当前位置: 首页 > 范文大全 > 办公范文

平方根教学设计(整理3篇)

时间:

平方根教学设计篇1

学科:

数学年级:七年级审核:

内容:

沪科版七下6.1平方根(1)课型:新授时间:

学习目标:

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

学习重点:

了解平方根的概念,求某些非负数的平方根

学习难点:

了解被开方数的非负性;

学习过程:

一、学习准备

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32=()()2=9

(-3)2=()()2=

()2=()()2=0

()2=()

02=()()2=-4

3、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果X2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与互为逆运算

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数有两个平方根,它们互为相反数;

零有一个平方根,它是零本身;

负数没有平方根。

交流:(1)的平方根是什么?

(2)0.16的平方根是什么?

(3)0的平方根是什么?

(4)-9的平方根是什么?

5、平方根的表示方法

一个正数a有两个平方根,它们互为相反数.

正数a的正的平方根,记作“”

正数a的负的平方根,记作“”

这两个平方根合在一起记作“”

如果X2=a,那么X=,其中符号“”读作根号,a叫做被开方数

这里的a表示什么样的数?a是非负数

二、合作探究

1、判断下面的说法是否正确:

1).-5是25的平方根;()

2).25的平方根是-5;()

3).0的平方根是0()

4).1的平方根是1()

5).(-3)2的平方根是-3()

6).-32的平方根是-3()

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

(1)0.81(2)(3)-100(4)(-4)2

(5)1.69(6)(7)10(8)5

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)±12,144()(2)±0.2,0.04()

(3)102,104()(4)14,256()

2、选择题(1)0.01的平方根是()

A、0.1B、±0.1C、0.0001D、±0.0001

(2)因为(0.3)2=0.09所以()

A、0.09是0.3的平方根.B、0.09是0.3的3倍.

C、0.3是0.09的.平方根.D、0.3不是0.09的平方根.

3、判断下列说法是否正确:

(1)-9的平方根是-3;()

(2)49的平方根是7;()

(3)(-2)2的平方根是±2;()

(4)-1是1的平方根;()

(5)若X2=16则X=4()

(6)7的平方根是±49.()

4、求下列各数的平方根

1)812)0.253)4)(-6)2

5、求下列各式中的x:

(1)x=16(2)x=(3)x=15(4)4x=81

思维拓展:

1、一个数的平方等于它本身,这个数是一个数的平方根等于它本身,这个数是

2、若3a+1没有平方根,那么a一定。3、若4a+1的平方根是±5,则a=。

4、一个数x的平方根等于+1和-3,则=。x=。

5、若|a-9|+(b-4)=0,则ab的平方根是。

6、熟背1至20的平方的结果。

7、分别计算32,34,46,58,512,10的平方根,你能发现开平方后幂的指数有什么变化吗?

平方根教学设计篇2

一、教学目标

1.理解一个数平方根和算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3.通过本节的训练,提高学生的逻辑思维能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法

讲练结合

四、教学手段

幻灯片

五、教学过程

(一)提问

1、已知一正方形面积为50平方米,那么它的边长应为多少?

2、已知一个数的平方等于1000,那么这个数是多少?

3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空

1、()2=9;2、()2=0、25;

3、

5、()2=0、0081

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;

±0.5是0。25的平方根;

0的平方根是0;

±0.09是0。0081的平方根。

由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

()2=—4

学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的.。下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质

1.一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,它是0本身。

3.负数没有平方根。

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。

练习:1.用正确的符号表示下列各数的平方根:

①26②247③0。2④3⑤

解:①26的平方根是

②247的平方根是

③0。2的平方根是

④3的平方根是

⑤的平方根是

由学生说出上式的读法。

例1。下列各数的平方根:

(1)81;(2);(3);(4)0。49

解:(1)∵(±9)2=81,∴81的平方根为±9。即:

的平方根是,即

(4)∵(±0。7)2=0。49,∴0。49的平方根为±0。7。

小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。

六、总结

本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。

七、作业

教材P。127练习1、2、3、4。

八、板书设计

平方根

(一)概念(四)表示方法例1

(二)性质

(三)开平方

探究活动

求平方根近似值的一种方法

求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。

例1。求的值。

解∵92102,两边平方并整理得

∵x1为纯小数。

18x1≈16,解得x1≈0。9,便可依次得到精确度

为0。01,0。001,……的近似值,如:

两边平方,舍去x2得19.8x2≈—1.01

平方根教学设计篇3

教学目标:了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根

教学重点:了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根

教学难点:对大小的估算及如何理解是非负数以及被开方数是非负数;正确区分算术平方根与平方根

第1课时

一、创设情景,导入新课

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?

这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)

二、合作交流,解读探究

讨论:1、什么样的运算是平方运算?2、你还记得1~20之间整数的平方吗?

自主探索:让学生独立看书,自学教材

总结:一般地,如果一个正数的平方为,即,那么正数叫做的算术平方根,记为,读作根号,其中叫做被开方数。另外:0的算术平方根是0

探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形

把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。

设大正方形的边长为,则;由算术平方根的意义,即大正方形的边长为。讨论:有多大呢?

思考:你能举些象这样的无限不循环小数吗?

三、应用迁移,巩固提高

例1求下列各数的算术平方根

⑴100⑵⑶0.0001⑷0⑸

点拨:由一个数的.算术平方根的定义出发来解决问题

思考:-4有算术平方根吗?

备选例题:要使代数式有意义,则的取值范围是()

A.B.C.D.

四、总结反思,拓展升华

小结:1、算术平方根的定义和性质;2、用计算器求一个正数的算术平方根

拓展:已知的算术平方根是3,的算术平方根是4,是的整数部分,求的算术平方根

五、课堂跟踪反馈

1、非负数的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____

2、

3、的算术平方根是_____,的算术平方根____

4、若是49的算术平方根,则=()

A.7B.-7C.49D.-49

5、若,则的算术平方根是()

A.49B.53C.7D.

6、若,求的值。

7、若是的整数部分,是的小数部分,试确定、的值。

8、一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_______