当前位置: 首页 > 范文大全 > 办公范文

纳米技术特征(6篇)

时间:

纳米技术特征篇1

【分类号】X50

1纳米技术

纳米(nm)技术是指在0.1-100nm范围内,研究电子、原子和分子内在规律和特征,并用于制造各种物质的一门崭新的综合性科学技术。纳米尺度的物质颗粒接近原子大小,此时量子效应开始影响到物质的性能和结构。由纳米级结构单元构成的纳米材料,在机械性能、磁、光、电、热等方面与普通材料有很大不同,具有辐射、吸收、催化、吸附等新特性。人类通过在原子、分子和超分子水平上控制了纳米结构来发现纳米材料的奇异特征,以及学会有效地利用这些特定功能产品,最终能够仿照自然生态中非常复杂的过程,这也是纳米科技的最终目的。

纳米技术包含下列四个主要方面:

(1)纳米材料:当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。人们就正式把这类材料命名为纳米材料。

(2)纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等,用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

(3)纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

(4)纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。更小是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。

纳米技术是建设者的最后疆界,它的影响将是巨大的。

2纳米技术在环境邻域的应用

纳米材料的比表面积大,表面活性中心多,是催化剂的必要条件。国际上已将纳米材料作为新一代催化剂进行研究和开发。近年来的发展方向是纳米复合化,例如,氟石结构的纳米Ce2-x和Cu组成纳米复合材料,可用于汽车尾气中SO2、CO的消除。已有生产厂家开发出可以用来代替汽车中的金属构件的纳米粒子增强型复合材料,这种纳米复合材料的广泛使用可能使汽油的燃烧量每年减少15亿升,二氧化碳的排放量每年至少减少50亿千克。我国山东小鸭电器集团采用纳米复合抗菌除味塑料制作洗衣机的外筒,具有耐高温、耐摩擦、耐冲击、韧性好和硬度高等特点,还有很好的光洁度和很强的除垢能力,不但可以防止污垢在筒壁沉积,随时保持洗衣机内部清洁,还可以防止细菌滋生,解除了衣物交叉感染的可能,开辟了健康洗衣机的新纪元。

用黏土和聚合物的纳米粒子替代轮胎中的炭黑是一项生产环保型、耐磨损轮胎的新技术,利用纳米材料对紫外线的吸收特性而制作的日光灯管不仅可以减少紫外线对人体的损害,而且可以提高灯管的使用寿命。把具有导电性能的纳米颗粒,如炭黑、金属粒子等加入到高聚物中,可以改善高聚物的导电性,节约能源。

3纳米技术在环境领域的潜在突破

3.1有效利用资源

纳米技术是从原子和分子开始制造材料和产品。这种从小到大的制造方式需要的材料较少,造成污染程度较低。纳米复合陶瓷,因其优异的耐高温、高强度等性能,有望应用于高温发动机中,其燃烧热效率可增加一倍,且燃烧完全,污染降低。由于纳米技术导致产品微型化,使所需资源减少,不仅可达到"低消耗、高效益",而且成本低廉。可以预测,未来资源浪费,造价昂贵的大型机械设备将逐步淘汰,以实现资源消耗率的"零增长"。

3.2用于对水和空气的处理

消除水和空气中最细微的污染物(分别为300nm和50nm),使空气和饮用水更加清洁。新型的纳米级净水剂具有很强的吸附能力,是普通净水剂的10-20倍,可将污水中的悬浮物和铁锈、异味等污物除去。通过纳米孔径的过滤装置,还能把水中的细菌、病毒去除。净化和淡化海水的选择性滤膜,不仅成本低,而且所需量不足目前的十分之一。

3.3监测大气污染

大气中含有的C、N、S等元素的氧化物可导致酸雨和温室效应,因此它们在大气中的含量必须被实时监测。现有监测技术成本高,不便于移动作业,所需温度高,而利用纳米材料的高比表面积能对吸附气体有快速反应,吸附后能改变其物理性质,且反应可逆,具有能再生的特性。研制出可用于监测大气中的有害气体,可在室温下工作、造价低廉、体积小的监测器。

3.4提供有效储氢方式

物理和化学方法储氢,需要昂贵的设备。采用纳米材料可避免大晶粒储氢材料在反复吸收、释放氢气的循环过程中产生的氢脆现象,又可增加吸氢容量和吸氢速率,提供一种有效而清洁的储氢方式,这种材料如果用来制造燃料电池汽车中的氢容器,可有效避免空气污染。

4结束语

纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的"材料革命"现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。纳米技术正在改善着、提高着人们的生活质量

尽管纳米技术仍有许多问题有待于进一步探索和解决,但它在高科技领域和传统产业中带来的冲击是不可否认的。它将成为新世纪信息时代的核心。随着人们对纳米材料研究的深入,纳米材料必将出现更为广阔的应用前景,纳米材料的大规模工业生产和商业应用也将成为现实。可以相信,纳米技术作为一门新兴科学,必将对环境保护产生出深远的影响,利用纳米技术解决污染问题将成为未来环境保护发展的必然趋势。

参考文献:

[1]曹学军等,神奇的纳米技术,国外科技动态,2010,9(3);33-36。

纳米技术特征篇2

一、微电子的集成技术

微电子器件的特征尺寸缩小将持继下去。目前,建立在以Si基材料为基础、CMOS器件为主流的半导体集成电路技术,其主流产品的特征尺寸已缩小到0.18~0.1?m。硅基技术的高度成熟,硅基CMOS芯片应用的日益扩大,硅平面的加工工艺技术作为高新技术基础的高新加工技术也将持继下去。据国际权威机构预测,到2012年,微电子芯片加工技术将达到400mm(16in)硅片、50nm特征尺寸,到2016年,器件的最小特征尺寸应在13nm。然而,硅基CMOS的发展和任何事物一样,都有其产生、发展、成熟、衰亡的过程,不可能按摩尔定律揭示的规律长期的发展下去。随着特征尺寸的缩小,将达到器件结构的诸多物理限制。当代各种集成电路发展状况,越来越接近物理限制。

采用新材料的非经典CMOS必将发展起来,高K材料和新型的栅电极;采用非经典的FET器件结构;采用新工艺技术等。在非经典CMOS迫切需要解决的问题中,功耗是一个最严峻的问题,能否圆满解决这一问题,将是制约发展非经典CMOS发展的一个重要因素。

二、正在成长的系统芯片—SOC

由芯片发展到系统芯片(SOC),是改善芯片集成技术的新举措。微电子器件的特征尺寸难于按摩尔定律无限的缩小下去,在芯片上增加集成器件是集成技术发展的另一方向。与当年从分立晶体管到集成芯片(IC)一样,系统芯片(SOC)将是微电子技术领域中又一场新的革命。

上个世纪90年代以来,集成芯片系统(SOC)讯速发展起来,它基于硅基CMOS工艺,但又不局限于CMOS和硅平面加工工艺。它是以硅基CMOS为基础技术,将整个电子系统和子系统整个集成在一个芯片上或几个芯片上,它是集软件和硬件于一身的产物,SOC的设计是通过嵌入模拟电路、数字电路等IP的结合体,可以具有更大的灵活性。一个典型的SOC可能包含应用处理器模块、数字信号处理器模块、存储器单元模块、控制器模块、外设接口模块等等多种模块。微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术发展的必然结果。集成系统的发展是以应用为驱动的,随着社会信息化的进程,它将越来越重要。21世纪仅仅是SOC发展的开始,它将进入空间、进入人体、进入家庭,它将进入需要所有需要掌握信息处理的信息空间和时间。有的科学家就把集成芯片系统—SOC称为USOC(UserSOC)。

三、MEMS技术是微电子技术新的增长点

微机电系统制造(Micro?Electro?Mechanical?systems—MEMS)是微电子发展的另一方向,它的目标是把信息获取、处理和执行一体化地集成在一起,使其成为真正的系统,也可以说是更广泛的SOC概念。MEMS不仅为传统的机械尺寸领域打开了新的大门,也真正实现了机电一体化。因此,它被认为是微电子技术的又一次革命,对21世纪的科学技术、生产方式、人类生活都有深远影响。

微机电系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种微机电系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令进行操作。它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。?微机电系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生极大性影响。它涉及机械、电子、化学、物理、光学、生物、材料等多学科。?微机电系统(MEMS)的研究已取得很多成果。在微传感器方面,利用物质的各种特性研制出了各种微型传感器;在微执生器方面有微型马达、微阀、微泵及各种专用微型机械已组成微化学系统和DNA反应室。此外,还有其它很多方面的应用。

纳米技术特征篇3

关键词:手印显现;纳米材料;发光材料;潜在手印;上转换

纳米材料是纳米技术领域中被研究最多、应用最广泛的部分.一般认为,纳米材料颗粒为1~100nm.随着纳米科技的发展,将稀土纳米发光材料应用于手印显现的相关研究已经引起了国内外研究人员的广泛关注.稀土纳米发光材料的发光强度高、光稳定性好,能够对手印显现的检测信号起到放大增强的作用,使显现后的手印和客体背景之间产生较大的对比反差,有利于提高手印显现的对比度.稀土纳米发光材料的颗粒尺寸较小、比表面积较大、粉末外观细腻,能够反映出更多的手印细微特征,有利于提高手印显现的灵敏度.稀土纳米发光材料的表面修饰方法丰富且技术成熟,能够操控稀土纳米发光材料的表面性能,进而调节纳米粉末与手印物质及客体之间的吸附状况,有利于提高手印显现的选择性.鉴于此,本研究采用溶剂热法合成出了性能优良的NaYF4:Yb,Er上转换发光纳米材料,并将其应用到传统的粉末显现技术中、对传统显现方法进行改良,使传统显现方法兼具高对比度、高灵敏度.

1实验部分

1.1实验试剂

氧化钇(99.99%)、氧化镱(99.99%)、氧化铒(99.99%)、浓硝酸(优级纯)、硬脂酸(分析纯)、氢氧化钠(分析纯)、油酸(分析纯)、氟化钠(优级纯)、无水乙醇(分析纯)、三氯甲烷(分析纯),实验中使用的水均为去离子水.

1.2NaYF4:Yb,Er上转换发光纳米材料的合成

称取0.8807g氧化钇、0.3941g氧化镱和0.0383g氧化铒于烧杯中,向其中加入20mL硝酸,加热并搅拌使氧化物粉末溶解,继续加热至近干,挥发掉过量硝酸得到稀土硝酸盐粉末.将稀土硝酸盐粉末用80mL无水乙醇溶解到500mL三口烧瓶中,然后升温至78℃并回流,在磁力搅拌下向三口烧瓶中缓慢滴加20mL含1.1900g氢氧化钠的乙醇溶液,滴加时间约为30min.滴加完毕,继续恒温回流40min,得到白色悬浊液.将悬浊液减压抽滤,用水洗涤2次、乙醇洗涤1次,滤饼在60℃干燥箱中烘干12h.向一烧杯中加入10mL水、15mL无水乙醇和5mL油酸,搅拌后形成均一溶液.再向其中加入0.9577g稀土硬脂酸盐前驱体和0.2099g氟化钠,混合物在超声辅助下充分搅拌.将此悬浊液转移到水热合成反应,向产中加入氯仿-乙醇混合溶剂,离心分离产品得白色粉末.将该粉末用水-乙醇混合溶剂洗涤3次.将洗涤后的粉末放入60℃干燥箱,得到稀土硬脂酸盐.向一烧杯中加入10mL水、15mL无水乙醇和5mL油酸,搅拌后形成均一溶液.将此悬浊液转移到水热合成反应,离心分离产品得白色粉末.将该粉末用水-乙醇混合溶剂洗涤3次.将洗涤后的粉末放入60℃干燥箱向中烘干12h,得到NaYF4:Yb,Er上转换发光纳米材料.

1.3NaYF4:Yb,Er上转换发光纳米材料的表征

采用TECNAI20型透射电子显微镜(TEM,美国FEI公司)观察纳米材料的尺寸形貌;采用XPertPro型多晶X射线衍射仪表征纳米材料的晶体结构;采用LS-55型荧光光谱仪检测纳米材料的上转换发光性能.

2结果与讨论

2.1NaYF4:Yb,Er上转换发光纳米材料的表征

下图为NaYF4:Yb,Er上转换发光纳米材料的TEM照片.可以看出,纳米材料的微观形貌为球形,尺寸均一,具有良好的单分散性.经测量,纳米颗粒的平均粒径约为70nm,其尺寸完全满足手印图1NaYF4:Yb,Er上转换发光纳米材料的TEM照片显现的需要.

2.2NaYF4:Yb,Er上转换发光纳米材料用于手印显现

粉末显现法是利用汗液、油脂等手印遗留物质与粉末之间的吸附力,使粉末吸附于手印遗留物质表面,从而实现潜在手印的显现.从理论上推断,将上转换发光纳米材料用于手印显现能够有效提高显现的对比度、灵敏度.本研究将NaYF4:Yb,Er上转换发光纳米材料应用于传统粉末显现法中,并与使用市售荧光粉末的显现效果进行对比,考察手印显现的对比度、灵敏度.

2.2.1对比度的考察

本研究分别使用NaYF4:Yb,Er上转换发光纳米材料以及市售绿色荧光粉末对玻璃表面的潜在手印进行显现,并考查两种手印显现方法的对比度。如图4所示,使用上述两种粉末显现的手印都可以在各自激发光的照射下发射出明亮的绿光,乳突纹线部位与黑色客体背景之间的对比反差较大,纹线清晰连贯.以上现象说明,使用NaYF4:Yb,Er上转换发光纳米材料和市售绿色荧光粉末,均可以明显提高手印显现的对比度.

2.2.2灵敏度的考察

本研究分别使用NaYF4:Yb,Er上转换发光纳米材料以及市售绿色荧光粉末对玻璃表面的潜在手印进行显现,并考查两种手印显现方法的灵敏度.使用市售绿色荧光粉末显现手印,只能观察到很小一部分汗孔特征,使用NaYF4:Yb,Er上转换发光纳米粉末显现手印,能够明显观察到汗孔特征,清晰度高.以上现象说明,NaYF4:Yb,Er上转换发光纳米材料本身细小的颗粒粒径有利于保护细微特征不被掩盖,进而使手印显现具有较高的灵敏度.

3结论

采用溶剂热法在水-乙醇-油酸的混合溶剂中合成出性能优良的NaYF4:Yb,Er上转换发光纳米材料.该上转换发光纳米材料的微观形貌为球形、单分散性较好、平均粒径约为70nm,晶体结构为六方NaYF4晶型,在980nm红外光的激发下能够发射出较强的绿光。将NaYF4:Yb,Er上转换发光纳米材料成功用于常见光滑非渗透性客体以及某些渗透性客体表面汗潜手印的粉末法显现,该显现方法除了具备传统粉末显现法操作简便、省时高效、适用性广等优点外,还具有灵敏度高、对比度强等一系列优点.使用NaYF4:Yb,Er上转换发光纳米材料显现的手印纹线清晰连贯、细节特征明显、对比反差强烈,鉴定价值较高.因此,本研究中合成的NaYF4:Yb,Er上转换发光纳米材料在很多真伪鉴别实践中具有广阔的应用前景.

参考文献

[1]詹求强,刘静,赵宇翔,等.多光子发光的稀土上转换纳米颗粒在生物光子学中的研究进展[J].激光生物学报,2013,22(1):13-25

纳米技术特征篇4

一纳米等于十亿分之一米。纳米技术是指在0.1至100纳米范围内研究电子、原子、分子的内在运动规律和特征,并利用这些特征制造具有特定功能产品的技术。运用到军事上,意味着一类最新武器装备――纳米武器。

早在2001年,德国已研制成功一种“黄蜂”大小的微型直升机,能升空130毫米,其发动机只有削尖了的铅笔尖儿大;2002年,美国麻省理工大学接下了美国国防部的巨额订单,与军方合作开发纳米战衣。

纳米技术能够使武器的体积和重量大大减小。据悉,用纳米量子器件取代大规模集成电路,使武器系统的重量和功耗成千倍地降低;用纳米技术制造的袖珍军团,可以执行各种军事任务。像蚊子一样的微型“单兵”能飞到敌方阵地窥视、监听或窃取文件甚至作战,一支微型纳米军队将角逐未来战场。

微型军队始于越战

在战场上运用微型军队,不是今人的创举。早在越战期间,美军一位专门从事生化战研究的专家已经利用臭虫的特性,将大批经过特殊改装的“臭虫探测器”通过飞机撒布在越南北方茂密的丛林之中。这些臭虫一旦爬到越南士兵身上吸血,背上的超微型无线电发射器便发出信号,引导美国轰炸机和攻击机对发出信号的地区进攻。

美军事专家预测,5年后的战场可能成为微型武器逐鹿的战场,从天上的“蜜蜂”机群,到地面的“蚂蚁”大军,乃至“苍蝇”、“蚊子”敢死队,许多身怀绝技的微型武器正在实验室里或生产线上整装待发。

目前,纳米微型军的队伍正在迅猛发展,其应用范围已经涉及陆、海、空、天等多个领域,光型号就有数十个,种类近百种。

“蚊子”导弹

由于纳米器件比半导体器件工作速度快得多,可以大大提高武器控制系统的信息传输、存储和处理能力,可以制造出全新原理的智能化微型导航系统。利用纳米技术制造的形如蚊子的微型导弹,可以起到神奇的战斗效能。纳米“蚊子”直接受电波遥控,神不知鬼不觉地潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。

“纳米炸弹”

美国密歇根大学生物纳米技术中心的科学家已经研制出了“纳米炸弹”。这种炸弹是一些分子大小的小液滴,其大小只有针尖的1/5000,作用是炸毁危害人类的各种微小“敌人”,包括含有致命生化武器炭疽的孢子。在测试中,这些纳米炸弹获得了100%的成功率。美国军方对纳米炸弹十分感兴趣。

“苍蝇”侦察机

如苍蝇般大小的飞行器既可通过飞机、火炮和步兵武器投放,也可人工放置在敌方信息系统和武器系统附近。大批机器“苍蝇”可在某地区形成高效侦察监视网,大大提高战场信息获取量。

“蚂蚁”士兵

这是一种通过声波控制的微型机器人。这些机器人比蚂蚁还小,但具有惊人的破坏力。它们可以通过各种途径钻进敌方武器装备中,长期潜伏下来。

纳米技术特征篇5

摘要:在过去的十年里纳米科学的首次浪潮澎湃而过。在此期间,国际、国内以及香港的学者已向世人证实他们可以采用“build-up”或“build-down”的办法制造大量的纳米管、纳米线以及纳米团簇。这些努力已经表明,如果纳米结构能够低廉地制造,那我们就会有更丰硕的收获。尺度小于20纳米的结构会展现非经典的性质,这提供给我们一个用全新的想法来制造功能器件的基础。在半导体工业,制造结构尺寸小于70纳米器件的能力允许器件的持续微型化。在下一个10年中,纳米科学和技术的另次浪潮将可能来临。在这个新时期,科学家和工程师需要展示人们对纳米结构的期待功能以及证实他们的进一步的潜力,拥有在纳米结构实际器件的尺寸、组份、有序和纯度上的良好控制能力将实现人们期望的功能。在本文中,我们将讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体

nanoscienceandnanotechnology–thesecondrevolution

abstract:thefirstrevolutionofnanosciencetookplaceinthepast10years.inthisperiod,researchersinchina,hongkongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.anumberofalternativeapproacheswillbediscussed.weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

keywords:nanoscience,nanotechnology,nanotubes,nanowires,nanoclusters,“build-up”,“build-down”,semiconductor

i.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(dram)和微处理器(mpu)的特征尺寸预期降到80纳米,而mpu中器件的栅长更是预期降到45纳米。然而,到2003年在mpu制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在dram的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当mos器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等

,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

ii.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(mbe)、化学气相淀积(movcd)等来进行器件制造的传统方法。“build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在stranski-krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100a/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mw)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如iii组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才

能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

iii.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于gan材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如scalpel(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(ti和cr)、半导体(si和gaas)以及绝缘材料(si3n4和silohexanes),还用在lb膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到si3n4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出gaas纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差

异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmx40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

iv.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(rie)或者电子回旋共振(ecr)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用x光和euv的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术

来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1à的精度或者更佳。透射电子显微术(tem)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(stm)和原子力显微术(afm)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

v.展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。这些评判方法得能够用来评判制备出的结构是否满足设计要求以及它们是否处于可接受的误差范围内。因此,除怎样能够将材料刻制成特征尺寸在1-100nm尺寸范围结构的问题外,还有两个重要的问题,那就是我们想要制备的哪些种类的新结构能充分利用在小尺度条件下所展现的量子效应,以及怎样表征所制备出来的结构。电子工业正面临双重挑战,首先要克服将器件尺寸缩小到100nm以下的技术困难,第二个困难是需要发明新器件以便能够取代尺度缩小到其操作机制崩溃的现有器件。因为目前还不清楚哪种结构将能够取代现在的电子器件,尽管传统光刻技术在刻制纳米结构上的局限性,但现在谈论摒弃传统技术尚为之过早。光电子工业则面对相对容易的困难,它的困难主要集中在图形的刻制问题上。这仅仅影响器件有源区的尺寸以及几何结构,但不存在需要克服的在器件运行机制上的基本极限。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找mos晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

纳米技术特征篇6

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

[论文关键词]纳米材料应用

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.