热,从土壤颗粒中把污物吸出来,促进易挥发重金属从土壤分离。该技术用来修复被Se和Hg等污染的土地。此外,将重金属污染土壤放到高温高压下,出现玻璃态物质,从根本上消除污染。
2.2.3土壤淋洗
用淋沅液淋洗土壤,让吸附在土壤上的重金属形成溶解性的金属试剂络合物或离子,再收集淋洗液回收重金属,并循环。选择提取剂是此法的关键,提取剂能选水、化学剂或其他液体,甚至气体。此法适于轻质土壤,有较好的修复重金属污染土壤的效果,但投资巨大,限制商业了化淋洗液。此外,其也容易造成地下水的污染、土壤变性、土壤养分流失等。今后此种方法的重点是开发易被生物降解、对环境污染小、专一性生物表面活性剂。
3、化学修复
向土壤中加化学试剂、有机质、固化剂、天然矿物等改变土壤PH值等,经氧化还原、沉淀、吸附等降低重金属生物有效性。此种方法关键是改良剂的选择,常用沸石、石灰、磷酸盐、碳酸钙等,对重金属作用机理不同改良剂不同。碳酸钙或石灰主要是用来提高土壤pH值,促进Hg、Zn、Cd、Cu等元素形成碳酸盐结合态盐类或氢氧化物沉淀。如果土壤pH>6.5,则Hg就可成碳酸盐或氢氧化物沉淀。向土壤投放硅酸盐钢渣,对Cd、Ni、Zn等有吸附沉淀作用。水田Cd为磷酸镉沉淀,磷酸汞溶解度也小。沸石通过离子交换降低重金属有效性。有机物让重金属形成硫化物而沉淀,而有机物腐殖酸可与重金属离子形成螯合或络合物。
化学修复简单易行,其在土壤原位进行,但非永久措施,因为其只单纯改变土壤中重金属形态,金属仍在土壤中,易再度活化。
4、生物修复
2.4.1植物修复技术
(1)植物提取
通过重金属超积累植物从土壤中吸收污物,转至地上部分再收割集中处理,让土壤中重金属降到可接受水平。一般来说,植物提取是最有效的方式,但是其在技术上也是最难实施的修复技术。现在已经有了提取不同金属植物种类和改进植物提取性能的方法,并得到了逐步的商业推广。
(2)植物挥发
经植物根系分泌特殊物或微生物,让土壤某些重金属转变成挥发形态,有的植物将污物吸到体转为气态释放到大气中。植物挥发技术无须处理污物植物,既经济有效又潜力巨大,但将污物转到大气中,则会对人类和生物有不小风险。
(3)植物稳定
利用超累积植物或耐重金属植物降低重金属活性,减少被淋洗到地下水或经空气进一步扩散污染的可能。通过金属根部积累、沉淀或根表吸收固化土壤重金属。如植物根系分泌物可改变土壤根际环境,改变多价态Hg、Cr、As价态和形态。此外,植物根毛也能直接从土壤交换吸附重金属增加根表固定。
2.4.2微生物修复技术
利用微生物对金属的沉淀、氧化、吸收、还原功效,降低土壤中金属毒性。某些微生物嗜重金属,用其净化重金属污染土壤有独特功效。在长时间受镍胁迫的土壤中,有微生物产生抗性机制来降低镍毒害,并经吸收、沉淀、络合等来减少重金属迁移和生物毒性。同时,微生物细胞内金属硫蛋白对Zn、Cd、Hg、Cu等有强烈亲和性,有富集和抑制重金属毒。但是,微生物修复土壤能力有限,只可以适用在小范围。
5、农业生态修复
主要有两方面:一是农艺修复,有调整作物品种、改变耕作制度、种植非食物链植物、使用可降低土壤重金属的化肥、增施固重金属有机肥等;二是生态修复。调节如土壤养分、水分、pH值及氧化还原状况和外界的气温、湿度等,调控污染物所处环境介质。
6、组合修复技术
修复重金属污染土壤可谓是系统性工程,修复技术多,各有一定效果,但也有局限性;单一技术效率不高,预期目标实现困难。所以,需要应用2种以上技术加以综合才能达到预期效果。
三、结论
土壤作为我们生存的主要条件,是生态环境的重要组成。我国亟需解决重金属土壤污染问题。本文监测分析项目区土壤重金属污染的基础上,评述土壤重金属污染修复技术,旨在推动重金属污染土壤有效修复与综合治理。
参考文献:
土壤重金属污染现状范文1篇2
遥感技术具有宏观性和现势性强、综合信息丰富等优势,为矿区土壤重金属污染评价提供了可行的方法。本文综述了遥感技术在矿区土壤重金属污染评价方面的研究,并对其进行了展望。
关键词:
遥感;土壤;重金属
1.引言
矿产资源是生产资料和生活资料的重要来源,人类社会的发展进步与矿产的开发利用密不可分。矿产的开采、冶炼、加工过程中大量的铅、锌、铬、镉、钴、铜、镍等重金属以及类金属砷等进入大气、水、土壤引起严重的环境污染。根据2014年4月17日环境保护部、国土资源部的《全国土壤污染调查公报》,“全国土壤环境状况总体不容乐观,部分地区土壤污染较重,总的超标率达16.1%”、“在调查的70个矿区的1672个土壤点位中,超标点位占33.4%,主要污染物为镉、铅、砷和多环芳烃”。资源、环境是制约社会经济发展的两大瓶颈,如何克服这个瓶颈问题同时又能实现矿山开发的可持续发展,是我国社会必须面对和解决的紧迫的社会问题[1]。传统的土壤重金属污染监测方法有实验室监测、现场快速监测等方法。实验室监测方法虽然测量精度高,但是存在劳动强度大、采样分析费时,适用范围小的缺点;现场快速监测法虽然具有大面积、连续、高密度获取信息的特点,但是还大多处于定性或半定量的试验阶段,易受周围因素影响[2]。各种岩石、土壤、植被及水体等均有各自独特的光谱特征。地物光谱特征的差异,是遥感技术识别各类地物的主要依据,也是应用遥感技术开展土壤重金属污染评价的理论基础。遥感技术以其宏观性和现势性强、综合信息丰富等优势,在矿区土壤重金属污染评价中起到了积极的先导作用,并取得了良好的应用效果。一般情况下,土壤中的有机质、水分、铁氧化物、重金属等对土壤光谱反射率有一定影响。国外相关研究起步较早,始自20世纪六十年代土壤光谱研究[3]。国外有研究中表明,当土壤有机质含量超过2%,铁氧化物、重金属等光谱信息有可能被土壤中的有机质的光谱信息所掩盖,进一步加大了光谱信息提取的难度;同时土壤的反射率会因铁氧化物的存在而在整个波谱范围内有明显的下降趋势,土壤的光谱反射率都朝着蓝波方向下降,并且这种下降趋势可以扩展到紫外区域[4],相关研究陆续拓展至矿区重金属污染中来[5];国内自20世纪八十年代在云南腾冲系统地开展土壤光谱与理化性状关系的研究[6~7],并于九十年代末开展遥感技术在矿区重金属污染监测的探索。目前遥感技术对矿区土壤重金属污染评价研究主要有两个方向:一是植被反演。根据地表植被覆盖以及重金属在植被根茎、叶片中富集,植被在重金属胁迫下叶绿素等光谱特征发生变化的特点,通过植被光谱数据反演土壤中的重金属含量,间接评价重金属污染。二是土壤监测。利用重金属对土壤波谱特性的影响,通过土壤光谱数据监测重金属含量[8-10]。
2.植被反演方法
植被在生长发育的过程中,矿区土壤中的重金属被吸收和富集,对植物的产生的影响主要体现在长势方面产生了生物地球化学效应,如色素含量、水含量、叶面温度的变化,进而影响植被的光谱反射率,植被光谱的变化能够在遥感光谱信息中有所体现。基于以上认识,可以通过植被光谱信息、波谱曲线变化的分析提取污染信息[11]。不同植物对重金属敏感性不同,重金属胁迫导致植物体内生物化学成分发生改变,使电磁波谱反射特性不同。植被反演方法的原理是,运用遥感技术研究重金属污染条件下植被光谱特征变化,建立植被光谱特征与重金属污染条件下植被生长状态参数变化之间的关系[7];研究叶绿素含量与重金属污染之间的关系,分析叶绿素变化敏感的光谱指数及其响应规律,并进行了区域应用与验证[11-13]。研究表明,随着土壤中重金属含量增加,植被近红外、可见光反射光谱特征发生显著变化,表现为可见光光谱反射增强,近红外光谱减少,红边移动范围减少[14-15]。此方法适用于矿区植被覆盖较茂密的区域。王杰等(2005年)以江西德兴铜矿去为实验区,采用美国陆地卫星(Landsat)ETM+数据,采用比值分析、彩色合成、影像融合等方法增强影像视觉效果,对污染区的植被的波谱曲线与正常区的同种植被的光谱特征作对比,总结出受毒化植物叶冠的波谱形态与正常植物叶冠的波谱形态相比发生的形态变异的特征,总结对照区和污染区植被的波谱特征差异和各污染区的受污染程度,分析出不同污染区植物的受毒害程度[16]。雷国静等(2006年)在南方植被茂密区离子型稀土矿区采用高分辨率QuickBird遥感数据采取坐标换的方式,消除土壤信息干扰,获取了较真实的植被受污染影响程度的信息,运用了归一化植被指数密度分割方法和通过旋转二维散点图获得植被绿度方法来提取植被污染信息,取得了较好的效果[17]。李新芝等(2010年)以肥城煤矿区为实验区,将SPOT-5数据2.5米分辨率的全色波段进行小波变换、主成分分析等融合方法提高图像的空间信息量,综合运用缨帽变换、植被与土壤相关性分析、支持向量机分类等方法提取矿区植被信息,并制作了植被等级分布图,确定了不同污染程度的植被覆盖面积,与矿区污染分布的规律具有较好的一致性[11]。黄铁兰等(2014年)以广东大宝山矿区及周边10公里范围作为研究区,分别以ASTER及QuickBird为数据源,采用植被指数法和植被绿度法对植被污染信息进行识别,对获取的植被绿度信息图像进行密度分割,获得植被污染程度及分布情况。同时建议大范围的矿山植被污染信息的识别,考虑到项目综合成本等因素,采用ASTER等低分辨率的数据源,选择植被绿度指数法进行识别。对于小范围的典型矿区,可选用QuickBird等高分辨率的数据源,用植被指数法进行识别[18]。由于混合像元、大气效应的存在,植被信息提取过程中容易出现错分、漏分现象;相关系数的设置易受经验的影响。同时信息提取易受云层、山体阴影和人类生产活动的影响,均存在一定的误提现象。未来应加强信息提取技术、多源遥感数据在植被反演中的应用研究,以解决上述问题。
3.土壤监测方法
土壤是由多种物理化学特性不同的物质的组成的混合体,例如有机质、重金属、水、其他矿物质等。各种物质均有发射、反射、吸收光谱的特性,都会对土壤光谱特征产生影响,同时植被覆盖也对土壤光谱的监测有较大影响,因此对于通过土壤光谱数据直接监测土壤重金属含量的研究,尚处于探索阶段。土壤监测方法的原理是,利用光谱分析方法室内测定土壤发射光谱数据,经线性回归分析或指数回归分析、标准化比值计算、特征光谱宽化处理后,利用回归分析方法建立重金属元素含量与发射率变量之间的土壤重金属反演模型,定量反演出矿区土壤重金属含量[19-23]。此类方法适用于植被覆盖率较低的地区。ThomasKemper等(1998年)在西班牙Aznalcóllar尾矿库溃坝事件土壤重金属污染监测中,基于多元线性回归分析(MLR)和人工神经网络(ANN)方法分别通过化学分析、特征光谱--近红外反射光谱(0.35−0.35μm)手段监测土壤重金属含量,两种手段对As、Fe、Hg、Pb、S、Sb等六种元素监测有较高的相似度。为相似矿区环境的监测提供了较好的借鉴意义[13]。李淑敏等(2010年)以北京为研究区,研究土壤中8种重金属(Cr、Ni、Cu、Zn、As、Cd、Pb、Hg)的含量与热红外发射率的关系,分析了土壤重金属的特征光谱,并模拟预测了重金属含量的回归模型,为基于遥感光谱的土壤重金属含量监测奠定了基础[24]。宋练等(2014年)以重庆市万盛采矿区为研究区,通过光谱特征物质之间的自相关性来分析土壤中光谱特征物质,在回归分析的基础上建立As、Cd、Zn重金属含量的遥感定量反演模型,监测三种重金属含量,结果表明土壤在近红外波段和可见光波段的反射值比值与土壤中As、Cd、Zn含量存在较好相关性[25]。部分研究对波段选择和光谱分辨率的重要性认识不高,影响了重金属元素光谱信息识别、重金属污染预测精度;土壤中绝大部分重金属,如铅、锌、铬、砷等在可见光—近红外波段区间的光谱特征较弱,易被植被、土壤波谱信息掩盖,对直接利用土壤重金属光谱特征来提取污染信息带来了难度。研究发现,铁氧化物的波谱特征较明显,今后需加强土壤中重金属与铁氧化物相关性的研究,以提高污染信息提取的准确性。
4.未来展望
近年来,遥感技术用于矿区土壤重金属评价取得了一定进展,今后要在以下几个方面寻求突破:
(1)研究遥感信息提取新技术新方法。地物波谱特性易受土壤成分、大气效应、植被等环境噪音的影响,需进一步加强波谱信息提取技术的研究,以提高遥感信息提取的准确性。
(2)加强田间光谱测量研究。目前对土壤重金属监测仅局限于实验室级别的光谱监测,需要进一步探讨其他因素对重金属吸附的影响以建立准确的土壤重金属含量光谱估算模型,并进行大量而精确的实验室与田间的光谱测量工作。
(3)由定性监测向定量监测转变。遥感技术在矿区土壤重金属污染评价方面的研究大多是定性或半定量评价,尚达不到定量评价。需在遥感反演土壤污染信息模型与理论方法、土壤重金属含量与光谱变量的相关关系等方面加强研究,以接近或达到定量评价污染的水平,进而利用遥感技术评价大面积土壤污染及修复。
(4)研制高性能的卫星,提高遥感信息获取能力。作为中国16个重大科技专项(2006年~2022年)之一的高分辨率对地观测系统已进入全面建设阶段,其中2014年8月发射升空的高分二号卫星空间分辨优于1m,这必将改变遥感数据普遍采用国外遥感数据(SPOT、Landsat、QuickBrid等)的局面。
参考文献:
[1]贾志强.甘肃省白银市矿山环境遥感调查与评价研究[D].桂林:桂林工学院,2009.
[2]龚海明,马瑞峻,等.农田土壤重金属污染监测技术发展趋势[J].中国农学通报,2013,29(2):140-147.
[4]张甘霖,赵玉国,杨金玲,等.城市土壤的环境问题及其研究进展[J].土壤学报,2006,44(55):925-933.
[6]戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[M].见:遥感文选,北京:科学出版社,1981.
[7]丰茂森.遥感图像数字处理[M].北京:地质出版社,1992:3~3.
[8]甘甫平,刘圣伟,等.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学—中国地质大学学报,2004,29(1):119-126.
[9]朱叶青,屈永华,刘素红,等.重金属铜污染植被光谱响应特征研究[J].遥感学报,2014,18(2):335-352.
[10]李婷,刘湘南,刘美玲.水稻重金属污染胁迫光谱分析模型的区域应用与验证[J].农业工程学报,2012,28(12):176-182.
[11]李新芝.基于多源遥感数据的矿区植被信息监测方法研究[D].济南:山东科技大学,2010.
[12]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,2002,18(1):9-13.
[14]徐加宽,杨连新,王余龙,等.水稻对重金属元素的吸收与分配机理的研究进展[J].植物学通报,2005,22(5):614-622.
[16]王杰,等.遥感技术在江西德兴铜矿矿区污染研究中的应用[J].山东科技大学学报(自然科学版)2005,24(4):66-69.
[17]雷国静等.遥感在稀土矿区植被污染信息提取中的应用[J].江西有色金属,2006,20(2):1-5.
[18]黄铁兰,等.广东大宝山矿区植被污染信息的遥感识别方法研[J].地质学刊,2014,38(02):284-288.
[24]李淑敏,李红,孙丹峰,等.基于热红外特征光谱的土壤重金属含量估算模型研究[J].2010,31(7):33-38.
土壤重金属污染现状范文1篇3
1.动植物联合修复技术在重金属复合污染土壤修复中的试验方法
1.1试验地概况分析
目前,生物修复技术包括以下几种:一是植物修复技术,二是动物修复技术,三是微生物修复技术。动植物联合修复技术是把多种技术结合在一起,有效解决土壤被污染的问题。本文以某市重金属复合污染土壤为例,该地区四季比较分明,降雨量较多,气候温和,年日照时间为1900-2136h,年降水量为1285-2189mm,本次试验是在该市一块电子废弃物存放地区展开的,该地块面积为320㎡,土壤的厚度为12-27cm,pH6-7,土壤有机质含量是5g/kg,该地区的土壤主要受到以下几个元素的污染:一是铜,二是铅,三是镉。其中,镉的含量为2.7mg/kg,铜的含量为119.3mg/kg,铅的含量为133.6mg/kg。
1.2试验方法
在应用动植物联合修复技术之前,试验人员必须做好充分的准备,在试验地块搭建简易的大棚,并把需要修复的地块改成垄状。试验人员选择了以下几种植物:一是白三叶,二是黑麦草,以上两种属于培育技术比较完善的牧草,属于改善重金属复合污染土壤成效比较显著的植物。白三叶和黑麦草的试验需要分成6个阶段,试验时间是18个月。在开始种植植物之前,试验人员需要在地块土壤中放入一定剂量的蚯蚓食物,并在土壤内投放一定数量的蚯蚓,在试验结束后,试验人员需要把蚯蚓全部收回,采用的方法是光照法,收回的蚯蚓不可以二次利用。动植物联合修复的第二个阶段是比较关键的,修复的时间是五个月,在修复到第二个月时试验人员就需要把第一次投放的蚯蚓全部收回,然后再重新投放新的蚯蚓。在此期间,待白三叶和黑麦草生长到7cm时,试验人员就需要把白三叶和黑麦草全部移除。
1.3重金属复合污染土壤重金属含量检测
在应用动植物联合修复技术的过程中,每间隔一个半月试验人员都需要采样一次,了解重金属复合污染土壤修复情况。平均每10㎡为一个样点,并采用梅花布点的方式,每个样点可以重复取样四次,而且需要取其平均值,以此来检测该地块的重金属含量。
2.动植物联合修复技术在重金属复合污染土壤修复中的应用结果分析
在应用动植物联合修复技术的过程中,土壤内的蚯蚓可以正常生长,而且生长的速度也比较快。在试验地块投放蚯蚓后,修复地块的土壤变的疏松,缝隙变大。试验人员每间隔半个月会对蚯蚓体内的重金属含量进行检测,每次检测数值都不相同,蚯蚓体内的重金属含量从初期的上升状态到下降状态,试验人员对蚯蚓体内的重金属含量采用非线性拟合的方法,得出蚯蚓体内重金属含量曲线图。蚯蚓体内的重金属含量从上升趋势到下降趋势,主要是因为蚯蚓在刚投放到污染地块时需要一个适应的过程,适应期结束以后蚯蚓体内的重金属含量才会上升,当土壤内的重金属含量降低后,蚯蚓体内的重金属含量也开始下降。
在应用动植物联合修复技术的过程中,植物的生长速度也非常快,而且十分茂盛,并未出现异常现象。由此可以看出,土壤内的重金属并未对植物生长产生较大影响。植物的重金属含量曲线图呈现V形,在植物即将移除时重金属含量最高,重金属的吸附能力也是最强的。在修复重金属复合污染土壤时,土壤内的重金属全部被蚯蚓和植物所吸附,进而降低土壤内重金属的含量,最终彻底移除土壤内的重金属。动植物联合修复方法属于安全,绿色的修复方法,在修复的过程中不会破坏土壤的结构,而且还可以很好的改善土壤的状况。目前,我国很多地区的土壤都被重金属污染,降低了土地的利用率,动植物联合修复技术的应用可以提高土地的利用率。在不久的将来,动植物联合修复技术将广泛应用于农业生产中。但是,动植物联合修复技术在应用的过程中还存在一些不足,国家相关部门必须加大动植物联合修复技術的研究力度,提高动植物联合修复技术水平。
结语:如今,动植物联合修复技术已经广泛应用于重金属复合污染土壤修复中,不仅不会改变土壤的结构,还可以改善土壤的质量。动植物联合修复技术主要应用蚯蚓,白三叶,黑麦草进行修复。其中,白三叶和黑麦草是修复能力比较强的植物。在应用动植物联合修复技术之前,试验人员必须做好充分的准备,需要准备好一定数量的蚯蚓和植物。在动植物联合修复过程中,试验人员需要每间隔半个月检测一次蚯蚓和植物内部的重金属含量,做好检测记录。在修复到第二个月时,试验人员就需要更换新的蚯蚓。在动植物联合修复初期,土壤内部的重金属不会对蚯蚓和植物的生长产生较大的影响,这是因为无论是蚯蚓还是植物都需要一个适应的过程。目前,我国受重金属污染的土壤非常多,动植物联合修复技术的应用可以提高资源的利用率,推动农业生产的发展,进而推动国家经济发展。动植物联合修复技术具有十分广阔的发展前景。
参考文献
[1]吴龙华,胡鹏杰.农业种植园区肥料与农药污染土壤修复技术及示范年度报告[J].科技资讯,2016,(10):162-163.
[2]施秋伶.有机螯合剂和生物表面活性剂联合淋洗污染土壤中的Pb、Cd[D].西南大学,2015.
土壤重金属污染现状范文篇4
[关键词]农田土壤重金属污染现状方法
[中图分类号]S158.4[文献标识码]A[文章编号]1003-1650(2013)09-0037-02
土壤是由一层层厚度各异的矿物质成分所组成的。土壤和母质层的区别表现在形态、物理特性、化学特性以及矿物学特性等方面。由于地壳、大气和生物圈的相互作用,土层由矿物和有机物混合组成。疏松的土壤微粒组合起来,形成充满间隙的土壤形式。相对密度在4.5g/cm3以上的金属称作重金属。土壤中的重金属累积后对人体的危害相当大,能引起人的头痛、头晕、失眠、健忘、神经错乱、关节疼痛、结石、癌症(如肝癌、胃癌、肠癌和畸形儿)等。
一、土壤重金属污染的定义
土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引发的问题统称为土壤重金属污染。过量重金属可引起植物生理功能紊乱、营养失调,此外汞、砷能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。重金属污染物在土壤中移动性很小,不易随水淋滤,不为微生物降解,通过食物链进入人体后,潜在危害极大。一些矿山在开采中尚未建立石排场和尾矿库,废石和尾矿随意堆放,致使尾矿中富含难溶解的重金属进入土壤,加之矿石加工后余下的金属废渣随雨水进入地下水系统,造成严重的土壤重金属污染[1]。
二、重金属污染物的来源
污染土壤的重金属主要包括汞、镉、铅、铬和类金属砷等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自于固体废物,如乱扔旧电池、电子线路板;工业选矿垃圾等的堆集;含重金属的废水未达标排放,被污染地下或地表水径流、渗透;重金属粉尘的沉降等。如汞主要来自含汞废水,镉、铅主要来自冶炼排放和汽车废气沉降,砷则来源于杀虫剂、杀菌剂、杀鼠剂和除草剂。
三、土壤重金属污染的特点
1.隐蔽性和滞后性
大气污染、水体污染和废弃物污染等一般通过感官就能发现,而农田土重金属污染往往要通过对土壤样品的分析化验、对农作物残留检测,甚至通过研究人畜健康状况后才能确定。因此农田土重金属污染从产生到问题出现通常会经过较长的时间,并具有一定的隐蔽性。
2.不可逆性和难治理性
如果大气和水体受到了污染,切断污染源后通过稀释作用和自净化作用也可能会使污染问题逆转。但是累积在农田土中的难降解重金属则很难靠稀释作用和自净化作用来加以消除。某些被重金属污染的土壤可能需要100~200年的时间才能恢复原状。因此土壤重金属污染一旦发生后通常很难治理,而且其治理成本比较高、治理周期也比较长。
3.表聚性
农田土中的重金属污染物大部分残留于土壤耕层中,很少向土壤下层移动。这是由于土壤中存在有机胶体、无机胶体和有机-无机复合胶体,它们对重金属有较强的吸附能力和螯合能力,这就限制了重金属在土壤中的迁移。因此农田土中的重金属污染物很少向土壤下层移动,大部分残留在土壤耕层,这就导致农作物污染,进而危害人类的健康。
四、我国土壤重金属污染现状
我国的土壤重金属污染物主要来源于污水灌溉、工业废渣和城市垃圾等。污水中占有较大比例的工业废水的成分比较复杂,不同程度地含有微生物难以降解的多种重金属,是土壤重金属污染物的主要来源。
目前我国因农药和重金属污染的土壤面积已经达到上千万公顷,污染的耕地约有一千万公顷,占耕地总面积的10%以上。全国每年受重金属污染的粮食高达l200万吨,因重金属污染而导致的粮食减产高达1000多万吨,经济损失至少有200亿元。华南有的地区接近50%的农田遭受镉、砷、汞等重金属污染;广州近郊因为污水灌溉而污染的农田有2700公顷,因使用污泥造成1000多公顷的土壤被污染;上海的农田耕层土壤汞、镉含量增加了50%;天津市近郊因污水灌溉而导致超过两万公顷农田受重金属污染。国内蔬菜重金属污染的调查结果显示,我国菜地土壤重金属污染形势严峻,珠三角地区接近40%菜地重金属含量超标,其中10%属“严重”超标;重庆市的蔬菜重金属污染程度为镉>铅>汞,近郊蔬菜基地的土壤重金属汞和镉出现超标情况,超标率分别为6.7%和36.7%;广州市的蔬菜地铅污染最为普遍,砷污染次之[2]。
五、土壤重金属污染的危害
重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的方式净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。即使有益的金属元素浓度超过某一数值也会有剧烈的毒性,使动植物中毒,甚至死亡。金属有机化合物(如有机汞、有机铅、有机砷、有机锡等)比相应的金属无机化合物毒性要强得多;可溶态的金属又比颗粒态金属的毒性要大;六价铬比三价铬毒性要大等。
重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、慢性中毒等,对人体会造成很大的危害。有关专家指出,重金属对土壤的污染具有不可逆转性,已受污染土壤没有治理价值,只能调整种植品种来加以回避。
六、重金属污染土壤的修复
土壤被污染后,为了避免其对植物的生长和通过食物链对人类造成危害,需要将其从土壤中清除掉。重金属污染土壤的修复技术主要有两种,一是改变重金属元素在土壤中的存在形式,使其由活化态转变为稳定态;二是从土壤中去除重金属元素,使土壤中重金属元素的浓度接近或达到背景含量的水平[3,4]。当前采用的治理方法主要有以下三种:
1.工程治理
即用物理(机械)原理治理重金属污染的土壤,主要有热处理技术、淋滤法、洗土法以及深翻法;
2.生物修复
即针对土壤中的重金属具有生物迁移这一特点而提出的一项净化措施,即利用某种特殊的植物、动物或者微生物能吸收土壤中的重金属污染物从而达到净化的目的;
3.改良剂
即投入各种土壤的改良剂,主要用于调节酸碱度和化学组分,使重金属能够以生物有效性低,毒害程度弱的形式存在。
国内对于土壤污染的治理已有过不少探索,从治理的手段上可以分为物理、化学和生物措施。物理和化学措施主要采用直接换土法、电化法、稳定固化法等方式。但物理和化学措施只适用于有限时空的土壤治理,大规模采用该方式成本太高,也不便于实施。而生物措施则主要利用动物、植物、微生物的生物作用,所用设施相对简单,成本低廉,更适合大规模应用。传统的植物修复技术是利用重金属超富集植物(多为草本植物)的种植吸收土壤内的重金属元素,但在实际应用中存在较大限制,且需要每年进行种植和收割,增加了土壤修复的成本。所以,寻找和培育重金属高富集能力的木本植物成为一个亟待解决的问题。
七、结束语
土壤重金属污染具有污染范围广、持续时间长、污染隐蔽性、难被生物降解等主要特点,并可能通过食物链不断地在生物体内富集,甚至可转化为毒害性更大的甲基化合物,对食物链中某些生物产生毒害,或最终在人体内积累而危害健康。为了预防土壤重金属污染,我们应当树立环保意识,充分认识其危害性,从小事做起,在根本上去除污染来源,杜绝废水、废气的任意排放,及时处理城乡垃圾,不滥用化肥农药。如何恢复重金属污染地区的本来面目也是一个长期性的课题,需要我们不断努力作进一步的探讨。
参考文献
[1]孙铁珩,李培军,周启星等.土壤污染形成机理与修复技术,北京,科学出版社,2005.
[2]周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望,湖北农学院学报,2002,22(5):476-480.
[3]董丙锋.土壤环境质量及其演变的影响因素污染防治技术,2007,2:53-55.
土壤重金属污染现状范文篇5
关键词:化工,土壤污染,重金属,防治
土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。
一、重金属的来源、种类
1.土壤重金属来源广泛,主要包括有大气降尘、污水灌溉、工业废弃物得不当堆置、矿业活动、农药和化肥等。首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。
2.大气中重金属沉降、大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。
3.农药、化肥和塑料薄膜使用施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重。农用塑料薄膜生产应用的热稳定剂中含有Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。
4.污水灌溉污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。
5.含重金属废弃物堆积含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的Cd、Hg、Pb为重度污染,Zn为中度污染,Cr、Cu为轻度污染。
6.金属矿山酸性废水污染金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。
二、土壤中重金属污染物现行治理方法
1.工程治理方法
工程治理是指用物理或物理化学的原理来治理土壤重金属污染。主要有:客土是在污染的土壤上加入未污染的新土;换土是将以污染的土壤移去,换上未污染的新土;翻土是将污染的表土翻至下层;去表土是将污染的表土移去等。
2.此外淋洗法
用淋洗液来淋洗污染的土壤;热处理法是将污染土壤加热,使土壤中的挥发性污染物(Hg)挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。
3.生物治理方法
生物治理是指利用生物的某些习性来适应、抑制和改良重金属污染。主要有:动物治理是利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的重金属;微生物治理是利用土壤中的某些微生物等对重金属具有吸收、沉淀、氧化和还原等作用,降低土壤中重金属的毒性,如原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感。
4.植物治理
利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的重金属;目前已发现400多种,超积累植物积累Cr、Co、Cu的含量一般在0.1%Ni、Pb以上,积累Mn、Zn含量一般在1%以上。生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。
5.化学治理方法
化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、和电导等理化性质,Eh使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。
三、总结
土壤重金属污染首先应从源头抓起,控制污染源,土壤重金属的污染已经达到相当严重的程度,要充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点。土壤质量问题是经济可持续发展和社会全面进步的战略问题,它直接影响土壤质别、水质状况、作物生长、农业产量、农产品品质等,并通过食物链对人体健康造成危害。对土壤质量的保护便是对耕地生产能力的保护,更是提高土地利用效率的强有力措施之一。对于我国这样一个人口众多的农业大国,开展国土质量调查评价,对土壤重金属污染物进行试验研究,开发耕地污染的治理方法和技术,显得更为必要和迫切。
参考文献
[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35
土壤重金属污染现状范文篇6
“据说每个中国人死了,倒在地上,拍扁了就是一张元素周期表,还是重金属含量很高的那种。”
因为“镉米事件”的频发,土壤重金属污染,这个因其隐蔽性而长期未受足够重视的问题,引起了公众的聚焦,一时间重金属似乎成了生命不能承受之“重”。事实上,随着我国城市化的推进,化工污染成为重大污染源。苯、酚、磷类有机污染及镉、砷、铅、铬、汞等重金属污染严重,在对空气、水体造成污染的同时,也成为土壤中长期存在的“毒瘤”。
不少专家指出,重金属无论是污染水体,还是污染大气,最终都会回归土壤,造成土壤污染。
于是,一个无法回避的严峻事实是,在经过几十年的沉淀后,我国土壤重金属污染正进入集中多发期。
各种污染最终回归土壤“摆上桌”
据了解,土壤中的重金属主要来自工业企业排放的废水、废渣和废气。以种出“镉大米”的湖南为例,官方数据显示,湖南全省受重金属污染的土地面积达2.8万公顷,占全省总面积的13%。
作为全国闻名的有色金属之乡,湖南重金属污染的历史包袱异常沉重。在衡阳常宁水口山、株洲清水塘、湘潭竹埠港等涉重金属企业密集地区,许多耕地早已不适合继续耕种。当地环保官员表示,以前工业污水直接排入湘江,农民则用这样的水灌溉农田,日积月累,造成了周边土壤重金属含量超标。而此次“镉大米”事件,也许只是当地土壤重金属污染的冰山一角。
农业部农产品产地土壤重金属污染防治专家组成员、中国农业科学院资源与区划所研究员陈世宝表示,土壤是各种污染物废物的处理场所,重金属无论是污染水体,还是污染大气,在经过了迁移、转化后,最终都会回归土壤,造成土壤污染。
“其中,重金属污染耕地带来的直接后果是耕地质量下降,包括土壤的环境质量、肥力质量和健康质量的下降,导致农产品的品质下降,出口受限,同时对人体健康带来潜在危害,因而备受关注。”陈世宝说。
国土资源部曾公开表示,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。而这些粮食足以每年多养活4000多万人。
来自“美杂志称中国移民体内重金属超标”的博文近日在微博中流传。博文称,去年,刊登在美国《移民与难民研究》杂志上的一份关于“纽约健康和营养检测调查报告”显示,来自中国大陆的移民血液中铅、镉、汞等重金属含量高于来自其他亚洲地区的移民。铅比其他亚洲新移民高出44%。
陈世宝表示,对于人体摄入危害物质的剂量或风险值,每个国家都根据自己国家的科技、经济技术水平及饮食结构等制定了相应的限量值,“我国也有对应的农产品食品限量值(2005版)。我国大米镉的限量值是0.2毫克/千克,这个标准要严于日本、欧洲等发达国家。”
中国科学院地理科学与资源研究所环境修复研究中心主任陈同斌则在接受媒体采访时表示,“从污染面积上看,国内专家认为镉污染最严重,但如果从健康风险评估角度,我认为是类金属砷污染,因为砷的致命剂量非常小。”
土壤污染秘而不宣或怕引恐慌
在中国,到底有多少被重金属污染的土地,并没有一个官方的权威数据。翻开过往报道,对于土壤重金属污染的程度更是众说纷纭。仅有的一份比较权威的数据,则来自2011年10月25日,环保部部长周生贤在十一届全国人大常委会第二十三次会议的正式报告。其中提到,中国土壤环境质量总体不容乐观,中国受污染的耕地约有1.5亿亩,占18亿亩耕地的83%。
早在2006年到2010年,国家环保部与国土资源部便组织了一项耗资10亿的全国性土壤污染调查,只不过迄今为止调查结果始终未向公众公布。
今年1月,北京律师董正伟向环保部提交了申请全国土壤污染状况调查方法和数据的信息公开。1个月后,环保部以国家秘密”为由,拒绝了他的申请。6月,环保部公布的《2012年中国环境状况公报》也称,已经完成全国土壤污染状况调查。然而,相关信息依旧未公开。
对此,业内专家纷纷揣测土壤污染秘而不宣的原因:一是认为掌握的数据不是非常完整和准确,二是担心一旦公开很有可能会引起大量人群的恐慌。
“现在我们有太多的未知。”2013年陕西“两会”期间,省政协委员、西安交通大学李香菊教授提交了《加强“毒地”危害治理刻不容缓》的提案。李香菊表示,首先,我国耕地受重金属污染的程度、污染元素种类、污染面积均是未知;其次,修复目标,如何才算修复好,都不清楚。
由于土壤污染底数不清,导致污染原因、种类、范围和程度也成为盲点,防治措施也相应缺乏针对性。李香菊表示,“毒地”缺乏历史档案,信息透明度低,成为“毒地”害民的帮凶。土壤污染关系到农产品质量,涉及到食品安全,是重大的民生信息,在重大的民生问题上,公众有知情权,对其信息公开化是政府对民众的负责,“首先要建立‘毒地’档案,详细记录‘毒地’的污染类型、受污面积、污染程度,明确限制土地的用途等,禁止未经评估和无害化治理的污染场地进行土地流转和开发利用,不能在不透明的情况下以牺牲施工工人和居民的健康权利为代价。”
国土资源部正在绘制土壤重金属“人类污染图”
没有确切数据,专家们也只能用碎片拼接大致图谱,他们一致认可的是,南方比北方严重,重金属污染是土壤的头号杀手,工业化程度越高的地区重金属污染越严重。从我国西部(成都平原)向中部(江汉平原),至南部(珠江三角洲)地区,重金属污染呈逐渐加强的趋势,表现为分布面积增大,含量强度增高、元素种类增多。
从目前来看,全国多目标的区域地球化学的调查项目也已经发现,局部地区的土壤污染是严重的。比如说长江中下游的某些区域普遍存在镉、汞、铅、砷等异常。城市及其周边普遍存在汞和铅异常,而部分城市明显存在放射性异常。湖泊有害元素富集,土壤酸化严重。
研究证实,镉、汞等重金属元素与人类污染存在密切关系。重金属元素在土壤表层明显富集并与人口密集区、工矿业区存在密切相关性。和1994年左右采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散。
幸而,近日有好消息传来:国土资源部、中国地质调查局表示,将全面会诊土壤重金属污染现状,正在绘制土壤重金属“人类污染图”。
据悉,我国正建立涵盖81个化学指标(含78种元素)的地球化学基准网:以1∶20万图幅为基准网格单元,每1个网格都布设采样点位,每个点位各采集1个深层土壤样品和1个表层土壤样品,深层样品来自1米以下,代表未受人类污染的自然界地球化学背景:表层样品来自地表25厘米以浅,是自然地质背景与人类活动污染的叠加。用表层含量减去深层含量,即得出重金属元素“人类污染图”。
土壤污染后修复要一百年
更坏的消息是,土壤被污染后我们无法指望它像空气和水一样自我修复。
“理论上说,重金属污染土壤是可以被修复的,但完全恢复其生态功能很难。”陈世宝告诉记者,目前世界各国针对重金属污染土壤提出的修复措施有很多种,污染土壤修复主要包括2大原理:遏制(in-aituremediation)与去除(reinove,ex-situ)。基于上述2大原理,污染土壤修复主要有隔离包埋、固化稳定、热冶分离、化学稳定、电动修复、客土和翻土、土壤淋洗及生物修复等(包括植物修复),但每种措施都存在一定的应用局限性。
“重金属一旦进入土壤,再进行修复非常困难,需要花费大量的时间和经费。针对我国污染农田污染特点:(程度低、面积大、需安全持续利用等),原位化学钝化(以降低重金属在土壤-植物系统中的迁移转化为核心)技术由于其经济有效、修复时间快、易于操作、适用范围广等优点,比较适合我国重金属污染农田的修复,具有较好的环境、经济和社会效益,并且已取得重要进展。”陈世宝说。
以上世纪70年代日本富山县土壤修复为例,一共863公顷(12945亩)农田,总共投入3,4亿美元,花费了33年时间进行客土法修复完成,平均每亩修复费用近18万元人民币。
值得注意的是,日本对于大米的镉限量标准为0.4毫克/千克,而我国镉米限量值仅为0.2毫克/千克,健康风险控制是要严于其他发达国家的,大米中镉限量标准严,意味着土壤中镉的质量标准也相应地严格。
陈世宝表示,以日本镉污染土壤修复案例来说,如果按照我国大米镉标准,那么修复成本和时间将更加巨大,修复措施也更加困难。
从中国现实操作来看,污染场地修复的资金来源大致可以分为4类:地块的原业主方、地块的获得方、地块的修复方BT模式(Build和Transfer的缩写形式,意即“建设-移交”,是政府利用非政府资金来进行基础非经营性设施建设项目的一种融资模式)垫付、相关贷款与基金。
李香菊则强调,要强化土壤修复中政府的主导责任。对于环境污染,无论出于“谁受益谁治理”,还是出于“谁污染谁治理”,在不少污染土壤的国有、集体企业已经破产的情况下,政府作为产权所有者应承担修复责任。管住源头防止先污染后治理
业内专家们一致认为,当务之急是控制源头污染。
“在重金属污染防治中,须源头控制-过程阻断-末端治理相结合,其中,源头控制是关键。‘千万要防止再走先污染后治理’的经济发展之路,这也是目前我国所提倡的生态文明的核心内容之一。”陈世宝说。
好在国家层面已开始意识到这个问题的严重性,出台了一系列政策措施,
2011年,国务院批复了《重金属污染综合防治“十二五”规划》,规划将内蒙古、江苏、河南、江西、湖北、湖南、广东、广西等14个省区列为重点治理省区,有138个区域被列为重点治理区域,采矿、冶炼、铅蓄电池、皮革及其制品、化学及其制品五大行业的4452家企业被纳入重点监控。同时,中央财政专门设立了重金属污染防治资金。
据了解,3年来,国家已经拿出了97亿元支持重金属污染治理,在以打击重金属违法企业为主的环保专项执法行动中,全国31个省(区、市)政府近两年已关闭了1000多家重金属污染严重的企业。
另根据《全国土壤环境保护“十二五”规划》,十二五期间,用于全国污染土壤修复的中央财政资金将达到300亿元,包括受污染农田、城市棕色地块及工矿区污染场地。
土壤重金属污染现状范文篇7
而人为活动产生的污染物进入土壤并积累到一定程度,引起土壤质量恶化,进而造成农作物中某些指标超过国家标准的现象,称为土壤污染。
目前,我国被污染土壤已占耕地面积的1/5,而且污染最严重的耕地主要集中在耕地土壤生产性状最好、人口密集的城市周边地带和对土壤环境质量的要求更高的蔬菜、水果种植基地。
与此同时,近年来随着城市化、工业化的发展,城市和村镇周边排灌条件好、经过多年培育的优质耕地被大量占用,中低产田比例大幅度上升,耕地总体质量持续下降,中国耕地告急!
土壤污染知多少
2010年10月,第九届亚太烟草和健康大会在澳大利亚举行,这次看似平常的大会却以一项名为《中国销售的香烟:设计、烟度排放与重金属》的研究报告(下称《研究报告》)在中国引发了强烈反响。
研究报告称:13个中国品牌国产香烟中铅、砷、镉等重金属成分含量严重超标,其含量与加拿大产香烟相比,最高超过3倍以上!最让人吃惊的是这13个品牌是如此的耳熟能详:白沙、大前门、都宝、红双喜、黄金叶、Happiness(吉庆)、红河、红金龙、红梅、红旗渠、红塔山、石林和壹枝笔。
这个惊人的消息迅速传回中国,业内外一片震动。
最先受到怀疑的是实验样本的可信度。报告的研究人员称,他们共检验了中国市场上87种常见香烟品牌的产品,并对其物理特性、重金属含量等进行了分析。而中国疾控中心控烟办副主任姜垣则认为,《研究报告》只是随机抽出了13个品牌的香烟进行了重金属的测定,而在其他74个品牌中并没有进行重金属的测定,报告内容不能说是全面、客观、公正的。
但姜垣也指出,虽然目前国际、国内没有规定香烟中重金属的限定标准,但这是烟草管理方面的漏洞,并不能说明美国和加拿大的研究人员作出的研究报告就缺乏客观性和科学依据,其实他们只是把目前中国国产香烟中含有高含量重金属的“事实”给揭露了出来。姜垣表示,以《研究报告》的数据为例,参照世界工业化学领域享有盛誉的标准参考书《Ullmann工业化学百科全书》(1996年美国版),就可以轻易看出,中国国产香烟重金属含量偏高绝非危言耸听。
即便不以《研究报告》的数据为准,中国香烟也难逃“重金属含量高”的嫌疑。据姜垣介绍,中国国产香烟重金属含量高的问题早在十几年前就引发过讨论。当时,德国海德堡大学的一名教授曾经做过相关实验,比较中国、德国、俄罗斯、印度、希腊和加拿大的香烟中镉的含量,发现中国香烟的镉含量高居榜首,比含量最低的希腊香烟要高出6倍多。同期,中国也有学者做了烟草重金属含量的研究,并了《美国、日本和国产香烟中铅含量的比较》一文,文中提及某上海产香烟的铅含量是美国的12.4倍,日本的4.5倍。
那么,是谁在香烟中“添加”了重金属?目前,被业内专家普遍认可的解释就是土壤污染。
近年来,由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤中渗透,大气中的有害气体及飘尘也不断随雨水降落在土壤中,导致了土壤污染。当土壤中含有害物质过多,超过土壤的自净能力时,就会引起土壤的组成、结构和功能发生变化,微生物活动受到抑制,有害物质或其分解产物在土壤中逐渐积累通过“土壤植物人体”,或通过“土壤水人体”间接被人体吸收,达到危害人体健康的程度。
污染物何以进入土壤
污染物进入土壤的途径是多样的,一是废气中含有的污染物质,特别是颗粒物,在重力作用下沉降到地面进入土壤;二是废水携带大量污染物进入土壤;三是固体废物中的污染物直接进入土壤或其渗出液进入土壤。
而农药、化肥的大量使用,造成土壤有机质含量下降,土壤板结,也是土壤污染的来源之一。
土壤处于陆地生态系统中的无机界和生物界的中心,不仅在本系统内进行着能量和物质的循环,而且与水域、大气和生物之间也不断进行物质交换,一旦发生污染,三者之间就会有污染物质的相互传递。
土壤污染物有下列4类:①化学污染物。包括无机污染物和有机污染物。前者如汞、镉、铅、砷等重金属,过量的氮、磷植物营养元素以及氧化物和硫化物等;后者如各种化学农药、石油及其裂解产物,以及其他各类有机合成产物等。②物理污染物。指来自工厂、矿山的固体废弃物如尾矿、废石、粉煤灰和工业垃圾等。③生物污染物。指带有各种病菌的城市垃圾和由卫生设施(包括医院)排出的废水、废物以及厩肥等。④放射性污染物。主要存在于核原料开采和大气层核爆炸地区,以锶和铯等在土壤中生存期长的放射性元素为主。
同时,工业排放的二氧化硫、二氧化氮等有害气体在大气中发生反应而形成酸雨,以自然降水形式进入土壤,引起土壤酸化。冶金工业烟囱排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2至3公里范围的点状污染。
此外,汽油中添加的防爆剂四乙基铅随废气排出污染土壤,行车频率高的公路两侧常形成明显的铅污染带。
固体废弃物堆积场所的土壤则直接受到污染,自然条件下的二次扩散会形成更大范围的污染。
施用化肥是农业增产的重要措施,但不合理的使用,也会引起土壤污染。长期大量使用氮肥,会破坏土壤结构,造成土壤板结,生物学性质恶化,影响农作物的产量和质量。过量地使用硝态氮肥,会使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧的输送,使其患病,严重的导致死亡。
农药能防治病、虫、草害,如果使用得当,可保证作物的增产,但它是一类危害性很大的土壤污染物,施用不当,也会引起土壤污染。喷施于作物体上的农药(粉剂、水剂、乳液等),除部分被植物吸收或逸入大气外,约有一半左右散落于农田,这一部分农药与直接施用于田间的农药(如拌种消毒剂、地下害虫熏蒸剂和杀虫剂等)构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。此外,农药在杀虫、防病的同时,也使有益于农业的微生物、昆虫、鸟类遭到伤害,破坏了生态系统,使农作物遭受间接损失。
各种农用塑料薄膜作为大棚、地膜覆盖物被广泛使用,如果管理、回收不善,大量残膜碎片散落田间,会造成农田“白色污染”。这样的固体污染物既不易蒸发、挥发,也不易被土壤微生物分解,是一种长期滞留土壤的污染物。
土壤污染除导致土壤质量下降、农作物产量和品质下降外,更为严重的是土壤对污染物具有富集作用,一些毒性大的污染物,如汞、镉等富集到作物果实中,人或牲畜食用后发生中毒。
在此特别要指出的是,污水灌溉带来的土壤污染,即用未经处理或未达到排放标准的工业污水灌溉农田,其后果是在灌溉渠系两侧形成污染带。
生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,且一定含量的重金属有利于农作物生长,自然成为补给农业用水的不二选择。合理地使用污水灌溉农田,一般有增产效果。但污水中还含有重金属、酚、氰化物等许多有毒有害的物质,如果污水没有经过必要的处理而直接用于农田灌溉,会将污水中有毒有害的物质带至农田,污染土壤。起初,污水所过之处,庄稼长势喜人,污灌被视作一举两得的好办法,既给工业和生活污水找到出路,又使农业增收,它对生态环境的杀伤力则被忽视。但是随着现代工业的兴起与发展,污水灌溉引起的农作物重金属污染问题越来越严重。
如何防治土壤污染
近年来,随着工业和农业的快速发展,土壤环境质量下降及土壤遭受污染的问题日益突出,严重影响到农产品的质量安全和人民群众的身体健康。而城市郊区由于其优越的地理位置,往往是城市最重要的蔬菜与副食品供应基地。但是,城市不断发展后,郊区往往也是遭受工业和农业污染最严重的地区。
南京土壤研究所在对南京市郊区三大蔬菜基地土壤环境进行质量评价时发现,符合国家无公害蔬菜产地土壤环境要求的只有四成,100个样本仅四成安全。
为保证农产品质量安全,国家和有关部委先后颁布实施了无公害、绿色食品、有机食品等相关标准,包括其产地土壤环境质量标准。
早在上世纪80年代中期,天津资环所副所长王正祥就曾参与过天津市园田土壤和蔬菜中8种重金属,即汞、铜、锌、铅、铬、镍、砷、锡的含量状况调研。调查结果表明,施用城市垃圾肥的土壤,有5种重金属含量高于背景值,其中汞达到背景值的30多倍;而污灌区土壤,8种重金属含量全部高于背景值,其中镉超出10倍,汞超出125倍。土壤中本来含有一定的重金属,未受外界污染的土壤的重金属含量称为土壤背景值。
王正祥等人的调查还显示,蔬菜中重金属方面,污灌区蔬菜中5种重金属含量高于远离城市污染源土壤,其中镉和汞超标2倍多。整体上看,蔬菜中重金属含量尚未超过食品卫生标准,但这种积累的趋势值得警惕。上世纪90年代中后期,天津市农业环境保护管理监测站的研究人员再次锁定污灌区蔬菜。他们从天津的东丽区、西青区和武清县这三个重金属污染相对严重的污灌片区采集大白菜、韭菜、芹菜、黄瓜样品进行重金属检测。结果发现大白菜中,43%的汞超标,23%的镉超标。而部分样品的铅属于轻度污染。说明污灌区蔬菜中重金属开始威胁到人类的健康。
可见,土壤污染具有隐蔽性和滞后性。大气污染、水污染和废弃物污染等问题一般都比较直观,通过感官就能发现。而土壤污染则不同,它往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题通常会滞后较长的时间。
同时,污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不像在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,也使土壤污染具有很强的地域性。特别是重金属对土壤的污染基本上是一个不可逆转的过程,许多有机化学物质的污染也需要较长的时间才能降解。
因此,治理污染土壤通常成本较高、治理周期较长。
治理土壤污染,一是要合理施用化肥,增施有机肥。根据土壤的特性、气候状况和农作物生长发育特点,配方施肥,严格控制化肥的使用范围和用量,用时增施有机肥,提高土壤有机质含量,增强土壤胶体对重金属和农药的吸附能力。
二是施用化学改良剂,在受重金属轻度污染的土壤中施用抑制剂,可将重金属转化成为难溶的化合物,减少农作物的吸收。常用的抑制剂有石灰、碱性磷酸盐、碳酸盐和硫化物等。在受镉污染的酸性、微酸性土壤中施用石灰或碱性炉灰等,可以使活性镉转化为碳酸盐或氢氧化物等难溶物,改良效果显著。
三是种植抗性作物或对某些重金属元素有富集能力的低等植物,用于小面积受污染土壤的净化。如玉米抗镉能力强,马铃薯、甜菜等抗镍能力强等。
四是科学地进行污水灌溉。工业废水种类繁多,成分复杂,有些工厂排出的废水可能是无害的,但与其他工厂排出的废水混合后,就变成有毒的废水。因此在利用废水灌溉农田之前,应按照《农田灌溉水质标准》规定的标准进行净化处理,这样既利用了污水,又避免了对土壤的污染。
土壤重金属污染现状范文篇8
关键词土壤;重金属污染;来源;对策
中图分类号X53文献标识码A文章编号1007-5739(2013)17-0241-01
1土壤污染概念
1.1土壤污染
有关学者有不同观点:一是土壤中的污染物超过背景值称之为“污染”;二是土壤中污染物超过《土壤环境质量标准》就判定为土壤“污染”;三是土壤中污染物超过环境容量,并对农产品的产量和安全质量造成威胁才称之为“污染”[1],此理解较为全面。
1.2有害重金属
有些重金属摄入微量就会出现病态或中毒症状,常称为有害重金属或有毒重金属,如铅、镉、汞等。铅是重金属污染中较大的一种,一旦进入人体将很难排除,能直接伤害人的脑细胞,特别是胎儿的神经系统,可造成先天智力低下;对老年人造成痴呆等,还有致癌、致突变作用。镉易导致高血压,引起心脑血管疾病,破坏骨骼和肝肾,并能引起肾功能衰竭。汞是重金属污染中毒性最大的元素,食入后直接进入肝脏,对大脑、神经、视力破坏很大;天然水中含0.01mg/L,就会导致人中毒[2]。
1.3污染特点
重金属污染在土壤等环境中具有隐蔽性、滞后性、累积性、不可逆转性和难治理性等特点[2-3]。土壤一旦被污染,通过自净能力完全复元周期长达1000年[4]。
2土壤污染概况
2.1污染面积
曾有报道,我国土壤污染面积达0.1亿hm2,甚至有的说是0.2亿hm2[1],这是一个很惊人的数字。
2.2污染趋势
重金属元素在土壤表层明显富集与人口密集区、工矿业区存在密切相关性。与1994—1995年采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散,长江中下游某些区域普遍存在镉、汞、铅、砷等异常。我国土壤正出现越来越多本来没有或微不足道的危险元素[4]。目前,日益严重的土壤重金属污染等问题已引起人们的广泛关注。
2.3污染状况
目前在全国逾30个省份中,至少有15个地区土壤严重污染[5]。工厂排放的铅和重金属以及农民过度使用杀虫剂和化肥,使土地和食物链受到威胁[6]。不少地方成为皮肤病、肝病、癌症高发区[2]。全国有1/10的大米镉含量超标[7]。每年受重金属污染的粮食高达1200万t,造成直接经济损失超过200亿元[6]。
3土壤污染来源
3.1固体废弃物污染
固体废弃物污染成分复杂,其危害方式和污染程度也不尽相同。以矿业和工业固体废弃物在堆放或处理过程中,在日晒、雨淋、水洗的作用下,以辐射状、漏斗状向周围土壤、水体扩散,从而形成土壤重金属污染[2-3,8]。
3.2污水灌溉、污泥施肥污染
城市生活污水、石油化工污水、工业矿山污水和城镇混合污水,造成污灌区土壤汞、砷、铬、铅、镉等重金属含量逐年增加。有些污泥重金属含量高,如采用污泥施肥可带入土中[2-3,8]。此外,还有随大气沉降进入土壤的重金属污染以及农药、化肥、地膜等随农用物质进入土壤的重金属污染。
4预防对策
4.1加大法规执行力度、问责制度
加大环保法及有关农业环境保护条例、农产品基地保护条例等法规执行力度和问责制度。尽快制定土壤保护有关法规,促进以法治农、依法护土上台阶。
4.2尽快绘制土壤重金属元素“人类污染图”
加快全国土壤污染状况调查步伐,尽快绘制土壤重金属元素“人类污染图”。对已被污染的土地,要把污染源搞清楚并加以切断。农业、国土、地质、环保、水利、交通等部门要通力合作为大地“排毒”[4]。
4.3建立健全和完善土壤污染防治资金保障机制
建立由个体赔偿到责任保险再到补偿基金救济的正金字塔型体系,通过建立健全和完善土壤污染防治资金保障机制来切实落实土壤侵权损害赔偿与补救。
4.4确保粮食供应安全关
严禁生产和使用部分有毒有害化学品,严把农田过度使用化肥和杀虫剂以及工厂、冶炼厂和矿井向地面排放重金属关,确保粮食供应安全[5]。
4.5确保农产品生产安全关
建立农产品产地监测评价、产地分等定级及种植业结构调整和选择合适品种、产地安全管理、产地污染防治等农产品产地安全管理技术体系,进行农产品产地安全质量普查,确保农产品生产安全[1-2]。
4.6推行生物修复综合技术
研究和推行以植物修复为主、辅以化学、微生物及农业生态措施的生物修复综合技术[2-3]。
4.7提倡清洁生产
提倡清洁生产,慎用污水灌溉,严格控制渣肥、污泥施用,增施有机肥料,全面推广配方施肥技术。科学地使用土壤改良剂,全面加强土壤治污工作,逐步提高土壤质量水平[2,8]。
5参考文献
[1]刘凤枝,师荣光,贾兰英,等.土壤污染与食用农产品安全[J].农业环境与发展,2012,27(1):50-54.
[2]李丽,王富华,王旭,等.韶关土壤重金属污染状况[J].农业环境与发展,2010,27(1):74-76.
[3]陈兴兰,杨成波.土壤重金属污染、生态效应及植物修复技术[J].农业环境与发展,2010,27(3):58-62.
[4]新华社.我国正绘制土壤重金属“人类污染图”[N].楚天都市报,2013-06-13(31).
[5]中国须高度重视土壤污染治理[N].参考消息,2013-02-27(16).
[6]中国土壤污染构成大威胁[N].参考消息,2012-06-14(16).
土壤重金属污染现状范文篇9
[关键词]土壤修复重金属污染生态效应
中图分类号:R124文献标识码:A文章编号:1009-914X(2014)44-0103-02
前言
土壤环境中的重金属主要来源于矿业活动的排放,其他来源还包括污灌和污泥滥用、农药和化肥的不合理施用、农用薄膜和化石类燃料的不完全燃烧等。国务院于2011年2月18日正式批复《重金属污染综合防治“十二五”规划》因此,重金属污染土壤的修复技术研究是当前环境保护的重要课题之一。本文重点介绍国内外有关重金属污染土壤的修复技木研究进展。
1.重金属污染土壤的特点
1.1具有隐蔽性和滞后性。土壤重金属污染不像大气污染、水污染及废弃物污染那样直观。
1.2具有累积性。重金属污染物质在土壤中不易迁移,容易在土壤中不断积累而超标。
1.3具有不可逆转性。在土壤中,许多有机化学物质的污染也需要较长的时间才能降解,某些重金属污染的土壤可能要100―200年时间才能够恢复。由于土壤地球物理化学的自然形成过程极其缓慢,一般每百年以0.5-2.0cm厚度的速率进行,这就意味着土壤资源一旦遭到污染或人为干扰后将很难在短时期内得以恢复。
1.4具有难治理性。土壤重金属污染一旦发生,仅仅依靠切断污染源的方法往往很难恢复,有时要靠换土、淋洗土壤等方法才能解决问题,通常成本较高,治理周期较长。
2.重金属污染土壤的修复技术
2.1生物修复
生物修复是指利用特定的生物吸收、转化、清除或降解环境污染物,实现环境净化、生态效应恢复的生物措施。生物修复包括植物修复、微生物修复、动物修复等。
(1)植物修复
植物萃取技术是目前研究及应用最多的植物修复技术。近年来,陈同斌等通过田间试验发现蜈蚣草具有富集As、Pb的能力。同时还具有较强的耐As,pb,Zn,Cu毒性能力,是一种修复多种重金属污染土壤(As,Pb污染为主)的优良品种。扶杂草植物中筛选出3种Cd超富集植物:龙葵、球果薄菜、三叶鬼针草。3种植物在土壤中Cd质量分数为25―50mg/kg时。地上部中Cd质量分数均能达到l00mg/kg,并且在污染区试验中也取得了较好效果。
(2)微生物修复
微生物对重金属的生物吸附与富集作用是指土壤微生物可通过带电荷的细胞表面吸附重金属离子。2007年,王瑞兴等选取到一种土壤菌,利用其在底物诱导下产生的酶化作用,分解产生CO32-矿化固结土壤中的有效态重金属(以Cd2+的处理为代表),使其沉积为稳定态的碳酸盐;对被复合重金属(Cd,Cu,Pb,Zn等)污染的土壤样进行微生物修复的实验中,有效态重金属去除率达50%~70%。杜立栋等从Pb矿区土壤中分离筛选出一株青霉菌,对人工培养基中有效Pb的最大去除率达96.54%。而且富集效果比较稳定,可应用于Pb矿区土壤生物修复。
(3)动物修复技术
动物修复在国外有较长的研究史,国内研究则处于摸索阶段。它包括将生长在污染土壤上的植物体、果实等饲喂动物,通过研究动物的生化变异来研究土壤污染状况,或者直接将土壤动物,如虹蝴、线虫饲养在污染土壤中进行有关研究。同时,在重金属污染的土壤中放养蚯蚓,待其富集重金属后,采用电激、清水等方法驱出蚯蚓,集中处理,对重金属污染土壤也是一种经济有效的土壤生态恢复措施。
2.2物理修复
(1)置换法
置换法主要分为客土法、换土法,可以降低土壤中重金属的含量,减少重金属对土壤一植物系统产生的毒害,从而使农产品达到食品卫生标准。客土法和换土法则是用于重污染区的常见方法,在这方面日本取得了成功的经验。
(2)玻璃化技术
玻璃化技术是指把重金属污染区土壤置于高温高压下,使之形成玻璃态物质,将重金属固定其中,从而达到从根本上消除土壤重金属污染的目的。该技术方法工程量大,费用偏高,其最大的特点是见效快,适用于对受到重金属污染严重的土壤进行抢救性修复工作。
2.3化学修复
化学钝化多用于原位土壤修复,是修复重金属污染土壤的重要途径之一,通过施人一些钝化剂以降低土壤中重金属有效态含量,从而减少迁移及对农作物的毒害。
(1)化学钝化技术
A.无机改良剂的应用
近年来,石灰石、天然沸石、赤泥、骨粉、钙镁磷肥等作为改电剂修复重金属污染土壤的研究逐步成熟。其中石灰作为重金属污染土壤化学固定的常用物质,其对重金属的固定主要通过提高土壤pH值,使重金属生成氧化物或以碳酸盐的形态沉淀起作用,明显降低土壤重金属的有效态含量;天然沸石作为一种优良的铅污染土壤修复材料,通过调节土壤pH值和阳离子交换量抑制重金属铅的生物活性;赤泥可通过提高土壤pH影响重金属的赋存形态,降低重金属的有效性;骨粉可有效降低酸性重金属污染土壤的酸度,提高pH,增强土壤的吸刚性能,促使+壤重金属有效态含量和生物可给性降低;钙镁磷肥是酸性土壤中常用的修复材料,可降低土壤交换态镉含量,使其向缓效态转化。
B.有机改良剂的应用
对于矿区酸性重金属污染土壤具有养分流失严重和有机质缺失的特点,合理施用有机肥可提高土壤养分,增加土壤团粒结构,改善土壤理化性质。有机物料有助予恢复土壤微生态环堍系统,降低土壤中有毒重金属的生物可给性,从而减少对作物的毒害。常见的有机固化物包括禽畜粪便、无害化后的作物秸秆、豆科绿肥和污泥等。
C.螯合技术
螯合剂对土壤中重金属的活化作用主要是通过螯合剂与土壤溶液中的重金属离子结合,降低土壤液相中的金属离子浓度,促进重金属在植物地上部的积累:并且对重金属Pb、cu、zn、cd、Ni等有很强的活化能力。
3.技术路线概述
3.1土壤污染特征调查
通过开展土壤重金属污染调查与评价,掌握修复区详细的污染状况,为下阶段土壤修复提供依据,土壤特征调查可分现有资料收集和修复区污染状况前期调查两个步骤进行。
3.2修复区污染状况调查主要内容
(1)样点布设。根据前期收集的资料,由于前期采样调查取样点较少,针对这种状况,根据综合污染型土壤监测单元布点要求,采取网格布点的方法,对土壤污染进行全面的评价。
(2)现场勘查校正。通过现有资料确定的调查区域内理论监测点位,还要通过必要的现场勘查,最终对理论布点数目和位置进行检验和优化。现场环境条件不具备采样条件需要调整点位的,现场点位调整后要对地图网格所布点进行调整,最终形成调查区域内实际需要实施监测的点位集。
(3)采样检测。采样采表层样及深层样,网格布点样品采样深度为20cm,深层取样分五层取样:0~20cm;20~40cm;40~60cm,土壤样品采集1kg左右,装入样品袋,如潮湿样品可内衬塑料袋(供无机化合物测定)。采样的同时,由专人填写样品标签、采样记录;标签一式两份,一份放入袋中,一份系在袋口,标签上标注采样时间、地点、样品编号、监测项目、采样深度和经纬度。采样结束,需将底土和表土按原层回填到采样坑中,方可离开现场,并在采样示意图上标出采样地点,避免下次在相同处采集剖面样。
(4)污染评价。土壤重金属评价采用内梅罗指数法。根据国家环保总局颁布的《土壤环境监测技术规范》(HJ/T166-2004)规定,土壤环境质量评价标准常采用国家土壤环境质量标准、区域土壤背景值或部门(专业)土壤质量标准。
(5)绘制修复场地污染物分布图。根据样品测试结果,结合我国的《土壤环境质量标准(GB15618-1995)》和《危险废物鉴别标准―毒性物质含量鉴别(GB5085.6-2007)》,对典型污染场地的污染现状、污染程度及范围以及污染迁移转化的趋势及规律等进行剖析,根据潜在重点污染区域的检测结果,得到重金属浓度在不同位置变异,进一步确定修复区污染特征,明确污染浓度及范围。
(6)修复方案设计。根据修复区修复的土地利用功能,确定了药剂比例及土壤调理剂的配比及过程的控制条件。得到后期大规模修复所需要的运行参数,进而做出具体的详细的修复方案。具体修复方案如下:
A、修复区不同污染程度划分方案:确定修复区域位置,可根据污染情况将修复区根据污染程度,划定高、中、低浓度区,根据污染程度的不同,做不同的设计。
B、土壤污染治理实施方案:确定药剂配方、加药比、选择最合适的原位稳定剂施加方式和控制条件。
C、修复后农作物恢复种植方案:为了探究稳定化修复对农产品安全的保护情况,预计选择2种当地常见作物在修复区种植。
D、修复验收方案:目前稳定化修复还没有成熟的验收体系,本项目选用土壤浸出为验收方法,但最终标准需根据场地调查情况及小试情况做调整。
4.结论
通过对国内外重金属污染土壤的修复技术研究的综述,可以看出重金属污染土壤的修复技术将越来越受到人们的关注,进一步探索和研究其在重金属去除方面的应用,具有十分重要的意义。结合当前的研究发现重金属污染土壤的修复还可以从以下几个方面努力:
4.1做好修复试点,逐步解决土壤重金属污染问题。开展重金属污染土壤修复技术示范,在重金属污染防治的重点区域进行污染评估,因地制宣地采用生物、物理、化学等措施开展重金属污染土壤治理。
4.2以生态文明为指导,探求实现重金属污染土壤修复治理与景观美化、生态建设与经济效益有机结合的治理模式。
4.3注重重金属污染防治管理、制度、措施及方法创新,逐步建立企业环境信息披露制度和重金属污染物产生、排放详细档案。
参考文献
[1]梁彦秋,潘伟,刘婷婷,邢志强,臧树良,沈阳污灌区土壤重金属元素形态分析[J].环境科学与管理;2006年02期.
[2]王瑞兴,钱春香,吴淼,成亮.微生物矿化固结土壤中重金属研究[J];功能材料;2007年09期.
[3]郝晓伟,黄益宗,崔岩山,胡莹,刘云霞.赤泥和骨炭对污染土壤As化学形态及其生物可给性的影响[J].环境化学;2010年03期.
土壤重金属污染现状范文篇10
关键词:土壤污染现状危害治理措施
一、土壤污染的定义
土壤污染是指进入土壤中的有害、有毒物质超出土壤的自净能力,导致土壤的物理、化学和生物学性质发生改变,降低农作物的产量和质量,并危害人体健康的现象。土壤污染源主要可分为:生活性污染源,生产性污染源和放射性污染源:工业、科研和医疗机构排放的液体或固体放射性废弃物。
二、土壤污染的特点
1、土壤污染具有隐蔽性和滞后性。土壤污染不同于大气、水和废弃物污染等污染比较直观,它要通过对土壤样品进行分析化验和农作物的残留检测来确定。土壤污染从产生污染到出现问题通常会滞后较长的时间,所以土壤污染问题不太容易受到重视。
2、土壤污染具有不可逆转性。受到重金属污染的土壤基本上得需要较长的时间才能降解恢复。
3、土壤污染的累积性。土壤污染不同于被污染的大气和水,不容易扩散和稀释,土壤污染是由于不断的积累而导致超标,土壤污染同时具有很强的地域性。
4、土壤污染难治理性。治理污染土壤通常成本较高,治理周期也很长。土壤污染仅依靠切断污染源的方法是行不通的,需要靠换土、淋洗土壤等方法才能解决问题。
三、当前我国土壤污染的现状与危害
目前,我国部分地区土壤污染非常严重,土壤污染类型呈现多样化,土壤污染途径多,原因复杂,控制难度大。每年由于土壤污染导致的农产品质量安全问题层出不求,严重影响了百姓的身体健康和社会稳定。土壤污染产生的危害主要表现为以下几种:
1、土壤污染导致的直接经济损失严重。当前相当一部分农产品的农药残留超标率高达16%-20%;每年有超过1000万t粮食因土壤污染而减产,造成了巨大的经济损失。
2、土壤污染对人体健康造成危害。土壤污染会使植物在体内积累污染物,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。
3、土壤受到污染后,含有较高重金属浓度的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水和地下水污染以及生态系统退化等多种生态环境问题。
四、导致土壤污染的原因
1、过量施用化肥和农药
化肥及农药的使用能大大提高粮食作物的产量,但是氮、磷等化学肥料的长期大量使用却能破坏土壤结构,造成土壤板结、耕地土壤退化、致使耕层变浅、耕性变差、保水肥能力下降、增加了农业生产成本,影响了农作物的产量和质量。
2、污水灌溉对土壤的污染
使用生活污水和工业废水灌溉农田是导致土壤污染的直接原因之一。重金属、酚、氰化物等许多有毒有害的物质来自于未经处理或未达到排放标准的工业污水,它们会将污水中有毒有害的物质带至农田,在灌溉渠中形成污染带。
3、大气污染对土壤的污染
大气中的氮氧化物、二氧化硫和颗粒物等有害物质,可以在大气中发生反应形成酸雨,通过降水和沉降而落到地面,导致土壤酸化。冶金工业排放的金属氧化物粉尘,由于重力作用会以降尘形式进入土壤中。
4、生物残体和牲畜排泄物对土壤的污染
利用禽畜饲养场的厩肥和屠宰场的废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可导致土壤和水域污染,并通过水和农作物危害人群健康。
5、重金属元素引起的土壤污染
汽油中添加的防爆剂四乙基铅随废气排出污染土壤,造成铅污染;各种大量使用杀虫剂、杀菌剂、杀鼠剂和除草剂导致砷污染;铀矿开采和浓缩、钍矿开采、核实验、核废料处理、燃煤发电厂、磷酸盐矿开采及加工等是土壤辐射污染的来源。
五、我国土壤污染的治理措施
1、施用化学改良剂,增加土壤环境容量,增强土壤净化能力。
将石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂施用到土壤中,加速有机物的分解,使重金属在土壤中固定,促使重金属在土壤及土壤植物体的迁移能力降低,并转化成为难溶的化合物,减少农作物的吸收,以减轻重金属对土壤中的毒害。
2、强化污染土壤环境管理与综合防治,大力发展清洁生产。
选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复;加强土壤污灌区的监测和管理,科学地进行污水灌溉;了解水中污染物的成分、含量及其动态,避免带有不易降解高残留污染物随机进入土壤;增施有机肥,提高土壤有机质含量;大力推广和发展清洁生产。
3、改变耕作制度,实行翻土和换土。
要采取铲除表土和换客土的方法来改变污染严重的土壤,对于轻度污染的土壤,采取深翻土或换无污染客土的方法。
4、采用农业生态工程措施
在污染土壤上繁殖非食用的种子、种植经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物吸走或降解土壤中的污染物质,从而达到净化土壤的目的。
土壤重金属污染现状范文
摘要:通过对襄阳市16个点位农田土壤实地调查、采集及实验室分析测定其重金属含量,采用单项污染指数法和综合污染指数法,评
>>农田土壤重金属污染及修复技术分析杭州市土壤和蔬菜重金属污染现状及评价体系武汉市新城区菜地土壤重金属含量状况及污染评价湖南某尾矿库周边农田土壤及蔬菜重金属污染与健康风险评价探析长期污灌农田土壤重金属污染与潜在环境风险评价山东省典型农田土壤中重金属污染评价农田土壤重金属污染与防治农田土壤重金属污染的植物修复技术及工程示范我国农田土壤重金属污染修复及安全利用综述白银市东大沟污灌区表层土壤重金属污染及潜在生态风险评价大理市不同生态区表层土壤重金属污染初步评价兰州市蔬菜基地土壤重金属污染评价与分析包头市绿地土壤重金属污染分析与评价十堰市畜禽养殖场周边土壤重金属污染评价常熟市土壤重金属污染研究郫县土壤重金属污染状况调查探析土壤重金属的污染及其评价方法不同土壤重金属污染评价方法对比研究关于土壤重金属污染评价方法研究三峡库区土壤重金属元素含量分析及污染评价常见问题解答当前所在位置:
[7]国家环保总局.GB15618-1995土壤环境质量标准[S].北京:中国标准出版社,1995.
[8]国家环保总局.NY/T395-2000农田土壤环境质量监测技术规范[S].北京:中国标准出版社,2000.
[9]黄顺生,廖启林,吴新民,等.扬中地区农田土壤重金属污染调查与评价[J].土壤,2006,38(4):483~488.
土壤重金属污染现状范文
关键词:土壤;镉污染;来源;危害;治理
中图分类号X53文献标识码A文章编号1007-7731(2015)24-104-04
Abstract:Asthedevelopmentofindustry,soilcadmiumpollutionhavecausedmoreandmoreconcern.Inthisthesis,thepollutionactualities,source,damageandmanagementofsoilcadmiumpollutionwerebrieflyintroducted,andthedevelopmentdirectionofsoilcadmiumpollutionmanagementwasdiscussed.
Keywords:Soil;Cadmiumpollution;Source;Damage;Managment
据2014年《全国土壤污染状况调查公报》显示,我国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧。其中,镉污染物点位超标率达到7.0%,呈现从西北到东南、从东北到西南方向逐渐升高的态势,是耕地、林地、草地和未利用地的主要污染物之一[1]。镉是众所周知的重金属“五毒”元素之一,具有分解周期长(半衰期超过20a)、移动性大、毒性高、难降解等特点,在生产活动中容易被作物吸收富集,不仅严重影响作物的产量和品质,而且可以通过食物链在人体的积累危害人体健康[2],例如,20世纪60年代在日本富山县神通川流域出现的“骨痛病”事件。针对我国镉污染现状,本文将从镉污染的来源、危害、修复治理等方面进行了论述,详细介绍镉污染这一环境污染问题,以期为我国农业的健康发展和镉污染土壤的治理提供科学依据,为后续研究提供参考。
1我国土壤镉污染现状
我国于20世纪70年代中后期才开展有关农田土壤镉污染调查的工作,1980年中国农业环境报告显示,我国农田土壤中镉污染面积为9333hm2,到2003年我国镉污染耕地面积为1.33×104hm2,并有11处污灌区土壤镉含量达到了生产“镉米”的程度[3-4]。近年来,随着我国工业的发展,由于化肥、农药的大量施用,工业废水和污泥的农业利用,以及重金属大气沉降的日益增加,土壤中镉的含量明显增加,土壤镉污染状况越发严重,目前,我国镉污染土壤的面积已达2×105km2,占总耕地面积的1/6[5]。
从近年的有关研究来看,我国各地均存在着不同程度的镉污染问题。目前,我国土壤镉污染涉及11个省市的25个地区。比如,上海蚂蚁浜地区污染土壤镉的平均含量达21.48mg/kg,广州郊区老污灌区土壤镉的含量高达228.0mg/kg[6-7]。我国农田土壤的镉污染多数是由于进行工业废水污灌造成的。据统计,我国工业每年大约排放300亿~400亿t未经处理的污水,引用工业废水污灌农田的面积占污灌总面积的45%[8],至20世纪90年代初,我国污灌农田中有1.3×104hm2的农田遭受不同程度的镉污染,污染土壤的镉含量为2.5~23.0mg/kg,重污染区表层土壤的镉含量高出底层土壤几十甚至1000多倍[9]。在大田作物中,镉是我国农产品主要的重金属污染物[10]。据报道,我国污灌区生产的大米镉含量严重超标,例如,成都东郊污灌区生产的大米中镉含量高达1.65mg/kg,超过WHO/FAO标准约7倍[11]。2000年农业部环境监测系统检测了我国14个省会城市共2110个样品,检测数据显示,蔬菜中镉等重金属含量超标率高达23.5%;南京郊区18个检测点的青菜叶检测表明,镉含量全部超过食品卫生标准,最多超过17倍[6]。潘根兴研究团队于对2007年对全国6个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购的91个大米样品检测后,发现约有10%左右的市售大米存在重金属镉含量超标问题[12]。据报道,广西某矿区生产的稻米中镉浓度严重超标,当地居民因长期食用“镉米”已经出现了“骨痛病”的症状,严重威胁当地居民的身体健康[3]。以上研究结果表明,我国土壤受镉污染的程度已相当严重,土壤镉污染造成水稻、蔬菜等农产品的质量下降、产量降低,并且严重威胁到当地居民的身心健康,影响我国农业的可持续发展。
2土壤镉污染的来源
土壤中镉的主要有2种来源,分别为自然界的成土母质和人为活动,前者为自然界中岩石和土壤镉含量的本底值,一般来讲世界范围内土壤镉平均值为0.35mg/kg,我国土壤镉背景值为0.097mg/kg,远低于世界均值[13-14]。而后者主要指通过工农业生产活动直接或间接地将镉排放到环境的人为活动,并且是造成土壤镉污染的主要途径,归纳起来污染途径主要有如下4个方面:
2.1大气镉沉降电镀、油漆着色剂、塑料稳定剂、电池生产以及光敏元件的制备等工业废气中存在一定量的镉,它们会和粉尘一起随风扩散到工厂周围,一般在工业区周围的大气中镉的浓度较高[15],较高浓度的镉可以通过降雨或沉降进入土壤。进入土壤中的镉,一部分被植物吸收,剩余的部分则在土壤大量积累,而当土壤中镉累积超过一定范围时,就造成了土壤的镉污染[16]。
2.2施肥不当在农业生产过程中为了获得高产,一般都加大农药化肥的投入,长期施用含有镉的农药化肥必然导致土壤的镉污染。据统计分析,磷肥中含有较多的镉,氮肥和钾肥含量较少,因此含镉磷肥的施用影响最为严重。我国磷肥生产所需磷矿石的镉含量虽然较低,在世界上属于较低水平,但我国磷矿石含磷量同样不高,因此需要从国外进口大量的磷肥[4]。据西方国家估算,全球磷肥平均含镉量7.0mg/kg,可给全球土壤带来约6.6×104kg镉[17]。韩晓日等[18]研究也发现,长期施用磷肥和高量有机肥能够增加土壤镉含量。由此可见,长期施用含镉的化肥会增加土壤的镉含量,给土壤带来严重的重金属污染问题。
2.3污水灌溉镀锌厂以及与塑料稳定剂、染料及油漆等生产有关工厂产生的工业污水中含有多种重金属,其中就有大量的镉,这些废水如不经处理或者处理不达标,废水中的镉就会随着污灌进入土壤,因此,在工矿和城郊区的污灌农田均存在着土壤镉污染问题。据统计,目前我国工业、企业每年要排放约300亿~400亿t未经处理的污水,利用这些工业污水进行灌溉造成了严重的重金属污染,污水灌溉已经是我国农田土壤镉污染的主要原因[8]。何电源等[19]在1987-1990年间对湖南省的农田污染状况调查也表明,农田土壤镉污染的主要来源是工矿企业排放的废气和废水。此外,大量堆积的工业固体废弃物和农田施用的污泥,也会造成土壤的镉污染[16]。
2.4金属矿山酸性废水污染金属矿山的开采、冶炼以及重金属尾矿、冶炼废渣和矿渣堆等,存在着大量的酸性废水,这些酸性废水溶出的多种重金属离子能够随着矿山排水和降雨进入水环境或土壤,可以间接或直接地造成土壤重金属污染。据报道,1989年我国有色冶金工业向环境中排放重金属镉多达88t[20]。
3土壤镉污染的危害
镉是一种具有毒性的重金属微量元素,是人体、动物和植物的非必需元素,但它在冶金、塑料、电子等行业非常重要,通常通过“工业三废”等途径进入土壤。土壤中镉的形态有水溶态、可交换态、碳酸盐态、有机结合态、铁锰氧化态和硅酸态等,水溶性和交换态镉可以被植物吸收,并通过食物链进入人体富集,达到一定程度时会引发各种疾病,严重危害植物和人体的健康,且具有长期性、隐蔽性和不可逆性等特点。
3.1镉对植物健康的危害镉是植物生长的非必需元素,当镉在植物组织中含量达到1.0mg/kg时,会通过阻碍植物根系生长、抑制水分和养分的吸收等引起一系列生理代谢紊乱,如蛋白质、糖和叶绿素的合成受阻,光合强度下降和酶活性改变等,使植物表现出叶色减褪、植物矮化、物候期延迟等症状,最终导致作物品质下降和减产,甚至死亡[6,21-22]。张义贤等[23]研究表明,大麦种子在镉胁迫下,种子的萌芽率、根生长率均呈下降趋势,当镉浓度达到0.01mol/L时,种子萌芽率小于45%,且根不再生长。刘国胜等[24]研究表明,当土壤含有0.43mg/kg可溶态镉时,水稻减产10%,当含量为8.1mg/kg时,水稻减产达25%,并且,稻米的氨基酸、支链淀粉和直链淀粉比例发生改变,使水稻品质变差[4]。
3.2镉对人体健康的危害镉是人体非必需的微量元素,具有较强的致癌、致畸及致突变作用,对人体会产生较大的危害,镉一般通过呼吸系统和消化系统进入人体,在人体内半衰期长达20~30a。镉对人体的毒害分为急性毒害和慢性毒害2种,镉的急性毒害主要表现为肺损害、胃肠刺激反应、全身疲乏、肌肉酸痛和虚脱等;慢性毒害主要表现为对骨骼、肝脏、肾脏、免疫系统、遗传等的系列损伤,并诱发多种癌症[25-27]。例如,20世纪60年生在日本神通川流域的“骨痛病”,原因就是当地居民食用镉米造成的。因此,联合国环境规划署(UNEP)将其列为具有全球性意义的危险化学物质[28]。
4土壤镉污染的治理方法
为了有效利用现有的土地资源,减少镉等重金属人体造成的危害,需要采取有效措施治理和恢复受污染的土壤。目前,有关镉污染土壤的治理方法有很多,主要有物理方法、化学方法和生物方法等。
4.1物理方法镉污染土壤的物理修复方法主要有排土、客土、深耕翻土等传统物理方法以及电修复技术、洗土法等。客土法就是将污染土壤铲除,换入未污染的土壤,去表土法就是将污染的表土移去等。传统的物理修复方法治理镉污染效果非常明显,如吴燕玉等[29]在张士灌区调查时发现去除表层土可使稻米中镉含量降低50%。然而,这种方法需要耗费大量资金、人力物力,且移除的污染土壤又容易引起二次污染,因此难以在大面积治理上推广。电修复技术,是指在土壤外加一个直流电场,土壤重金属在电解、扩散、电渗、电泳等作用下流向土壤中的某个电极处,并通过工程收集系统收集起来进行处理的治理方法。胡宏韬等[30]研究发现,当试验电压为0.5W/cm时,阳极附近土壤中镉的去除效率达到75.1%;淋滤法和洗土法是运用特定试剂与土壤重金属离子作用,然后从提取液中回收重金属,并循环利用提取液。据报道,美国曾应用淋滤法和洗土法成功地治理了包括镉在内的8种重金属,治理了2.0×104t污染的土壤,且重金属得到了回收和利用,而且整个治理过程中没有产生二次污染[20]。
4.2化学方法化学法是指通过在土壤中施用化学制剂、改良剂,增加土壤粘粒和有机质,改变土壤氧化还原电位和pH值等理化性质,使土壤镉发生氧化还原等作用,降低镉的生物有效性,以减轻对其它生物的危害[31-32]。目前,磷酸盐、石灰、硅酸盐等是化学法处理镉污染土壤中常用物质。Gworek[33]等在研究中发现利用沸石等硅铝酸盐钝化土壤重金属能显著降低污染土壤中镉的浓度。总体而言,化学方法具有操作简单、治理效果、费用适中等优点,缺点是容易再度活化重金属。因此,该方法适用于重金属污染不太严重的地区,对污染太严重的土壤不适用[4,20]。
4.3生物方法生物方法是指通过某些特定微生物、动物或植物的代谢活动,吸附降解土壤污染物质、降低土壤重金属生物活性的治理方法,具有土壤扰动小、原位性、不产生二次污染等优点,一般分为微生物修复、动物修复、植物修复3种。
4.3.1微生物修复微生物修复是指利用土壤微生物固定、迁移或转化土壤中的重金属,从而降低重金属毒性,主要包括生物富集和生物转化2种作用方式。生物富集作用指微生物的积累和吸附作用;生物转化作用指微生物对重金属的氧化和还原作用、重金属的溶解和有机络合配位等[34]。例如,吴海江[35]利用分离获得的菌株对镉的去除率高达60%,吸附量达54mg/kg;张欣等[36]在模拟镉轻度污染试验中通过施入微生物菌剂使菠菜植株镉含量平均下降14.5%。
4.3.2动物修复动物修复是指利用土壤中某些低等动物的代谢活动来降低污染土壤中重金属比例的方法。例如,Ramseier等[37]研究发现蚯蚓具有强烈的镉富集能力,当土壤镉浓度为3mg/kg时,蚯蚓的镉富集量可以达到120mg/kg。但由于低等动物生长受环境等因素的严重制约,该项技术在实际应用中受到了一定限制[20,28]。
4.3.3植物修复植物修复是指利用超富集植物吸附清除土壤镉污染的原位治理方法,具有实施较简便、投资较少、破坏小、无二次污染等优点,是一种环境友好型修复技术[20,34]。目前,全世界已发现500多种富集重金属的植物,其中部分植物对土壤镉具有强烈的富集作用,表现出对镉的选择性吸收,如芜菁、菠菜、烟草、向日葵等[12]。近几年来,我国在利用植物修复镉污染土壤方面取得了不少成果,例如,蒋先军等[38]研究发现印度芥菜、刘威等[39]发现宝山堇菜等属于镉超积累植物,这些发现都可以应用于镉污染土壤的治理与恢复工作。
5展望
2014年《全国土壤污染状况调查公报》显示,我国土壤镉污染物点位超标率达到7.0%,镉是我国耕地、林地、草地和未利用地的主要污染物之一,土壤镉污染日趋严重。因此,要积极开展切实有效的管理控制、污染防治综合治理等,首先,从源头上控制镉对土壤的污染,采取清洁生产与资源循环利用措施,减少甚至避免各类镉污染物进入土壤环境;其次,加强镉污染土壤修复技术的研究,特别是植物修复技术和微生物技术;再次,发展联合修复技术,将生物修复与物理化学法、工程措施和农艺措施有效结合起来,开展多学科联合的生态修复。只有这样,才有可能修复已经被镉等重金属污染的土地,保护未被污染的土地资源,实现自然与社会的健康、可持续发展。
参考文献
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014-04-17.
[2]张兴梅,杨清伟,李扬.土壤镉污染现状及修复研究进展河北农业科学,2010,14(3):79-81.
[3]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,11S(11):184-185.
[4]柳絮,范仲学,张斌,等.我国土壤镉污染及其修复研究[J].山东农业科学,2007,6(6):94-97.
[5]李玉浸.集约化农业的环境问题与对策[M].北京:中国农业出版社,2001:57-82.
[6]冉烈,李会合.土壤镉污染现状及危害研究进展[J].重庆文理学院学报:自然科学版,2011,30(4):69-73.
[7]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178.
[8]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学,2007(2):67-69.
[9]王凯荣,张格丽.农田土壤镉污染及其治理研究进展[J].作物研究,2006(4):359-374.
[10]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1343-1353.
[11]利锋.镉污染土壤的植物修复[J].广东微量元素科学,2004,11(8):22-26.
[12]李薇.农田镉污染的危害及其修复治理方法[J].粮油加工:电子版,2015(9):62-64.
[13]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
[14]孟凡乔,史雅娟,吴文良.我国无污染农产品重金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359.
[15]张金彪,黄维南.镉对植物的生理生态的研究进展[J].生态学报,2000,20(3):514-523.
[16]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策[J].云南农业大学学报,2005,20(3):360-365.
[17]高志岭,刘建玲,廖文华.磷肥使用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-99.
[18]韩晓日,王颖,杨劲峰,等.长期定位施肥对土壤中镉含量的影响及其时空变异研究[J].水土保持学报,2009,23(1):107-110.
[19]何电源,王凯荣,廖先苓,等.农田土壤污染对作物生长和品质量的影响[J].农业现代化研究,1991,12增刊:128.
[20]马彩云,蔡定建,严宏.土壤镉污染及其治理技术研究进展[J].河南化工,2013,30(17):17-22.
[21]毕淑芹,谢建治,刘树庆,等.土壤重金属污染对植物产量及品质的影响研究[J].河北农业科学,2006,10(2):107-110.
[22]SereginIV,IvanovVB.Physiologicalaspectsofcadmiumandleadtoxiceffectsonhigherplants[J].RussianJournalofPlantPhysiology,2001,48(4):523-544.
[23]张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205.
[24]刘国胜,童潜明,何长顺,等.土壤镉污染调查研究[J].四川环境,2004,23(5):8-13.
[25]JohannesG,FranziskaS,ChristianGS,etal.Thetoxicityofcadmiumandresultinghazardsforhumanhealth[J].JournalofOccupationalMedicineandToxicology,2006,1(22):1186.
[26]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.
[27]MariselaM'endez-Armenta,CamiloR'ios.Cadmiumneurotoxicity[J].EnvironmentalToxicologyandPharmacology,2007,23:350-358.
[28]彭少邦,蔡乐,李泗清.土壤镉污染修复方法及生物修复研究进展[J].环境与发展,2014,3(3):86-90.
[29]吴燕玉,周启星,田均良.制定我国环境标准(汞镉铅和砷)的探讨[J].应用生态学报,1991,2(4):334-349.
[30]胡宏韬,程金平.土壤铜镉污染的电动力学修复实验[J].生态环境学报,2009,18(2):511-514.
[31]余贵芬.重金属污染土壤治理研究现状[J].农业环境与发展,1998,15(4):22-24.
[32]吴双桃.镉污染土壤治理的研究进展[J].广东化工,2005(4):40-41.
[33]GworekB,肖辉林.利用合成沸石钝化污染土壤的镉[J].热带亚热带土壤科学,1992,1(1):58-60
[34]卢红玲,肖光辉,刘青山,等.土壤镉污染现状及其治理措施研究进展[J].南方农业学报,2014,45(11):1986-1993.
[35]吴海江.耐Cd细菌的筛选及抗性机理研究[D].成都:西南交通大学,2009.
[36]张欣,范仲学,郭笃发,等.3种微生物制剂对轻度镉污染土壤中菠菜生长的影响[J].天津农业科学,2011,17(1):81-83.
[37]RamseierS,MartinM,HaerdiW,eta1.BioaccumultionofcadmiumbyLumbficusterrestris[J].Toxicological&EnvironmentalChemistry,1989,22(1-4):189-196.
[38]蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究Ⅲ.印度芥菜对锌镉的吸收和积累[J].土壤学报,2002,39(5):664-670.