当前位置: 首页 > 范文大全 > 办公范文

继电保护概述(6篇)

时间:

继电保护概述篇1

关键词广域;继电保护;故障元件判别

中图分类号TM77文献标识码A文章编号1674-6708(2013)91-0067-02

电网若想实现安全稳定运行,首先应当做好的就是继电保护工作,近一段时期以来来,国家电网建设的面积与规模都呈现出不断扩大的趋势,电网结构、电网运行方式变为复杂化与多样化多向发展。电网环境的复杂,让广域继电保护工作必须应对全新的战略调整,旧有的继电保护手段中有很多亟待解决的问题。及时研究出可以准确快速识别隔离故障的方法,让广域保护原理、配置计划更加便捷适应,是电网稳定运行的关键内容。

1广域继电保护工作的完成方式略析

在现有的技术条件水平下,可以帮助广域继电保护达到功能实现的基方法可以从以下两个方面加以考虑,第一个是自我调节在线整定式广域继电保护工作。通俗来讲,此种类型的广域继电保护工作重点指用事件触发当作调节基础,再对电网运行的具体环节实施持续跟踪,达到保护定值计算及在线处理优化。这样做的根本目标是避免广域继电保护处于应用实践过程中发生继电保护的适配不合理障碍,同时能够提升保护灵敏性的工作内容。第二个是从故障元件判别方向加以考虑的广域继电保护工作,通俗来讲,此种类型的广域继电保护工作重点是指通过依靠电网系统里面的多点广域测量信息,再以不同的故障判别手段选取为参考,达到电网里面故障元件实际发生位置的准确判定,这样可以进一步发挥出继电保护的实用性优势。同在线整定式广域继电保护的方法比起来,这个故障元件判别手段无需整定计算过程,能够在很短的时间里保证广域后备保护工作的有效性,与此同时还可以对广域后备保护的发生时间加以控制,较具有实用性优势。

2如何进行故障元件判别的几个问题

2.1电压故障分布情况

以某个单一元件举例,同单一元件相对应的故障判别,在原理上通常会涉及到很多方面,其中有电流差动、纵联方向及纵联距离等。需要加以注意的是:电流差动受限于采样的同步精确性要求,因此较易出现视角缺失,工作难度很大。纵联距离和纵联方向两个方面所涉及到的故障问题同样会有应用性能角度的不完善。对电压故障发生情况上涉及到的元件判别及故障处理,可以让上面的问题得到有效解决。这种故障元件的判别原理是先对线路一个方向的电流、电压故障分量加以测定,得出准确数值,再根据此方向数值通过科学方法得到另一个方向的数值。在这种方法的带动下,可以几乎在同时得到两边位置的电压电流估算值及实际值。通过实践研究可以发现,在故障因为外部原因所引起的情况下,线路两边的故障电压分量测量结果同估算结果是类似的。可是在故障本身为外部原因时,线路整体至少某个方向电压故障实际值同估量之间存在显著差异,这样便能够形成故障元件判别根据。对于故障元件进行判别,其工作原理是参考负序判别、正序判别元件和零序判别三个类型。这些判别优势可以准确地判定出内外故障负接地故障、相间短路故障。而很重要的一点是,在电压故障分布时的元件判别时,只是对远方电压幅值数据形成了明确要求,广域同步采样方面的精准程度尚未曾做出统一规定,因此只保证故障两边特征校正达到基本同步便可。从这样的分析当中我们能够发现,这种原理应用手段可以避免潮流变化因素的影响,继而达到故障线路的有效识别。

2.2综合广域阻抗情况

由于要照顾到广域电流同普通电流二者存在着一定的区域差动范围线路数量的不一致性,则会产生同普遍意义电流差动相比区别明显的灵敏度指标变化,灵敏度指标变化主要会受到线路电容指标影响,影响程度随具体情况而有所区别。出现这种变化的原因是线路数量的不同给对应差异性分布电容电流造成了影响。本文所探讨的基于综合广域阻抗情况下的故障元件判别,在工作原理上基本可以实现分布电容影响克服,与此同时达到灵敏度上的高效性。从这个方面进行分析,可以说,把综合式阻抗同广域继电保护工作结合起来产生的故障元件判别,首先在原理上便具有非常显著的优势。再对仿真算法里面的数据加以验证分析,最终得到可靠结果,在对这种故障元件的判别手段进行处理的过程中,能够产生很可靠的耐过渡电阻功能、较低级别的转换式故障、较高级别的灵敏度以及选相的优越性,是应当给以特别关注的。

2.3概率识别下的信息融合

为了达到对传统广域继电保护出现的计算量太高、保护判断出现偏差等问题的控制,同时能够让信息容错水平得到提升,便要求使用概率识别基础上的信息融合手段。简单点说,概率识别控制下的信息融合手段其具体功效是:其技术在所设定的全部广域范围内某个固定时刻产生多处类型完全不同故障概率极低,这就让该技术只面向本有限广域区域中的单一元件实施故障识别及相应的编码处理,直接造成后期计算时的搜索范围控制。还有另外一点优势是:引入故障识别概率的计算手段,能够保证故障元件达到更有效判别。在当前,故障识别概率在正常工作运行的平稳状态下,可以达到分组判断编码适应度的效果。通过计算方式辅助,得到的故障识别,其概率数值如果越大,那么它所对应的元件发生故障的概率也就越高,这就就能够有效判定元件故障的存在。

3结论

目前我国电力系统需要探讨的一项重点课题就是广域继点保护问题,为了达到电力系统继电保护工作的可靠性以及高效性,也为了保障电力系统达到灵敏性要求,使其数据传输、数据控制及信号发送交换等项内容科学稳定,便应当在系统大局的战略要求出发,注意加强电力系统全面的规划检测与维修维护,从根本上提升广域继电保护、故障原件判别等项工作的效果,带动大电网全面发展。

参考文献

[1]陈国炎.广域继电保护分层系统结构的网络拓扑设计[J].电力系统保护与控制,2012(4).

[2]李振兴.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011(28).

[3]杨增力.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008(22).

继电保护概述篇2

关键字:继电保护,电网,概率,可靠性

Abstract:thereliabilityevaluationoftherelayprotectionhasbeenaveryimportantrelayprotectionofresearchtopic,alsoistheguaranteethenormaloperationofthepowergridcanbekey.Throughtotheprotectionsystemcanleadtorelayprotectiondevicemaloperation,refusedtomoveandtheselectiveactionprobabilityanalysis,andtheuseofstatisticalprobabilitywaytoresearchthewholeinthepoweroftherelayprotectionreliability,istoevaluatethereliabilityofthesystemiseffectivewaytojudgewhetherasystemisreliableandcomprehensiveindex.

Keyword:relayprotection,theelectricgrid,probability,reliability

中图分类号:F407.6文献标识码:A文章编号:

0前言

继电保护装置是电力系统的重要组成部分,对保证系统安全运行起到非常重要的作用。尤其是在高压电网中,继电保护是电网安全不可缺少的第一道防线。近年来其技术的发展面临电力系统高速发展的挑战,基于超、特高压远距离交、直流混合输电技术的超大规模互联电网其运行工况更为复杂和安全稳定问题更为严峻。它在电力系统发生故障时切除故障设备、对系统安全运行作出贡献,但若不正确动作(包括拒动和误动)也可能会给系统造成巨大的危害,作为一种自动控制装置,继电保护装置的运行可靠性必须通过设置合理的保护定值保证。作为获得合理保护定值的手段,作为保障现代大型电网安全运行的基本手段,继电保护整定计算是继电保护装置及时切除故障、避免恶性事故发生的保障。

继电保护的可靠性就是指根据不同用户的质量需要和数量标准向用户提供用电能力的度量包括安全性和充裕性。研究电力系统可靠性的目的就是评估电力系统中(发电系统、输电系统、配电系统和发电厂变电站电气主接线)等子系统中不同的可靠性指标。根据各个子系统的功能特点分别评估各自或不同组合的可靠性,进而提出了系统概率充分性和概率稳定性综合评估。

本文主要分析了继电保护所涉可靠性技术问题,尤其是在高压电网的应用中,如何充分利用继电保护作用,尽量避免一些不利的操作,减少因错误的操作而引起的损失,从而保证整个电网的顺利运行。

1可靠性分析

电力系统规模庞大,所包含设备的数量和种类众多。通常情况下一个中等规模的发输电系统就包含上百台机组和数百条母线,所涉及的设备包含有发电机,变压器,输电线等基本元件。运行的电力设备间时刻保持电气连接,运行状态相互影响,组合系统的运行模式很多,元件故障常常具有相关性,各负荷也相互影响,对其进行预测存在不确定性。另外环境气候条件、计划检修和反事故措施等是影响设备可靠性模型的重要因素,但对其进行精确、高效的数学描述还很困难,也极大地增加了计算的复杂性。因而电力系统可靠性在最初探索阶段和现今都是一个棘手的问题。

1.1设计可靠性

继电保护装置是一种自动装置,在电力系统中主要负责电力系统的安全可靠运行,这是它的主要职责也是任务,它可以随时掌握电力系统的运行状态,同时及时发现问题,从而通过选择合适的断路器切断问题部分。在继电器保护技术领域,保护包含四个部分,即继电保护装置的研究设计,继电保护装置制造,继电保护研究系统设计和继电保护系统维护。这四个方面是个统一的整体,共同的目标是有效的消除系统故障,可靠地保证整个系统的安全稳定运行,减少不正常的停电,避免因大范围的停电所造成经济损失。

在继电保护系统中,可靠性通常包含有所用元器件参数的可靠性和保护装置电路结构性能的可靠性。由于继电保护电路整体设计复杂,且电路中为保证整个系统的可靠性,在电路中大多都包含有防干扰,防过压,自动决策,监视和测试以及原件的故障自锁等功能,因而要保证整个系统的可靠稳定,元器件参数的可靠性也显得非常重要。

1.2运行的可靠性

现有的规划可靠性评估是对电力系统长期供电能力的综合度量,反映的是系统长期运行的平均可靠性水平,不能够反映实时运行状态的可靠性。电力系统中元件故障常常在特殊情况下发生的,不考虑元件的实时运行状态,认为其可靠性模型和参数一直不变,这与实际情况是不相符合的。继电保护和安全自动装置自身的可靠性虽然很高,但其配置、整定以及动作特性对系统可靠性的影响很大,往往是连锁故障发生的主要原因,而问题本身的分析已经很复杂,其普遍性机理尚未搞清,把继电保护和安全自动装置仅仅作为可靠性等效元件而不考虑其动作特性、配合特性,这在模型的设计上是很大的缺陷。用概率方法快速在线量化分析电网现有运行状态抗风险能力,相对于采用确定性方法的在线安全评估,其主要优点在于能够获得反映故障可能性及其严重程度的风险指标,对电力系统面临的不确定性因素给出了可能性与严重性的综合度量,有助于增强运行人员对电网潜在问题的理解和认知。

1.3继电保护的可靠性

在“继电保护失效概率对输电系统运行可靠性影响”一文中认为电力系统中继电保护可靠性是有继电保护装置的拒动和误动形式表现的,其概率是衡量继电保护可靠性的基本指标。继电保护的不正确包含误动,拒动和非选择性动作三个方面。

1.3.1拒动概率

继电保护装置在内的相关二次系统发生回路断线、硬件失效、方向元件输出错误等而使跳闸信号不能正确产生、传输,或断路器机构故障导致不能跳闸,称其为第一类拒动,以指数分布模型表示其概率

(1)

t为未来所考察的时间段,λ1为失效率

另外,由继电保护装置的运行环境参数(电网运行方式、保护整定值等)导致的不发跳闸信号,称其为第二类拒动,其概率为,表示多重化配置的继电保系统中共n套保护的第i套的此类拒动概率。继电保护系统拒动概率:

(2)

其中是被保护设备的指数分布模型的故障概率,计算故障率的故障次数来源

于统计数据。

1.3.2误动概率

在被保护的一次设备未发生故障的前提下,包括继电保护装置在内的控制

跳闸的二次回路(硬件和接线)意外偶然接通或断路器机构故障而导致跳闸,称

其为第一类误动,也以指数分布模型表示其概率

(3)

t为未来所考察的时间段,为失效率。

同样,继电保护装置的运行环境参数(电网运行方式、保护整定值等)导致的非选择性跳闸,称其为第二类误动,对于多重化配置的继电保护系统,用Pw2(i,j)表示第i套装置由第j条相邻下一级设备短路导致的误动概率。则继电保护误动概率

(4)

1.3.3非选择性动作概率

保护装置中非选择性动作概率是指当电力系统发生故障时跳闸的越级动作。越级跳闸的原因有很多种如环境,温度,电子元件参数的不稳定等。因而在设计电力保护系统设备时要充分考虑这些因素。对于可能发生的越级跳闸,要采用必要的方案对策。仔细研究对于因环境,温度变化或者元器件的损害导致的越级跳闸动作发生的概率,计算因这些因素导致的发生越级跳闸非选择性动作概率。

2继电保护运行可靠性指标

对于第一类拒动概率和第一类误动概率指标是根据统计的故障次数计算的的全概率,其中第一类拒动属于隐性故障。代表着某一相对独立的继电保护系统的硬件在以后一段时间t内发生1次故障的可能性,也是硬件的可靠水平指标。减小这两个风险指标,可以有效的降低系统的误操作,从而提高系统的可靠性,通常的措施就是:

1)选择经严格质量控制流程而生产的断路器、继电保护装置、直流电源系统关键设备。

2)保证相关二次接线的施工管理,进行认真全面的投运测试,防止错误接线。

3)严格执行二次系统运行、维护、检修的安全监控流程,防止人为因素干扰。

4)合理的定期测试,重视并认真分析继电保护装置的自检告警信息,充分评估其危险性,及时更换可疑元件或模块。

3结论

综合考虑各种不确定因素对其进行运行可靠性评估确有必要且是可行的。本章提出的评估模型能够量化出保护在特定差动量和制动量下的拒动和误动概率,而且其分布的平均值能够综合评估保护在各种情况下的总体性能,对于整定计算和保护判据设计也具有指导意义。在相对意义上,这些指标能够一定程度地反映差动保护运行性能的优劣以及电网因此而面临的风险。

参考文献:

[1]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.

[2]王德生,胡小正.电力系统运行可靠性评估[J].电网技术,1988,12(3):41-46

[3]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估[J].中国电机工程学报,2003,23(3):20-25.

[4]邵振国,林智敏,林韩,黄道姗.在线安全预警中的预想事故生成[J].电力系统自动化,2008,32(7):15-18.

继电保护概述篇3

【关键词】继电保护;变电系统;影响

在科学技术迅速发展的今天,继电保护也变得非常多样化。不仅方式不再单一,并且继电保护的影响范围也更加广泛。为了保证变电系统更好的进行变电工作,同时对居民的生活和工作用电提供一个较强的保证,我们必须利用继电保护的优势,强化变电系统的运行。另一方面,还要对地区的情况进行调研,每个地区的变电工作都存在一定的差异,结合市民对电力资源的实际需求,加上合理的继电保护方式,才能让变电系统发挥出更大的作用。本文就继电保护对变电系统的影响进行一定的讨论。

1继电保护的概述

1.1概念

对于继电保护来说,很多的人虽然听过,但是却没有办法说出个所以然来。为了进一步讨论继电保护对变电系统的影响。本文在此首先阐述一下继电保护的概念。在变电系统正常的运行过程中,不仅仅需要一些辅助的设备,同时还需要一系列的技术来帮助变电系统更好的运行,对外部和内部产生一些有效的保障。继电保护就是众多的保障措施之一,而且效果比较值得肯定,因此在近几年的发展中,获得了广泛的应用。从理论上来说,继电保护是由一个或者几个保护元件组合而成的设备,属于自动化设备的范畴。当系统运行的过程中,一旦出现线路故障或者设备故障,继电保护装置会在第一时间发出警报、跳闸的指令,在根本上防止事态进一步严重化。另一方面,能够有效保护系统的安全,避免安全事故的发生。

1.2继电保护的主要任务

对于继电保护来说,现阶段的主要任务分为两点。首先,继电保护需要有效的监控系统的运行。变电系统在运行的过程中,不可能完全靠人工来进行监督,而且由于变电系统比较复杂,单单靠人工来进行监控工作,很有可能产生遗漏。继电保护则不同,它能够对变电系统的日常运行全方位的监控。当变电系统发生故障的时候,继电保护便会第一时间做出反应,不仅会发出警报,同时还会自动跳闸,避免恶性事件发生。其次,继电保护会及时反应系统设备的异常情况。电气设备在出现的异常情况的时候,会第一时间通知工作人员赶到现场处理,从而避免产生较大的损失。由此可见,继电保护的功能较多,而且可以有效的帮助变电系统运行。

2继电保护对变电系统的影响

从以上表述来看,继电保护的确能够对变电系统产生较大的积极影响。但是具体应用后的效果仍然需要在实践以后才能得到肯定。在此,本文将继电保护对变电系统的影响进行一定的表述:

2.1变压器瓦斯保护

变压器瓦斯保护可以反应变压器内部的漏油故障以及匝间短路故障等所有形式的故障,有着非常高的灵敏度。变压器瓦斯保护的一个主要元件是气体继电器,其位于油枕和油箱之间的连接管。当变压器在发生故障的时候,它的绝缘物和油就会发生一定的分解反应,并且产生很多的气体,为了让这部分气体能够较为顺畅的通过连接管,从而流到油枕当中,就需要保证连接管和变压器顶盖存在一个合理的坡度。当气体通过气体继电器的时候,变压器的瓦斯保护就会启动,从而达到保护变压器的作用。通过以上的阐述能够清楚的看到,利用继电保护的原理,可以对变压器的瓦斯起到较强的保护作用,而且用时较短。

2.2电流速断保护

电流速断保护是继电保护对变电系统产生的积极影响之一。很多的地区的变电系统较为复杂,在发生问题的时候,常规手段并没有办法对事故进行一个较好的控制。针对这样的情况,电流速断保护就能够达到一个较高的工作水准。从客观的角度来分析,一些容量相对较小的变压器,比较适合应用这种保护方式。我们可以在实际的工作中,将电流速断保护安放在变压器的电源侧面,这样一来,既不会占用太多的空间,同时还不会影响日常的保护工作。电流速断保护拥有一个较强的优势,那就是接线比较简单,反应也非常的迅速。另一方面,电流速断保护还能够通过与变压器瓦斯保护的有效配合,二者之间互相弥补劣势,从而形成一个内部的变压器保护系统,进而对变电运行产生较大的积极影响。

2.3纵联差动保护

它是变电系统变压器上的一种主保护,可以很好的对故障发生范围进行区分,并且反应出各种类型的短路故障,例如引线短路、绕组短路等,同时能及时切除位于其保护范围以内的所有元件短路故障。此种保护方式能够对变电系统的运行产生一个全面的保障,从现有的情况来看,当从纵联差动保护启动时,配合相应的重合闸装置动作,可以有效切除电力系统上一些瞬时故障和临时故障,并有效保护电网系统的稳定和提高用户供电的可靠性。当遇到永久性故障时,纵联差动保护更是能快速切除故障点,防止故障事故的进一步扩大,保护非故障设备的安全运行,提高了电网的稳定性。

2.4过电流保护

对于变电系统来说,无论是否应用继电保护,都需要设置过电流保护。其主要作用是反应变压器外部相间短路故障而发生的过电流。对于变电系统来说,在正常运行的情况下,当然不会发生问题。但是随着居民的用电量不断的提高,国家在发电的过程中,有时候会出现疏漏,这个时候就需要过电流保护,否则会扩大损失。从现阶段的发展来看,过电流保护是最简单的保护方式,以此为基础,低电压启动的过电流保护在其上增设了低压继电器,而复合电压启动的过电流保护则又是在低电压启动的过电流保护的基础上增设了负序电压继电器。从任何一个角度来看,过电流保护无疑是继电保护对变电系统的影响是非常积极的。在今后的工作中,仍然要对其不断的深化和加强。

2.5过负荷保护

变电系统在运行的过程中,不仅仅需要过电流保护,同时还需要过负荷保护。在日常的设置当中,变电系统会有一定的负荷范围,在其范围之内,变电系统自身就能够很好的处理,如果超出应有的范围,势必会引起一定的事故。利用继电保护的原理,能够有效的进行过负荷保护,从而避免一系列安全问题的产生。

3总结

本文对继电保护进行了一定的阐述,同时将继电保护对变电系统的影响进行了一定的讨论,从现有的情况来看,很多地区的变电系统并没有良好的应用继电保护的方式和原理。因此,在今后的工作中,需要结合实际的发展情况,让继电保护对变电系统产生更大的积极影响。

参考文献:

[1]冯少辉.浅析电力系统继电保护的应用[J].中小企业管理与科技(上旬刊),2010(07).

继电保护概述篇4

关键词:微机继电保护技术;概念;构成;趋势

中图分类号:F406文献标识码:A文章编号:

前言:微机继电保护的智能化方便了继电保护的调试工作,极大的减少了对硬件维护量。尤其是,其凭借数字化、智能化、网络化及较强的数字通讯能力,极大的提高了微机继电保护的快速性、选择性、灵敏性、可靠性等性能,在促进电力系统管理、维护的信息化、远程化的同时,提高了电力系统的安全经济运行的水平。因此,我们可以清楚的认识到微机继电保护的重要性。以下笔者根据多年从事微机继电保护的实际工程经验,对电力系统微机继电保护系统的构成特点及发展趋势进行粗浅的探究,以供参考。

1.微机继电保护概述

1.1基本概念

微机继电保护是以数字式计算机为基础来构成的继电保护,其硬件以微处理器为核心,配以合适的输入输出通道、人机接口、通讯接口等;随着计算机技术及网络技术的持续快速的发展,加之微机保护相比于传统继电保护装置有着更加显著的优势,日益在电力系统中得到广泛应用。

1.2微机继电保护系统的构成

(1)管理与保护故障录波器的接口,实现对不同厂家的保护及故障录波器的数据采集及转换功能。通常情况下,对保护的运行状态进行巡检,接收保护的异常报告。当电网出现故障后,接收、保护故障录波器的事故报告。

(2)管理与远动主站的接口,把装置异常、保护投退,以及其它关键的信息通过远动主站进行实时上送到调度端。

(3)管理、修改保护定值。

(4)主动或者按照服务器的要求传送事故报告,执行服务器发出的对指定保护与故障录波器进程查询的命令。服务器设置在调度端,可由一台或者多台高性能计算机构成。

通过以上的功能划分可看出,客户机与服务器间的数据交换量并不是太大,仅在电网出现故障后,因为与故障设备有关联的厂站的客户机需向服务器传送详细的故障报告,此时才会有较大的信息量。所以客户机与服务器间的联络,在目前的使用情况下,完全可采用调制解调器来进行异步通信,若有更好的条件,建议尽量采用广域网来实现数据的交换。

2.微机继电保护技术发展的趋势

2.1自动化、智能化

随着我国智能电网概念的提出及相关技术标准的制定,必须加快智能电网相应配套的关键技术与系统的研发速度。对于微机继电保护技术,可深入挖掘神经网络、遗传算法、进化规划模糊逻辑等智能技术微机继电保护方面的应用前景,充分发挥技术生产力的作用,从而使常规技术难以解决的实际问题得到解决[4]。

2.2自适应控制技术

于20世纪80年代,自适应继电保护的概念开始兴起,其可定义为能根据电力系统的运行方式与故障状态的变化而能够对保护性能、特性或定值进行实时改变的新型继电保护。其基本思想就是尽最大可能使保护适应电力系统的各种变化,从而保护的性能得到进一步的改善。其凭借能改善系统响应、增强可靠性、提高经济效益等方面的优势,在输电线路对距离、变压器、发电机的保护及自动重合闸等领域得到了广泛的应用。

2.3人工神经网络的应用

20世纪90年代以来,神经网络、遗传算法、进化规划、模糊逻辑等人工智能技术在电力系统的多个领域都得到了应用,保护领域内的一些研究工作也开始转向人工智能领域的研究。专家系统、人工神经网络、模糊控制理论在电力系统继电保护中的应用,为其持续发展注入了新的活力。

基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究得到较迅速发展,目前主要集中在人工智能、信息处理、自动控制和非线性优化等方面。近年,在电力系统微机继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等技术。我国相关部门也都对神经网络在电力系统微机继电保护中的应用进行了相关的研究。

2.4可编程控制器在继电保护中的应用

可编程控制器可简单的视为具有特殊体系结构的工业计算机,相比于一般计算机具有更强的与工业过程相连的接口,以及更适应于控制要求的编程语言;用PLC通过软件编程的方式来代替实际的各个分立元件之间的接线,来解决在由继电器组成的控制系统里,为了完成一项操作任务,要把各个分立元件如继电器、接触器、电子元件等用导线连接起来的问题是非常容易的;此外,为了减少占地面积,还可以用PLC内部已定义的各种辅助继电器来取代传统的机械触点继电器。

2.5变电所综合自动化技术

现代计算机、通信、网络等技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置、计量装置,以及系统分割的状态,提供了优化组合与系统集成的技术基础。继电保护和综合自动化的紧密结合己成为可能,主要体现在集成与资源共享、远方控制与信息共享。以远方终端单元、微机保护装置做为核心,把变电所的控制、信号、测量、计费等回路纳入到计算机系统中,从而将传统的控制保护屏进行取代,大大降低变电所的占地面积及对设备的投资,使二次系统的可靠性得到提高。伴随着微机性价比的不断提高,现代通信技术的快速发展,以及标准化规定制度的陆续推出,变电站综合自动化已经成为了热门话题。根据变电站自动化集成的程度,可将未来的自动化系统划分为协调型自动化与集成型自动化两类。

结束语:

总之,随着电力系统的高速发展及计算机、通信技术的不断进步,继电保护技术将会向自动化,智能化,自适应控制技术,变电站综合自动化技术,人工神经网络、PLC技术的应用等趋势发展,在确保我国电力系统的安全稳定运行,以及国民经济的快速持续增长中发挥越来越大的作用。

参考文献

[1]文玉玲,孙博,陈军.浅谈微机继电保[J].新疆电力技术,2009,(4):26-28.

[2]杨志越,李凤婷.微机继电保护技术及发展[J].电机技术,2011,(3):46-47.

[3]王彬.浅论电力系统微机继电保护的技术应用[J].中华民居,2011,11:162,163.

继电保护概述篇5

【关键词】继电保护;安全稳定控制系统;隐性故障

近年来,国内外大停电事故屡发,如巴西大规模停电事故(2011年2月4日)、印度发生的硬性人口最多的世界范围内大规模停电事故(2012年7月30日-2012年7月31日)等,追究其原因,均发现源自于继电保护和安全稳定控制系统的隐性故障,大规模停电事故不仅仅影响人民群众的正常生活,而且会严重损失国民经济,影响社会秩序。因此,虽然隐性故障的爆发率较低,但是一旦爆发后果不堪设想。基于此,本文对继电保护和安全稳定控制系统的隐性故障展开分析,旨在为供电安全保障事业提供一定的参考与指导。

一、分析继电保护和安全稳定控制系统的隐性故障现状

目前,继电保护和安全稳定控制系统的隐性故障主要包括三种类型,即:(1)继电保护间的配合不协调引起的隐性故障;(2)多个安全稳定控制系统之间的配合不协调引起的隐性故障;(3)继电保护与安全稳定控制系统之间的配合不协调引起的隐性故障。下面对继电保护和安全稳定控制系统的隐性故障地三大表现类型展开具体分析。

(一)继电保护间的配合不协调引起的隐性故障

目前全球现行的继电保护的配合协调性较弱,往往是根据被保护元件、面向电网元件进行的单独决策,难以准确无误的隔离故障。而且继电保护间的配合不协调往往体现在:在整个电网中,定值(各个继电保护之间)配合不合理,举个例子,如:距离原继电保护较远的第二或者第三个继电保护的定值,往往缺乏必要的选择性,往往出现主保护与后备保护不匹配或者原保护与下级保护不匹配等问题,从而导致隐性故障。另外,设计原理等其他因素也是导致继电保护间的配合的重要因素,举个例子,如:互闭锁的状态(母差保护与母联自切保护之间)设计,往往容易造成隐性缺陷,也就是隐性故障,总之,当电网发生较为复杂的故障时,在继电保护无法对故障信息进行准确辨识的状态下,则也会引发继电保护隐性故障的爆发,对人民、社会、经济等造成不顾估量的损伤。

(二)多个安全稳定控制系统之间的配合不协调引起的隐性故障

众所周知,传统安全稳定控制系统一般只负责区域内电网的稳定运行,局限于某一网省公司范围,因此,难以保障整个电网运行安全。而且立足于区域角度分析,为了保证整个区域电网的安全运行,需要改变传统独立决策方式,对每一个安全稳定控制环节进行相应的控制设备安排,但是,在实际建设中,往往忽视细节,而且随着特高压直流输电网架的崛起与发展,区域电网安全稳定运行受到冲击,因此,往往形成不易察觉的隐性故障,如:在A区域比较安全稳定的控制系统在B区域不适用,造成B区域电网不稳定、不安全运行,或者A区域稳定的电网造成大范围转移,然而B区域在拒动、误动的状态下,或者所采取的动作超出承受范围情况下,继而引发在A区域适用的安全稳定控制系统在B区域失效,造成隐性故障的爆发,因此,必须考虑并且高度重视区域协调性。

(三)继电保护、安全稳定控制系统两者之间的配合不协调引起的隐性故障

继电保护与安全稳定控制系统之间的配合不协调主要表现在:电厂涉网参数设置不合理,大部分的大停电事故均由继电保护与安全稳定控制系统之间的配合不协调造成,如:大规模风机脱网事故(2011年发生于西北),追究其原因,发现:动态无功补偿装置以及馈线保护装置与整个电网的风机涉网参数不协调引起的。除此之外,在信息化时代,大规模的新能源对传统安全稳定控制系统造成了巨大的冲击,促使传统的安全稳定控制系统即继电保护装置失效,从而导致各种各样的隐性故障,对人民、社会、经济等造成不可估量的安全隐患。

二、提出规避隐性故障的有效措施

(一)增强继电保护间的配合协调性

增强继电保护间的配合协调性,需要对现有的继电保护进行优化整改,在优化、整改的过程中,可以适当的建立隐性故障概率模型,并且在继电保护装置的安排上,尽可能的考虑相邻被保护元件的性质,综合的考量某一缺陷整个电网安全运行所造成的影响,根据综合考量的结果,对隐性故障概率模型中具有偏差的参数或者设计理念进行整改,尽可能的缩小误差,从而规避隐性故障。另外,在实践过程中,要加大继电保护间的配合协调性监督,一旦发现不合理的地方,及时的进行调整或修改,避免隐性故障爆发。

(二)增强多个安全稳定控制系统之间的配合协调性

增强多个安全稳定控制系统之间的配合协调性,需要建立并且完善隐性故障风险评估机制,及时的分析电网运行风险的来源,在投入运行之前,聘请准也认识对电网运行安全指数进行科学的计算,奠定电网未来运行的安全与稳定趋势,另外,在运行之前,要参考大量的文献、资料、建设数据等,为规避隐性故障提供理论支撑,而且加强安全稳定运行监督,可以利用先进的互联网技术,显示跨时空运行质量控制,从而全面的提升多个安全稳定控制系统之间的配合协调性(设置科学合理的参数,积极的发展与新能源相匹配的安全稳定控制系统)。除此之外,还需要它能够过各种各样的方式,全面的提升相关工作人员的综合技能和综合素质,保障电网的安全稳定运行,将隐性故障扼杀在摇篮里。

(三)增强继电保护、安全稳定控制系统两者之间的配合协调性

增强继继电保护、安全稳定控制系统两者之间的配合协调性依赖机械与人力的相互配合,在运行之前,测试人员需要对继电保护与安全稳定控制系统进行科学的评估,客观的得出测量结果,并且再次进行机械化各项数据测量,两者的数据结果进行对比,选取最佳的数据值,价格不科学、不合理的数据进行调整和修改,降低误差,从而全面的提升继电保护与安全稳定控制系统之间的配合协调性,降低隐性故障风险,保障电网的安全稳定运行。

三、结语

综上所述,继电保护和安全稳定控制系统的隐性故障是引发大规模停电事故的重要原因,且继电保护间的配合不协调、多个安全稳定控制系统之间的配合不协调、继电保护、安全稳定控制系统两者之间的配合不协调是故障爆发的主要因素,因此,需要全面的提升三大影响因素之间的协调性,才能有效的规避隐性故障,保障电网的安全稳定运行,从而保障人民群众的切身利益,促进国民经济的健康、可持续发展,且起到维护社会秩序的作用,总的来说,对继电保护和安全稳定控制系统的隐性故障需进一步深入分析。

参考文献:

[1]赵丽莉,李雪明,倪明等.继电保护与安全稳定控制系统隐性故障研究综述及展望[J].电力系统自动化,2014,38(22):128-135.

[2]马世英,和敬涵,陈麒宇等.风电基地保护与安控系统协调关系研究[J].中国电机工程学报,2013,33(z1):1-7.

[3]吴智杰.继电保护与安全稳定控制系统隐性故障研究综述及展望[J].科技展望,2015,25(36):84-85.

继电保护概述篇6

【关键词】继电保护;电力系统;可靠性;研究

电力系统中的电力设备与输电线路相互协调配合,使电力系统安全稳定地运行。但是由于受相关因素的影响,电力系统会出现故障,会对电力系统的安全稳定运行造成影响。这时候继电保护装置就发挥了巨大的作用,极大程度上降低了故障出现的机会,即便系统出现了故障,继电保护装置也会自动切除故障元件,可以维持电力系统短暂的正常运行。继电保护的可靠性是指继电保护装置在规定的时间以及范围内发挥自身的功能。继电保护的可靠性可以为电力系统提供保护屏障,对电力系统的故障进行有效地修复控制,保证电力系统的安全稳定运行。所以必须加大力度对继电保护的可靠性进行研究,为电力系统的安全运行提供保障。

一、继电保护的可靠性指标

(一)继电保护

所谓的继电保护就是对电力设备以及输电线路进行安全地保护,保证了电力系统的安全稳定运行,是电力系统中最重要的保护装置。继电保护具有灵敏度高、反应迅速、选择性强的特点。继电保护的工作原理是当电力系统中电子元件出现故障时,继电保护装置根据电子元件电流的变化情况来对电子元件进行保护控制。继电保护系统是电力系统中的重要组成部分,继电保护系统是通过继电保护装置来对电子元件进行故障处理,保证电子元件的正常运行。在继电保护系统中继电保护装置与输电线路有效地连接,共同对电力系统进行保护控制。在电力系统中所有的电子元件都必须在继电保护状态下工作运行,不可能单独进行电力的输送和配置。继电保护状态下的电力运行,不容易出现电力故障,使电力系统可以安全稳定地运行。

(二)继电保护的目标

电力系统中的继电保护装置是安装在电子元件上的,一旦电子元件出现故障,继电保护装置就会及时对故障进行处理,并且快速发出警告信号,使故障元件周围的元件立即跳闸,防止故障元件影响其他电子元件地运行。在发生故障时,继电保护装置会马上把故障元件与电力系统断开,但是继电保护装置还是会维持系统短暂的稳定运行状态。要想使系统持续运行还需要利用其它办法来彻底清除电子元件的故障,避免由于故障控制不当而影响其它原件的正常运行,故障恶性循环导致电力系统瘫痪。继电保护的主要任务是对电子元件的故障及时做出反应,并发出警告防止其它电子元件受到影响。一般电子设备都具有自动调整的功能,所以在继电保护装置发出警告时电子设备就会自动跳闸,避免发生故障的电子元件会对电子设备造成影响。这时候继电保护装置的任务就是为电子设备提供自我调整的时间,减少故障对其它电子元件的影响。

(三)继电保护的可靠性判断依据

继电保护的可靠性是指继电保护装置在规定的时间规定的范围内完成自己的功能,并利用一定的技术来协调电力设备完成它们自身的运行功能的能力。继电保护可靠性具体表现为对电子元件的故障及时反映,切除故障线路或者是故障元件,并发出警告使其它电力设备做出相应的预防措施,并保证故障不会影响到其它电力设备的正常运行。继电保护的可靠性判断依据主要有两点,继电保护装置的可靠性和继电保护功能的可靠性。继电保护装置的可靠性是指装置本身可以自我保护,不会因为装置本身的故障而影响被保护电子元件地运行,也会防止自身的故障影响整个电力系统的稳定运行。继电保护装置的这种自我保护可以及时对自身的故障进行切除,保证继电保护装置还可以对电子元件起到保护作用。继电保护功能的可靠性是指继电保护装置在正常运行状态下正确完成自己本职工作的概率。正确工作的概率直接影响着继电保护功能的可靠性。但是继电保护功能可靠性依据也有一定的局限性,由于继电保护装置保护动作的次数会受人为故障的影响,这时候继电保护装置的正确保护动作就不能反映装置正确工作的概率,会影响继电保护功能的可靠性。继电保护装置保护的电子元件数量对装置正确工作概率的影响在功能可靠性依据中不能够表现出来,很难准确地分析继电保护可靠性的质量。所以针对功能可靠性存在的局限性,应该适当调整继电保护的功能,使继电保护系统中的继电保护装置同时进行正确的保护动作,然后分析系统中所有装置正确保护动作的次数取平均值,这个平均值就是保护动作的正确率,通过这个平均值可以很好地反映出装置可靠性的水平。

二、提高继电保护可靠性措施

(一)优化继电保护系统的设计

继电保护系统是整个电力系统的关键,继电保护系统中的保护装置可以对电子元件进行有效地保护,使电力系统可以稳定安全地运行。继电保护系统的设计可以使系统在正常的运行状态下某些装置可以不用进行正确的保护动作。这种设计方案的实施有助于减少继电保护系统的功率损耗,提高继电保护系统的运行效率。在继电保护系统中通常使装置并联、采用切换设备等,使系统可以提高运行的可靠性。使装置并联可以提高装置保护动作的正确率,使继电保护功能可靠性的水平大大提高。切换设备可以使系统的可靠性指标得到改善,但是对系统整体的可靠性并没有太大的影响。所以在设计继电保护系统时,应该对电力系统的实际运行情况进行分析,制定合理地系统设计方案。继电保护系统的设计在满足正常的电力保护时,可以使用最少的继电保护装置,降低设备的投资成本,提高电力企业的经济效益。

(二)继电保护装置的可靠性研究

继电保护系统的可靠性是通过继电保护装置的可靠性来表现的,继电保护系统的稳定运行都是依靠继电保护装置来实现的。在研究继电保护装置的可靠性时应该从继电保护装置的运行情况入手。继电保护装置的运行情况是通过装置在发生故障时做出正确保护动作的概率来决定的,概率越高表明装置的运行情况越稳定,装置的可靠性就越高。反之,概率越低表明装置的运行情况越不稳定,装置的可靠性就越低。对继电保护装置的功能和故障进行研究有助于提高装置的可靠性,可以使装置为电力系统提供稳定地保护。继电保护装置在运行时还需要配置一个辅助运行装置,保证装置保护动作的正确率,以便继电保护装置的安全稳定运行。继电保护装置的辅助运行装置一般都安装在电力系统的运行回路中,使保护装置和辅助装置同时对电力系统进行保护,提高继电保护装置的可靠性,从整体上提高电力系统的安全运行效率。

三、总结

综上所述,继电保护的可靠性研究对于整个电力系统来说是非常重要的。继电保护系统的可靠性越高,对于电力系统的安全稳定越有利。继电保护的可靠性判断依据是可靠性研究的基础。通过对装置可靠性和功能可靠性进行分析,得出装置保护动作的正确率,从而可以分析继电保护的可靠性。继电保护的可靠性充分反映了装置的运行情况,为电力系统的安全稳定运行提供了保障,促进了电力企业的快速发展。

参考文献:

[1]戴志辉,王增平.继电保护可靠性研究综述[J].电力系统保护与控制,2010(8).