科技的人工智能(精选8篇)
科技的人工智能篇1
关键词:智能技术;电气自动化;应用
中图分类号:TM76;TP18 文献标识码:A 文章编号:1674-7712 (2014) 12-0000-01
人工智能技术是一种融合了多种学科的先进技术,在人工智能技术进入工业生产的很长时间内,使得我国的工业生产自动化水平得到了跨越式的提高。通过将人工智能技术应用于电气自动化控制的各个方面,最终实现了电气设备的“智能”操作,通过为电气设备赋予了如同大脑一般的逻辑思维,提高了电气控制的精确性和可靠性。因此,人工智能的出现,不仅可以帮助企业提高生产效率,更重要的是可以为未来电气自动化、智能化的发展趋势提供了新的思路。
一、人工智能技术的发展与特点
(一)人工智能技术的发展
人工智能技术是伴随着计算机技术发展而兴起来的一门综合性科学。“人工智能”的概念最早起源于1956年Dartmouth学会上,一批具有超前眼光的科学家,对于如何利用机器来模拟智能进行了广泛的讨论,使得“人工智能”作为一门新兴学科进入了人们的视野。随着时代的发展,人工智能技术越来越成熟和完善,在国内外众多科技企业和高校联合研究的努力之下,已经出现了智能语音、智能图像、语义理解等先进的人工智能技术,它不仅可以改变了人们的生产生活方式,更重要的是为人工智能技术的不断地创新和融合发展,逐渐形成一体化的人工智能技术链奠定基础。
(二)人工智能技术的特点
人工智能技术作为当前世界三大主流技术之一,不仅在应用范围上占据优势,还以其自身丰富的研究领域、跨学科的研究方法等特点,成为最具有挑战性的前沿科学,整体来说,智能技术在自动化控制方面的特点具体表现为:一是随着人工智能技术的完善,将工业生产的控制精度、效率都提高了一个新的层次,实现了工业生产控制的各种信息得到及时处理和调整,使得自动化生产流程变的更加柔性化;二是伴随着工业自动化生产的同步性和综合性趋势越来越显著,人工智能技术与自动化生产集成技术相互融合,以各种可操作、可编程的智能控制器,最终实现了电气自动化生产的多功能和稳定生产目的。
二、电气自动化中的人工智能技术探悉
工业自动化生产的顺利进行,要从自动化生产的目标入手,通过一定的控制程序完成每个生产流程的任务,因此,将人工智能技术运用到电气自动化生产时,能够自动、高速的处理来自于生产过程中的各类数据,从输入设备到存储运算器,再至智能控制器,人工职能技术的每个环节,都可以对工业自动化生产“了如指掌”,保证了生产的完整性,又提高了产品的质量,为电气自动化生产带来丰厚的收益,其具体应用可以从以下几个方面进行分析:
(一)保证了电气自动化设计的先进性
对于自动化控制来说,一套成熟的电气自动化控制从设计到正式投入使用的周期较长,而且在这个复杂而漫长的过程中,其设计电路的繁琐性、细致性都是令人难以想象的。由于在传统设计过程中,大部分设计工作都是依靠设计师的经验,以人工绘图布线的方式完成,这就拉长了自动控制的设计周期的同时,也使得电气设计不一定是最好的方案,由此可见,传统方式下的电气自动化控制的设计难度主要集中于此。而人工智能技术的出现,大大改变了电气自动化控制的设计过程,将设计变的更加高效和简单,从人工智能的技术层面分析,人工智能技术主要通过强大的计算机设计功能,将控制设计在人工智能技术的启发之下,充分显示出人工智能技术的透明性和灵活性,特别是人工智能技术的扩展性是一大特色,它可以将很多新知识纳入自己的存储系统中,将自动化控制设计的现在与未来需求结合在一起。从一定程度上可以认为,人工智能技术已经在几十年的发展中,将设计过程从理论变为实践,最终保证设计出来的电气自动化过程或产品能保持高质、高效的优良品质。
(二)将电气自动化控制能力提升到新的高度
电气自动化的控制过程充满了大量的数据和运算,人工智能技术的应用,可以通过模糊算法、遗传算法和专家系统对非线性函数进行计算,使得自动化控制变的更加精准,与以往控制理论相比,智能技术具有便于调节、一致性好、抗干扰能力强等优点。比如以人工智能技术中的模糊控制举例,这种结构简单、性能稳定的控制方式,让自动化控制的多维化变为现实,对控制模式识别和信号处理有着不可缺少的重要作用,比如在全自动轮胎钢丝圈的生产过程中,对不同产品的生产牵引速度采用模糊控制,不仅有利于生产速度的有效控制,还可以充分发挥人工智能技术中专家系统的优势,实现生产控制的简单、快速,使得工业自动化生产取得了良好的成效。
(三)满足了电气自动化故障的诊断需求
故障诊断也是电气自动化控制所不能忽略的重要环节,故障诊断的目的是为了确保自动化设备的安全性和准确性,随着我国工业自动化程度的不断提高,故障诊断对于自动化控制的重要性也将不言而喻,常见的人工智能诊断技术有专家系统、神经网络、分行几何等,每个故障检测技术都有自己独特的适用范围,它们都具备对故障信息的完全处理能力,包括对故障进行有效诊断并给出相应的解决措施,所以,智能诊断技术对推进我国电气自动化控制的发展意义重大,应该不断加强人工智能诊断技术的探索和研究。
三、结束语
综上所述,人工智能技术已经为电气自动化生产带来了创新的发展的灵感,特别是随着越来越多的理论和知识研究的深入,使得这项技术变的更为“智能化”,以最终满足日益复杂的现代工业的自动化生产的需求。
参考文献:
[1]纪、人工智能技术在电气自动化控制中的应用思路分析[J]、电子测试,2014(03)、
[2]周超、人工智能技术在电气自动化控制中的运用[J]、硅谷,2012(08)、
[3]刘冰、解析电气自动化控制中人工智能技术的运用[J]、科技创业家,2014(08)、
科技的人工智能篇2
一、“深”,深刻领会调研工作的重要意义
正所谓“涉浅滩者得鱼虾,入深水者得蛟龙”。通过深刻领会党中央、国务院、中国科协、江苏省关于加强中国特色新型智库建设工作的意见、方案、通知,我们深切的体会到,充分依托省科协人才荟萃、智力密集、联系广泛、地位超脱的优势,着力打造党政亟需、特色鲜明、制度创新、引领发展的专业化高端科技创新智库,逐步形成定位明晰、特色鲜明、规模适度、布局合理的新型科技创新智库体系,为具有全球影响力的产业科技创新中心和具有国际竞争力的先进制造业基地建设工作提供智力支撑,意义重大。
二、“实”,脚踏实地、真心实意了解情况
调查研究要有目的性、有针对性,带着问题去,循着方向去,奔着原因去,不是为调研而调研。我们坚持边调研边学习边对照检查,不打招呼、不增加负担、直接深入调研单位,切实掌握第一手资料。一是聚焦研究院分中心建设成效,赴乡村振兴战略研究中心和实践基地,讨论“2019年度江苏省农业特色田园乡村科技交流研讨会方案”,商讨解决分中心发展中遇到的痛点难点问题。二是注重接长科技创新智库工作手臂,赴南京工业大学科协调研江苏科技智库基地建设情况,发掘典型案例和经验做法,整合课题研究方向,征集服务党委政府科学决策的建言献策素材。三是着力强化省科协调研课题研究的过程控制,赴重大战略类课题的承担单位,就课题的研究进展情况、中期评审专家意见建议的整改情况、课题服务党委政府科学决策的建言献策的针对性等方面展开调研。四是积极放大科技工作者状况调查站点的舆情收集功能,选取高校、科研院所、企业等有代表性的站点进行调研,对前期近200篇上报信息进行汇总分析,针对科技工作者普遍反映在创新创业政策落实、科技人才队伍建设、科技人才评价和激励、科技成果转化等方面存在的突出问题,形成《关于近期江苏科技工作者关注的科技界情况的专报》。
三、“准”,准确分析工作中存在的成绩和不足
调查研究由调查和研究两个环环相扣的部分组成,调查研究最终的成效如何直接取决于调查是否准确深入、研究分析是否准确深刻。对于工作中存在的问题和不足,一定要找准方向、找准症结、找准原因,才能在原有的基础上推动工作与时俱进。调研了解到智库建设的现状:一是“小中心、大”智库网络初步形成。发挥苏科创新战略研究院在江苏省科技创新智库建设体系中的核心作用,建强四个研究中心,不断扩大和延伸智库建设工作手臂。推进智库工作与媒体融合,加强对科技界的政治思想引领。二是多层次多形式决策咨询工作卓有成效。积极参与中国科协重大课题研究,精心组织省科协课题研究,扎实开展专项调查研究,《江苏省科技工作者建议》、《江苏省科技智库专报》品牌效应逐步扩大,真正体现了智库作为党委和政府“智囊团”的优势,有效服务党委政府科学决策。三是新模式新平台“互联网+智库”上线运行。以中国科协智慧科协样板间建设为契机,积极推进江苏科技智库综合信息服务平台改版升级工作。建设智库的微信推广平台,打通与科技工作者沟通交流的网上通道。组织开展第二次江苏科技工作者状况调查工作,不断拓宽科技界舆情汇集平台,提升调查研究和舆情收集能力。四是第三方评估工作全面开花。评估项目的层次越来越高、项目来源的渠道越来越广、专家团队越来越稳定、评估工作的流程越来越规范、评估成果越来越得到更加广泛的认可。同时也发现了相关不足:一是引智工作还有待加强。省级重点培育智库建设工作需要进一步加强与国内外优秀智库的合作,积极引进复合型的智库学者,整合专业、高端、优质的人才资源,突破关键技术、带动新兴学科、发展高新产业,为我省建设具有全球影响力的产业科技创新中心和具有国际竞争力的先进制造业基地工作服务。二是用智领域还有待拓宽。省级重点培育智库建设工作需要进一步围绕经济社会发展的多层次、全方位、广角度等特征开展研究。在归纳总结国内外的先进经验的基础上,推动理论研究创新和应用实践创新。以省委省政府关心的重大理论问题和现实问题为出发点,围绕决策、服务决策、献言决策,扩大智库的社会影响力。三是凝智机制还有待完善。凝聚智力资源过程中,我省平台建设整体规划尚有不足,与智库发展相适应的人才遴选、人才培养、经费保障、激励机制以及薪酬制度有待完善,课题设置、研究、转化等方面的工作机制有待健全,决策咨询课题类型有待丰富,以《科技工作者建议》和《科技智库专报》数据库为基础的成果和转化平台还有待完善。
四、“细”,细致比较典型案例和经验做法
要作出宏观的正确决策就必须首先搞清楚微观的事情,往往微观搞得越清楚,宏观决策就会越明晰,越有生命力,工作的针对性和指导性就会越强。所以,我们力图以“解剖麻雀”的精神多聚焦典型、聚焦实际,精准发问,精准剖析,力求得出精确的结论。一是关于如何更好的集聚科技智库专家人才,我们参考了“中国与全球化智库”的聚智模式。该智库是凝聚海内外专家学者共同为中国在全球化进程中建言献策的一个高端平台,是海外留学人员、国际专家、华人华侨学者和国内专家学者智慧交融的一个智库。致力于把海内外不同领域有着深入研究的专家学者对中国与全球化发展中的问题及政策建议的研究成果集合起来,推动中国改革开放和与国际接轨。二是关于如何提升建言献策决策咨询的能力,我们学习了“中国东中西部区域发展和改革研究院”的相关成果。改研究院以项目课题为基础,紧紧围绕国家政策解读做文章,特别是在前瞻性研究课题方面,提出、发表了上百份建言献策报告,在全国政学两界影响较大。三是关于如何更好的打造第三方评估品牌,我们研究吸取“新加坡隆道发展与战略研究院”的经验。该研究院是具有公益性质的第三方独立研究机构,在追踪世界热点、难点问题,提供咨询服务和高端培训方面具备很强的实力。四是关于如何当好科技工作者和党委政府之间的桥梁和纽带,我们对“布鲁金斯研究所”的历史进行了研究。布鲁金斯研究所是美国一家研究公共政策的非赢利组织,一向被誉为美国最有影响力、最值得借鉴和最受信任的智库,旨在充当学术界与公众政策之间的桥梁,向决策者提供最新信息,向公众提供有深度的分析和观点。
五、“效”,用调研成果推动工作取得实效
科技的人工智能篇3
关键词:智慧;智能;人类智能;人工智能
0引言
不久前刚结束的围棋人机大战,使人工智能受到人们空前广泛的关注。它一方面表明智能科学与技术的发展极为迅速,同时也激起了社会对智能科学技术及其人才培养十分强烈的期待。人们对“中国大脑”计划的热议达到了前所未有的程度,“中国制造2025”计划正在快速推进,我国自主研制的智能服务机器人正在走向服务领域的许多行业,国内许多企业自发兴起的“机器换人”浪潮正高歌猛进。国务院政府工作报告中提出的“互联网+”虽然被人们解释为互联网向各领域的强势渗透,但是更多的有识之士却把“+”理解为“升级”,即“计算机互联网络”向“人工智能互联网络”的升级,而这正好与“中国大脑”计划相呼应!
为了适应这种发展的需要,努力办好“智能科学与技术”专业,北京邮电大学智能科学与技术研究中心曾经对设置了本专业的全国各主要高校做了一次普遍性的专业调查,结果发现,各校对于“智能科学与技术”专业的理解差异非常巨大。最狭义的理解,是把本专业看做是“计算机科学与技术的一个分支”;最广义的理解,是把它看做是“从理工到人文和社会几乎无所不包的综合学科”。
从科学研究和长远发展的观点来看,这样发散的理解会有利于人们解放思想,激励创新,把本学科的研究做深做透做到位。不过,从当前的本学科教育教学来说,这样分散的理解可能使“智能科学与技术”学科的人才培养工作迷失方向。
1基本模型
为了准确理解“智能科学与技术”学科,首先需要建立“智能科学与技术”学科的基本模型,这样才能从学科整体上厘清它的基本概念、基本原理和基本规律,规制过于宽泛和过于狭窄的偏差。图1就是为此而设计的基本模型。
在图1中,底部的椭圆代表外部环境的客体事物,也就是需要研究的“问题”;其上的整个部分代表主体及其与客体相互作用的过程:主体接受来自客体所产生的“本体论信息”,经过主体思考之后产生与客体交互的“智能行为”反作用于客体,解决问题。就在这个主客相互作用的过程中,主体充分展现了自己的智慧能力。其中的主体可以是人类个体,也可以是人类群体。因此,这是研究“智能科学与技术”的基本模型。
不断提升自己生存与发展的水平,这既是人类与生俱来的目标,也是人类永不枯竭的动力。为了实现这个目标,人类就要运用自己的智慧和知识不断去发现应当解决而且可能解决的问题,在此基础上努力去解决所发现的问题,不断前进。
人类的这种智慧能力包含两个相互联系相互作用相辅相成的部分:其一是根据人类所追求的目标和现有的知识去发现问题、定义问题和预设问题求解目标的能力,这是人类在长期实践过程中积累起来的一种内隐性的智慧能力,所以称为隐性智慧;其二是在隐性智慧所确定的工作框架内,在求解目标的引导下,运用相关信息和知识去生成解决问题的策略,成功解决问题实现求解目标的能力,这是一种外显性和操作性的智慧能力,所以称为显性智慧。
在图1的模型中,隐性智慧具体表现为“主体所定义的问题、主体的知识库里已经拥有的知识、主体为求解问题所预设的求解目标(也存在知识库内)”,这三者就构成了主体为求解问题所设置的初始工作框架。显性智慧则具体表现为图1中的“感知、认知、基础意识、情感生成、理智生成、综合决策、策略执行、效果检验以及反馈学习优化”所代表的问题求解过程。
由于隐性智慧是人类内隐性的智慧,需要明确的目标、足够的知识、很强的直觉能力、丰富的想象能力、甚至需要灵感和顿悟能力,才能创造性地发现值得解决的问题,所以,隐性智慧难以用人造机器去模拟。然而,由于显性智慧具有外显性和操作性特征,主要具备获取信息、生成知识、生成和执行策略的能力,因此,显性智慧有可能被人造机器所模拟。在约定俗成的学术语汇中,“智慧”比较抽象,带有形而上的色彩;而“智能”则比较具体,带有形而下的特点。于是,人类的显性智慧也常常被称为“人类智能”。
鉴于人类显性智慧与隐性智慧之间存在不可分割的深刻内在联系,人们就把研究和探索“人类隐性智慧和显性智慧奥秘”的科学技术称为“智能科学技术”,而把其中着重研究和模拟“人类显性智慧(人类智能)能力”的科学技术称为“人工智能”科学技术,或者就简称为“人工智能”。换言之,人工智能是“智能科学与技术”的一部分。
图1的基本模型及其相关解释启示我们:“智能科学与技术”的内涵既具有极强的基础性,涉及与物质资源同样基础的信息资源;又具有极强的深刻性,涉及人类创造性智慧的深邃奥秘;还具有极强的应用性,涉及极其广泛的应用领域。
因此,为了研究与学习“智能科学与技术”,人们应当具备人文社会科学、基础自然科学和应用技术科学的知识与能力,应当自觉遵循“文理交互,理工融通”的交叉科学理念。虽然我国高校仍有文科、理科、工科之分,但是,为了培养有发展能力和创新能力的人才,还是要在发挥各校特色的同时努力贯彻“文理交互,理工融通”的方针。这是智能科学与技术学科的鲜明特点,需要引起教学与研究人员的高度关注。
2基本方法
概念是学科的基石。从图1的基本模型可以看出,“智能科学与技术”包含了许多重要的新概念。除了上面已经讨论过的隐性智慧和显性智慧的基础概念之外,还有信息(包括本体论信息和认识论信息,特别是其中的语法信息、语义信息和语用信息)、知识(包括本能性知识、经验性知识、规范性知识、常识性知识、知识的内部生态系统和外部生态系统)、基础意识、情感、理智、智能策略、智能行为等一系列基本概念。
考虑到本文篇幅的限制,同时也考虑到读者可以很容易从现有文献中详细了解到这些概念,因此,这里只予以列举,而不准备展开具体的讨论。有需要的读者可以参阅相关文献。
这里需要特别关注的,是研究和学习“智能科学与技术”所需要确立的新的科学观和方法论问题。只有掌握了这些新的科学观和方法论,才能准确地理解“智能科学与技术”的基本概念、基本内容和基本规律。
有比较才能有鉴别,事物总是相比较而存在。了解“智能科学与技术”所需要的科学观和方法论的便捷方法之一,就是把它们同读者已经熟悉的“物质科学与技术”的科学观和方法论进行对比。众所周知,智能系统是一类开放的复杂信息系统,因此,这里的比较对象也要选择相对比较复杂的物质系统。表1就是这种比较的一些结果。
由表1可知,“物质科学技术”所采用的科学观包括(1)物质观:认为研究的对象是物质的;(2)结构观:认为研究的关注点应当是物质的结构;(3)孤立观:认为所研究的物质对象是与其它对象没有关联的;(4)静止观:认为所研究的物质对象是静止的,至少在研究期内是静止的。
基于这样的科学观,在处理比较复杂的物质对象的时候,物质科学技术所采用的方法论就是“分解一分析”,更具体地说就是“分而治之,各个击破,直接还原”。也就是人们所熟悉的“还原论”。
和“物质科学与技术”的情形不同,“智能科学与技术”的科学观包括(1)信息观:认为所研究的对象是信息;(2)系统观:认为研究的关注点应当是系统化的信息,即必须同时关注信息的形式、内容和价值;(3)生态观:认为信息不是孤立的或静止的,而是生长发展的;(4)机制观:认为信息的生长发展必然存在一定的机制。
基于这样的科学观,“智能科学与技术”所采用的方法论就是“转换―创生”。更具体一些说,就是“智能科学与技术”基本模型(图1)所展示的“信息转换与智能创生定律”。其中,“信息转换”是手段,“智能创生”是目的。
十分清楚,“物质科学与技术”的“分而治之”方法论体现了它的“物质观、结构观、孤立观和静止观”;“智能科学与技术”的“转换创生”方法论体现了它的“信息观、系统观、生态观和机制观”。
这个对比告诉我们,由于研究对象不同,导致学科的性质也不相同,我们不能把自己所熟悉的“物质科学与技术”的科学观和方法论统统照搬到“智能科学与技术”学科领域。虽然在研究局部细节问题的时候,这两种科学观和方法论的差异表现的不是很明显,但是在研究系统全局问题的时候,这种差别就会变得十分显著。这也是值得“智能科学与技术”的研究者和学习者特别关注的特点。
事实上,“人工智能”的研究就经历了一场方法论的变革。按照“分解―分析”的方法论思想,人工智能被分解为结构模拟(人工神经网络)、功能模拟(物理符号系统)和行为模拟(感知动作系统)三大学派,结果长期不能互相融通。20世纪末和21世纪初,一些研究人员提出“新的集成”和“现代方方法”试图找到三者融通的具体方法,但是都没有取得成功。2007年,本文作者按照“转换―创生”方法论思想提出了机制模拟的智能生成方法,结果发现:结构模拟(人工神经网络)、功能模拟(物理符号系统)和行为模拟(感知动作系统)分别是机制模拟的A、B、C型,从而实现了人工智能模拟方法的统一,见表2。
由此可见,以往人们把人工神经网络课程、物理符号系统课程(即普遍流行的人工智能和专家系统课程)、感知动作系统课程(即智能机器人或智能体课程)分开讲授或者只讲授其中一门或两门课程的做法是不合理的。
同时,我们一直把图1的模型称为“智能科学与技术的基本模型”。不过,如果注意到“智能科学与技术”的科学观一信息观,系统观,生态观和机制观,那么,我们也可以把图1称为“生态意义上的信息科学与技术基本模型”。这是因为,虽然在经典意义上的信息科学与技术基本模型只能覆盖到图1模型中的信息层次,但在生态学意义上,知识和智能都是信息的生态学产物,因此生态学意义上的信息科学与技术基本模型就覆盖了图1模型的全体。在生态学的意义上,“智能科学与技术”基本模型与“信息科学与技术”基本模型就合二为一:自顶向下观察,图1就是“智能科学与技术”的基本模型;自底向上观察,图1就是“信息科学与技术”的基本模型。于是有:
智能科学与技术=生态学意义的信息科学与技术
如果把“智能科学与技术”模型中的“由信息转换为知识”和“由信息、知识和目标转换为智能”这两个核心部分命名为“核心智能科学与技术”,把非生态学意义上的信息科学与技术命名为“常规信息科学与技术”,那么,也可以有:
智能科学与技术=核心智能科学与技术+常规信息科学与技术
在我国教育部的学科目录中,“智能科学与技术”其实就是“核心智能科学与技术”,目录中的“信息科学与技术”其实就是“常规(非生态学意义的)信息科学与技术”,后者又被划分成“通信”、“计算”、“自动化”、“物联网”、“信息安全”这样一些更加狭窄而且相互交叠的二级学科,显然有待进一步合理化。
3基本课程
北京邮电大学智能科学与技术研究中心最近实施的全国高校智能科学与技术专业教学计划调查表明,我国多数学校的教学计划确实体现了“计算机科学与技术的一个分支学科”的特点,很少学校的教学计划能够表现“文理相交,理工融通”的交叉科学精神。这就提出了一个尖锐的问题,如果真的把“智能科学与技术学科”办成“计算机科学与技术学科”的一个分支学科,那么,这样的“智能科学与技术学科”还有存在的理由吗?
由以上分析的“智能科学与技术”的基本模型和基本方法可以知道,为了学习、理解和掌握“智能科学与技术”学科,人们的知识结构必须包含社会科学、人文科学、基础科学、应用技术的基础知识与综合能力。
为此,由中国人工智能学会教育工作委员会和清华大学出版社计算机分社共同组建的“全国高校智能科学与技术专业系列教材规划与编审委员会”(以下简称编委会)提出了如下的本学科核心课程和相应的核心教材。
(1)一年级第一学期的课程智能科学与技术导论是一个引导型课程,旨在以准确而通俗的概念、全面而浅近的思路、亲切而富有感染力的语言,引导刚刚踏入校门的新生了解:什么是“智能科学与技术”?为什么要学习“智能科学与技术”?怎样才能学好“智能科学与技术”?
(2)二年级第一学期的课程脑与认知科学基础是本学科特需的自然科学基础(脑科学)和社会科学基础(认知科学),旨在为学生提供关于人类智能的脑科学基础知识和人类认知能力的科学知识,特别是关于“脑结构如何产生认知能力(物质如何生成精神)”的科学机理。
(3)二年级第二学期的课程不确定性数学引论是本学科特需的数学基础知识课程,旨在为学生提供关于“智能科学与技术”领域必然涉及到的各种不确定性(包括随机不确定性、模糊不确定性、粗糙不确定性以及非线性引起的混沌不确定性)的描述与处理知识,特别要阐明这些不确定性的根源、相互关系、描述和处理方法。
(4)三年级第一学期的课程机器智能是本学科的专业基础课程,旨在用“智能科学与技术”的方法论阐述人类智能的各种模拟方法(包括结构模拟、功能模拟、行为模拟和机制模拟),以及这些不同模拟方法之间的相互关系和统一的途径,为学生学习机器(人造系统)智能奠定理论和方法的基础。
(5)四年级第一学期的课程《科技史与方法论》,由于智能科学技术本身富有科学观和方法论的特色,因此这是一门具有本学科特色的总结性课程,旨在为学生提供关于科学技术发展史(特别是智能科学技术发展史)所展现的科学观和方法论知识,使学生能够从“智能科学与技术”的学科知识基础上站立起来,具有纵观和把握智能科学技术发展规律的能力,使学生的学术眼界能够“形成于课堂,而又远远超越课堂”。
编委会认为,这些核心课程的综合(加上各个学校的人文社会科学通识课程和各有特色的专业课程),将为学习者提供必要的“文理相交,理工融通”的交叉学科思维素质和能力。无论是理科型学校还是工科型学校,都要在保证上述核心课程优质教学的基础上努力发挥自己的特色,而不应当削弱这些核心课程的教学质量。
5结语
科技的人工智能篇4
(2019-2021)
为深入贯彻落实《新一代人工智能发展规划》(国发〔2017〕35号)、《促进新一代人工智能产业发展三年行动计划(2018-2020年)》(工信部科〔2017〕315号)和《山东省新一代信息技术产业专项规划(2018-2022年)》(鲁政字〔2018〕247号),抓住人工智能产业发展机遇,加快推动崂山区新一代人工智能创新发展,制定本行动计划。
一、总体要求
(一)发展思路
全面贯彻党的精神,以新时代中国特色社会主义思想为指导,全面贯彻落实总书记对山东省提出的“走在前列”的要求,深入实施创新驱动发展战略,聚焦人工智能重点核心领域,建立以企业为主体、市场为导向、产学研用深度融合的人工智能技术创新体系,加速人工智能产业化进程,重点推进以神经网络芯片、核心算法、大数据和云计算等为支撑的人工智能与我区制造业、医疗健康等优势产业深度融合应用,围绕智能交通、智能医疗、智能家居、智能安防、智能教育、智能制造等应用方向,加速产业集聚,推动产业发展,将崂山区打造成为具有全国影响力的产业聚集区。
(二)基本原则
--市场主导,政府助推。充分发挥市场配置资源的基础性作用,坚持企业的市场主体地位,面向市场需求谋划产业发展。同时,注重发挥政府的调控引导、规划指导和政策支持作用,营造良好综合环境,促进人工智能产业快速健康发展。
--需求驱动,应用为本。坚持与人工智能应用市场开发相结合,立足需求,抓应用促发展,主动适应经济和社会发展的需要,积极培育和创造新的市场,深化人工智能的推广应用。
--强化创新,提升能力。强化技术创新、产品创新、管理创新和业务创新,通过创新驱动产业发展,提高核心竞争力和综合服务能力,为人工智能产业发展提供更有力的支撑。
--特色发展,差异竞争。立足崂山比较优势和产业实际,在强化整体实力的基础上,坚持差异化竞争,因地制宜确定人工
智能具有国际国内领先水平的行业优势。
(三)发展目标
--人工智能产业创新体系基本确立。引进及培育5-10家人工智能创新企业,建设3-4个人工智能创新平台,建设人工智能工程(技术)研究中心、企业技术中心和重点实验室,基本形成开放协同的人工智能创新体系。
--人工智能关键核心技术取得重要进展。人工智能基础理论、计算机视觉、自然语言处理等关键核心技术取得重大突破,形成具有标志性的重大科技成果10个以上。
--人工智能重点领域的产品规模化发展。在交通、医疗、家居、安防、教育、制造等重点领域形成一批人工智能标志性产品,在相关领域获得广泛应用。力争到2021年,全区人工智能核心产业规模达到100亿元。
--人工智能产业支撑不断完善。建设青岛联通国际通信业务出入口局,使宽带接入速率和时延满足人工智能产业发展需求。落实崂山新旧动能转换战略,依托崂山产业云图平台,改善营商环境,建设智慧崂山,加强人工智能产业布局总体规划,构筑崂山人工智能产业新优势。
二、重点任务
(一)实施分类培育,构建更具活力的产业体系
实施人工智能骨干企业培育工程,建立大中小微型企业培育梯队,建立崂山区战略性新一代人工智能产业企业数据库,实施分类培育计划。培育出一批自主创新能力强、主业突出、掌握核心关键技术、拥有自主知识产权和品牌优势的巨人、小巨人企业。支持中小企业走“专精特新”发展之路,加快培育一批成长潜力大、商业模式新、产业特色鲜明的细分领域的“独角兽”企业、“瞪羚”企业。支持符合重点产业发展导向的高成长性初创企业和产业链上下游企业加快发展,壮大产业发展后备力量。
(责任单位:区工业和信息化局、区科创委有关部)
(二)紧盯前沿领域,构建面向未来的产业优势
坚持紧盯前沿、打造生态、沿链聚合、集群发展,启动“未来产业”培育计划。以智能交通、智能医疗、智能家居、智能安防、智能教育、智能制造等战略性新兴产业为重点,加大招商引资力度,开展精准招商、产业链招商和以商招商,创造企业入驻良好条件,引进一批创新能力强、行业地位突出、竞争优势明显的人工智能龙头企业,形成区域产业集聚态势,加快推进人工智能重点产业链项目建设,壮大产业规模。
(责任单位:区发展和改革局、区科创委有关部、区工业和信息化局、区行政审批局、区市场监管局、崂山税务局)
(三)强化创新驱动,构建开放共享的产业平台
崂山区将在人工智能产业及其支撑领域与国内外尖端技术企业建立长期、全面的战略合作关系,建立长效机制,助推新兴产业生态建设及新旧动能转换赋能,集中力量打造部级人工智能产业示范区、虚拟现实产业中心、教育数字化转型示范区。依托微软“基于微软人工智能及虚拟现实技术的公共服务平台”等项目,建设人工智能产业公共服务平台和技术创新平台,围绕关键共性技术开展技术攻关。整合政产学研用等资源,推动公共服务平台、领军企业和创新型企业加强合作,汇聚人工智能创新创业资源,提供相关研发工具、检验测评、数字安全、标准化、知识产权、情报咨询等专业化的创新创业服务。
(责任单位:区工业和信息化局、区科创委有关部、区发展和改革局、区电子政务和大数据发展管理中心、区市场监管局)
(四)优化基础设施,构建智能高效的产业支撑
加快布局实时协同人工智能的5G增强技术研发和应用,大力推进青岛联通国际通信业务出入口局项目落地,使崂山区宽带接入速率和时延满足人工智能行业应用需求。利用北方三大对外光缆在崂山登陆和我区信息技术服务业集聚的有利条件,激发运营商积极性,以联通云计算中心为重点,形成50万台服务器的服务能力,依托滨海数据机房等4个数据中心的6300组机柜,打造崂山区为人工智能产业北方最为重要的数据高地之一并辐射全国。同时以强化人工智能研发基础支撑为重点,完善崂山产业云图平台、“三建联动”、国土资源“一张图”等平台,形成一定规模的高质量标注数据资源库,进一步完善崂山区人工智能产业发展环境。
(责任单位:区工业和信息化局、区科创委有关部、区电子政务和大数据发展管理中心、区委网信办、区自然资源局、区城市管理局、区综合行政执法局、区社会治理指挥中心)
(五)发挥前瞻思维,集聚人工智能的高端人才
崂山区主要有中国海洋大学、青岛大学和青岛科技大学3所重点高校,每个高校均开设3-4个人工智能相关专业,拥有多位在科研领域成绩斐然的学科带头人和大量经验丰富的骨干教师,平均每年共向社会输送2000余名人工智能专业人才。依托三大高校的人才培养机制,以多种方式吸引和培养人工智能高端人才和创新创业人才,支持领军人才和青年拔尖人才成长。支持国内外人工智能优势企业、高等学校、科研机构等开展合作,搭建开源技术创新平台,探索开放式协同创新模式。鼓励企业设立首席数据官、人工智能首席专家等岗位,依托国际虚拟现实创新大会等各类平台载体,积极引进人工智能产业发展急需的高端人才。统筹利用崂山区现有人才政策,加强人工智能领域优秀人才特别是优秀青年人才引进工作。对经认定的人工智能及大数据行业领军人才、高端管理人才、专业技术人才等,根据认定结果和服务本区情况,参照本区人才政策的有关实施办法,授予相应人才奖励及补贴。
(责任单位:区人力资源和社会保障局、区财政局、区教育和体育局)
三、实施路径
立足国家发展全局,遵循省市发展目标,准确把握人工智能产业发展态势,找准突破口和主攻方向,全面增强科技创新基础能力,全面拓展重点领域应用深度广度,全面提升经济社会发展和民生应用智能化水平。崂山区将从以下几个方面进行实施:
(一)夯实基础支撑
1、智能传感器
智能传感器是实现人工智能的核心组件,是用于全面感知外界环境的最核心原件,各类传感器的大规模部署和应用是实现人工智能不可或缺的基本条件。紧抓智能传感器市场需求爆发增长、技术创新高度活跃的战略机遇期,聚焦移动终端、智能硬件、物联网、智能制造、汽车电子等重点应用领域,突出创新发展主线,紧紧围绕产业链协同升级和产业生态完善,布局基于新原理、新结构、新材料等的前沿技术、颠覆性技术,做大做强一批深耕智能传感器设计、制造、封测和系统方案的龙头骨干企业,打造一批具有国际影响力的技术标准、知识产权、检测认证和创新服务的机构,建成核心共性技术协同创新平台,有效提升中高端产品供给能力,推动崂山智能传感器产业加快发展,构建我区新一代人工智能产业体系。
专栏1
智能传感器产业发展工程
围绕智能机器人、智能制造系统、智能安防、智能家居、智能医疗等领域,依托本地海尔集团、歌尔智能传感器、Pico、融汇通等重点企业,海尔云谷、歌尔科技产业园、歌尔长光研究院、北京邮电大学人工智能研究院,重点开展安防类传感器、微型麦克风和压力传感器二合一模组、声压磁气流气体集成TOF、火像智能识别传感器等创新项目,打造一批具有国际影响力的技术标准、知识产权、检测认证和创新服务的机构,建成核心共性技术协同创新平台。
国外重点企业:AT&T、IBM、索尼、高通、Maradin、博世、爱普生、卡西欧、UTAC、星点高科技、Acurtronic、亚德诺半导体、应美盛、楼氏电子、意法半导体、英伟达、苹果、三星等。
国内重点企业:高德红外、歌尔声学、士兰微、中芯国际、台积电、华虹半导体、同欣电子、瑞声科技、红光股份、京元电子、共达电声、上海华岭、敏芯微、飞智、速位科技、深迪半导体、小米、海思、君正、华为、中兴、联想等。
2、神经网络芯片
神经网络芯片是人工智能的核心,人工智能产业得以快速发展,得益于海量激增的数据和不断提升的计算能力,而无论是海量数据的获取和存储还是计算能力的体现都离不开硬件载体,即芯片。因此,神经网络芯片就成为当前激烈的人工智能产业比拼中颇具战略地位的一个环节,也是近两年投向人工智能众多资金中最为关注的领域之一。崂山区在神经网络芯片领域的资本与研发投入方面、产业发展现状与国内领先水平仍然存在较大差距,尚处于奋力追赶的落后局面。我区应正视与其他人工智能产业发达地区技术基础和技术水平上的差距,在神经网络芯片领域,冷静判断外部机遇和挑战,客观认识自身优势和弱点,厘清发展关键问题和相应对策,推动我区神经网络芯片产业做大做强、实现整个人工智能产业高质量发展。
3、数据及计算服务
数据及计算服务包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务,及为人工智能开发提供云端计算资源和服务。结合大数据应用开发流程,对数据处理环节进行抽象形成数据智能服务,包括数据集成、数据治理、数据分析和数据可视化等服务;通过提供功能完备的大数据生态服务,帮助完成大数据应用开发,真正的发挥数据的价值。崂山区利用北方三大对外光缆在崂山登陆的有利条件,依托中国联通等项目加快推进云计算中心建设,形成50万台服务器的服务能力,加快推进数据采集和传感设备的研发和产业化。促使联通国际出入口局项目落地,并加强与信通院(青岛)科技创新中心有限公司的合作,开发崂山区5G项目,创新人工智能产业布局。同时依托海尔、海信网络、大快搜索等重点企业,鼓励数据整理、分析、挖掘等模型的研究,将大数据连接、交互、决策融入产品的设计制造和企业的经营管理,提升智能家电、智能交通、智能安防等产业的发展水平。
专栏2
数据及计算服务产业发展工程
围绕数据整理、分析、挖掘等关键数据分析技术与计算支撑能力,重点依托海尔集团、海信网络、中国联通青岛分公司、中科曙光、聚好看、网信科技、大快搜索、民航凯亚、特锐德、赛飞特、融汇通、博云视觉、宇方机器人等,重点围绕大数据中心、城市智能大脑、人工智能训练与测试平台等方面进行项目推进。
国外重点企业:IBM、微软、Teradata、Cloudera、AWS、Tableau等。
国内重点企业:百度、阿里云、腾讯、搜狗、华云数据、今日头条、百分点科技、世纪互联、金山云、数据堂、明略数据、天眼查、海云数据、Social
Touch时趣互动、美林数据等。
(二)突破关键技术
1、人工智能基础理论算法
人工智能基础理论算法是让机器自我学习的算法,包括路径规划、机器学习、深度学习、增强学习等。随着人工智能行业需求进一步具化以及对分析要求的进一步提升,围绕算法模型的研发及优化活动愈发频繁。算法创新将是未来人工智能行业发展的必然趋势,深度学习、强化学习等技术的出现使得机器智能的水平大为提升。业内科技巨头纷纷以深度学习为核心在算法领域开展布局,谷歌、微软、IBM、Facebook、百度等相继在图片识别、机器翻译、语音识别等领域实现了创新突破。崂山区应紧跟产业发展潮流,大力发展人工智能核心算法,同时推动算法开源化、服务化,鼓励企业发展针对性整体解决方案。
2、计算机视觉技术
计算机视觉技术是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉技术日益成熟,应用场景不断拓展,自动驾驶、机器人、智能医疗等领域均离不开计算机视觉技术,市场发展空间巨大。计算机视觉行业巨大的发展前景决定其具有高成长性特点,但行业发展同时伴随高风险性,行业竞争需要比拼企业技术算法能力、资金能力、以及人才资源,同时考验企业能否实现技术迅速落地,对企业综合实力要求高,综合实力不具备优势的企业在行业内将难以生存。依托海信网络、中科曙光、歌尔声学等重点企业,引导企业既注重前沿算法研发,同时兼顾现阶段商业落地与市场拓展。专栏3
计算机视觉技术突破工程
围绕图像视频识别、生物特征识别、目标检测特征定位及提取、模拟训练、即时定位与地图构建(SLAM)等重点方向,重点依托海信集团、海信网络、海信医疗、中科曙光、歌尔声学、Pico、聚好看、黑晶科技、融汇通、民航凯亚、赛飞特、中译语通文娱科技、博云视觉、宇方机器人等企业,中科曙光人工智能产业园、中译语通人工智能视频创新产业基地、国际创新园、天宝国际、交通谷创客工厂等园区,推进机器视觉基础技术研究及家庭、社区场景应用、CAS计算机辅助手术系统、视频特征提取分析、医疗医学影像分割、智能家电领域的类生物图像识别系统机器人视觉叉齿定位系统、3D视觉定位系统等项目。
国外重点企业:谷歌、Facebook、苹果、Synaptics、Rethink
Robotics、ABB等。
国内重点企业:百度、阿里巴巴、京东、腾讯、商汤科技、美图秀秀、云从科技、旷视科技Face++、中科慧眼、超多维、图麟科技、码隆科技、依图科技、深兰科技、格林深瞳、诺亦腾科技、速感科技、海云数据、陌上花科技、触景无限、图森未来、体素科技、图普科技等。
3、自然语言处理技术
自然语言处理技术是人工智能最具挑战的技术领域之一,主要研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、语义理解和问答系统等。在大数据、移动互联网、云计算以及其他技术的推动下,自然语言处理技术产业已经步入快速增长期,未来将带入更多实际场景。但自然语言处理技术具有较高的行业技术壁垒,众多国际知名企业如苹果、微软、科大讯飞等均重点攻克自然语言处理技术,推出大量相关产品。依托大快搜索、中科曙光、歌尔声学、海尔科技等重点企业,鼓励相关企业在自然语言处理技术领域攻坚克难,促进企业间沟通交流,共同进步。
专栏4
自然语言处理技术突破工程
围绕机器翻译、语音识别、语义理解、自动问答、语音合成等重点方向,重点依托海尔科技、中科曙光、中译语通文娱科技、歌尔智能传感器、Pico、黑晶科技、大快搜索、冠义科技、赛飞特等本地企业,推进语音识别及语音交互系统、字幕识别系统、智能翻译学习系统等项目。
国外重点企业:微软、苹果、三星、亚马逊、Nuance等。
国内重点企业:科大讯飞、阿里巴巴、搜狗、云知声、凯立德、捷通华声、思必驰、汉王科技、叮咚音响、I、am+、智齿客服等。
(三)培育创新应用
1、智能交通
崂山区交通智能化水平正在持续提升,互联网与交通融合的步伐也在加快,智能交通已经成为我区智慧城市建设需要突破的重要领域。在城市交通智能管理方面,我区已经研制出多项成熟产品投入市场。依托海信网络科技、中科曙光等企业,强化智能交通等智能系统,以云计算、大数据、深度学习技术为基础构建人工智能交通平台,掌握AI核心,打造人工智能交通生态链。
2、智能医疗
智能医疗是我区人工智能驱动的规模最大,增长最快的领域之一,涌入了大量的投资,相关创新覆盖临床研究、机器人医疗助手、大数据分析、基于基因组学和精密医学的个性化治疗等。基于人工智能的自动检测,将可疑病例筛选,供医生确诊,缩小医生检查范围,提高了医生的诊疗效率。大力发展智能医疗企业如海信医疗等,满足精准医疗、个性化医疗的发展趋势,推动我区智能医疗产业发展。
3、智能家居
依托海尔科技公司、海尔智能家电等重点企业,推动人脸识别、语音识别、自然语言处理、智能搜索、自动控制等技术在智能家居产业的广泛应用。利用传感器和通讯设备对人居环境进行监测形成的数据流,通过云计算和深度学习建立相应模型,依托家用物联网对室内电器设备乃至整个建筑的实时控制,提升家居产品智能化服务水平。
4、智能安防
智能安防业务主要涉及视频监控和多种传感器预警,涉及数据传输、场景图像识别。智能消防业务主要涉及智能传感器应用,火像智能识别。区内主要代表企业有中国安科青岛分公司、中科曙光、融汇通网络、赛飞特等,我区应发挥人工智能安防领域的技术优势,加快智慧城市公共安全技术防范系统产业化、人脸识别综合解决方案研制。研发集成多种探测传感技术、视频图像信息分析识别技术、生物特征识别技术的智能安防与警用产品,构建公共安全智能化监测预警平台,提高我区防灾减灾救灾能力。
5、智能教育
人工智能技术与学校教育融合成为一种未来趋势,为个性化学习和个别化学习的实现提供技术保障,成为教育发展的重要推动力。利用智能技术加快推动人才培养模式、教学方法变革,构建包含智能学习、交互式学习的新型教育体系。依托青岛卫安智能教育、黑晶科技、智海云天等智能教育行业领军企业,结合市场需求,提升教学质量,促进我区未来教育事业发展。
6、智能制造
牢牢把握制造业数字化、网络化、智能化的发展方向,重点发展轨道交通配套设备、智能仪表与检测设备、船舶配套设备、工业智能机器人等产业。智能制造对自动化、智能化的需求越来越高,依托海尔集团、宇方机器人等重点企业,加强专业人才引进和培养,加强产学研合作,推动智能生产线、智能工厂、无人数字化车间等智能制造产业的发展。
四、保障措施
(一)加强组织领导
加强统筹协调和部门协同,建立人工智能产业发展共建机制。推动政府主动服务,建立重点企业与政府和技术行业专家的定期联络机制。加强资源统筹利用,推动建立崂山区人工智能产业发展联盟和产业协会,发挥各类企业、机构、组织的支撑作用。加强重点任务监督检查,严格督查考核,统筹推进人工智能产业发展各项重点任务顺利实施。
(二)完善政策支持
出台推进人工智能产业发展扶持政策,加大财政资金支持力度,落实资金保障,加大对人工智能产业链重点企业、主要环节、关键设备的补贴力度。大力引进和培育人工智能企业、促进人工智能相关产业集聚、优化投融资服务、加强人才队伍、基础建设和应用示范。
(责任单位:区工业和信息化局、区科创委有关部、区财政局)
(三)优化产业布局
将人工智能重大项目优先列入崂山区重点项目计划,优先保障用地用房需求,营造良好的创新创业环境,保障产业发展空间。打造一批人工智能细分领域“单项冠军”,推动龙头企业在崂山建立区域总部、创新中心、孵化基地。整合空间资源,优化产业布局,设立人工智能产业园区,建设国内一流的人工智能产业平台。
(责任单位:区工业和信息化局、区科创委有关部)
(四)维护知识产权
支持企业加强人工智能重点技术和应用领域核心专利培育,力争形成一批高质量的核心专利。探索建立人工智能领域的专利合作授权机制和专利风险防控机制,推动人工智能领域知识产权成果加速转化,带动人工智能产业化。不断健全和完善知识产权保护机制,加强人工智能领域知识产权保护力度。
(责任单位:区市场监管局)
(五)加大宣传力度
加大对我区人工智能领域的优秀企业家、领军企业、创新创业项目、新技术新产品等的宣传力度。支持协会、园区、企业及各类机构组织开展各类人工智能创新论坛、人才交流、产品推介、项目招商等活动,推动企业与企业之间、企业与社会组织之间开展广泛交流,及时研究提出推动人工智能产业发展的对策、措施和建议,营造人工智能创新发展的良好氛围。
(责任单位:区委宣传部、区工业和信息化局)
附件:人工智能关键应用领域发展路线
附件
人工智能关键应用领域发展路线
一、智能交通
重点方向
智慧城市、智能驾驶、车联网、智慧公交等。
重点企业
海信网络、中科曙光、民航凯亚、特锐德等。
重点项目
海信城市智慧心脏、公安实战平台“海信战狼”、大型活动交通警卫保障系统、智能驾驶辅助系统、“车智网”智慧公交系统、自适应信号机、智能车载视频监控调度终端、视频特征提取分析服务器、双目智能驾驶辅助系统;中国海洋大学信息科学与工程学院智慧港口大型机械状态监测与分析系统;中科曙光大规模视频智能分析(SAI);民航凯亚A-CDM系统、自助安检系统、智能交互系统、无线站坪调度系统、青岛新机场运营;特锐德平台系统定制服务、大数据修车、动态定价等。
创新平台
海信公安实战平台“海信战狼”、智慧心脏2、0、公交都市3、0、实战平台2、0、视频大数据系统1、0;民航凯亚航班运行指挥平台、特锐德特来电大数据人工智能平台等。
重点园区
海信全球研发中心、中科曙光人工智能产业园、特锐德工业园。
国外重点
企业
西门子、IBM、阿特金斯、柏城、美国Zoox、美国AEYE、美国MightyAI等。
国内重点
企业
爱驰亿维、蔚来汽车、车和家、智车优行、驭势科技、奇点汽车、景驰科技、极豆车联网、图森未来、纵目科技、清智科技、北京易华录、银江股份、南京莱斯、海康威视、赛为智能、宝信软件、皖通科技、川大智胜、中海网络、浙江大华等。
二、智能医疗
重点方向
智能健康管理、辅助诊疗、智能影像识别、智能影像等。
重点企业
海信医疗、中科曙光等。
重点项目
海信CAS计算机辅助手术系统、SID外壳智能显示系统、智能医学影像分割、智能病灶检测及分类、骨折自动筛查、给予人工智能的超声术中导航项目;青岛科技大学信息科学技术学院智慧医疗与大数据系统、基于云计算和MapReduce的区域预料大数据分析关键技术研究(国家自然科学基金面上项目)等。
创新平台
企业研发中心。
重点园区
海信全球研发中心、中科曙光人工智能产业园、崂山湾国际生态健康城等。
国外重点
企业
直觉外科、英特尔、IBM、微软、Google、美国AiCure、美国Flat-
iron
Health、美国Recursion
Pharmaceuticals、美国Tempus
Labs等。
国内重点
企业
华大基因、依图科技、九爱科技、森亿智能、推想科技、碳云智能、思派网络科技、零氪科技、健培科技、泰格医药、银江股份、宜通世纪、延华智能、和佳股份、迪安诊断等。
三、智能家居
重点方向
智能冰箱、智能电视、智能空调等家电;智能音箱、智能手表等智能硬件;智能窗帘、智能衣柜、智能卫浴等智能家居。
重点企业
海尔科技、海尔智能家电、海信集团等。
重点项目
海尔全屋智能系统、物联网安全操作系统、数据驱动的智能生活服务平台;海信机器视觉基础技术研究及家庭、社区场景应用;中国海洋大学信息科学与工程学院智能家电领域的类生物图像识别系统等。
创新平台
海尔智慧家庭人工智能开放平台、大数据云脑开放平台;中国海洋大学海洋物联网协同创新中心等。
重点园区
海尔云谷等。
国外重点
企业
施耐德、霍尼韦尔、Control4、快思聪、ABB、西门子、威易、罗格朗、科道等。
国内重点
企业
海尔集团、京东微联、华为、阿里智能、米家、美的、杜亚、河东、柯帝、霍尼韦尔、瑞讯科技、roboo智能管家、叮咚音响、公子小白、古北电子、智云奇点、涂鸦科技、小葵智能等。
四、智能安防
重点方向
视频监控、传感器报警等。
重点企业
中国安科青岛分公司、中科曙光、融汇通网络、赛飞特、博云视觉等。
重点项目
中科曙光大规模视频智能分析(SAI);赛飞特危险化学品载体区块链芯片研发项目、智能隐患排查系统、智能咨询、智能安环专家系统、智能应急培训系统、智能应急处置系统;博云视觉未名智瞳监控视频大数据搜索分析系统等。
创新平台
中科曙光大规模视频智能分析(SAI)一体化视频作战平台、赛飞特智能安环家安全托管云平台。
重点园区
中科曙光全球研发总部基地、中科曙光人工智能产业园、天宝国际等。
国外重点
企业
索尼、松下、三星电子、派尔高、安定宝、诶比、亚安、霍尼韦尔、博世安保、三洋、美国智能、HID、美国西屋、捷顺、门吉利
、科松、披克、APOLLO、艾礼富、视得安、加拿大枫叶、博世安保、安居宝、来邦、Aiphone、立林等。
国内重点
企业
TCL商用信息科技、爱谱华顿、安居宝、安康银盾、安威士、保千里、北京天大天科、博云视觉、昌图智能、辰安科技、达实智能、大华股份、云从科技、商汤科技、依图科技、旷视科技Face++、图麟科技、中星微电子、寒武纪科技、海康威视等。
五、智能教育
重点方向
VR教室、多媒体互动课堂、AR娱教等。
重点企业
青岛卫安智能教育、黑晶科技、智海云天等。
重点项目
卫安智能教育机器人;黑晶VR超级教室、神卡王国、AVR定制系列、AR互动体验;智海云天多媒体互动课堂、VR教育软件技术研发、AR娱教、VR多维课堂、StarUR多维创客等。
创新平台
商汤科技人工智能教育研究院、北京邮电大学人工智能研究院、中国海洋大学、黑晶研究院等。
重点园区
青岛智能教育装备产业园等。
国外重点
企业
谷歌、美国Osmo、Knewton、Elemental
Path、DreamBox
Learning、Smart
Sparrow、CogniToys;英国Whizz
Education;瑞典Sana;爱尔兰Immersive
VR
Education等。
国内重点
企业
roboo智能管家、作业盒子、又学教育、英语流利说、微视酷、贝尔科技、小知科技、数字时间、幻景传媒、哆维网络科技等。
六、智能制造
重点方向
智能工厂、智能生产线控制系统、生产线信息化系统和生产线大数据分析、北斗导航芯片和终端产品,智能电表、大气监测仪器仪表、智能工业在线测量分析、油气存储运输设计、船舶压载水等。
重点企业
海尔集团、宇方机器人、海天炜业、宏大纺机、杰瑞自动化、德国菲尼克斯、高科通信、乾程电子、海克斯康、盛瀚色谱、博睿光电、海通机器人、海工英派尔、双瑞海洋、海德威、海泰新光等。
重点项目
海尔互联工厂、宇方机器人智能生产线控制系统、生产线信息化系统、生产线大数据分析、智能AGV
系统、激光AGV叉车、视觉叉齿定位系统、3D视觉定位系统等。
创新平台
海尔工业互联网平台(COSMO)、数字家庭网络国家工程实验室;特锐德山东省智能变配电设备工程研究中心、青岛市智能变配电设备工程研究中心;海信网络青岛市智能交通工程研究中心;天时海洋工程及石油装备研究院、企业技术中心等。
重点园区
高端装备机械产业集聚区(株洲路周边)等。
国外重点
企业
瑞典ABB、德国KUKA、日本FANUC、川崎机器人、AmericanRobot、西门子、霍尼韦尔等。
国内重点
科技的人工智能篇5
如同工业时代的蒸汽机和信息时代的互联网,人工智能(AI)在“大智慧”时代扮演着越来越重要的角色。新一代人工智能技术的发展,正颠覆你我的生活,深刻改变世界。 机器人在北京现代沧州工工厂焊接车间生产线上工作
我国首部部级人工智能发展规划《新一代人工智能发展规划》近日出台,将新一代人工智能发展提高到了国家战略层面。
这份规划如何描绘人工智能发展的新蓝图?中国怎样建设世界人工智能创新中心?如何让人工智能“扬其所长,避其所短”,为人类造福? 本刊记者带您一起寻找答案。
新一代人工智能有多火
人工智能到底有多火?
2016年全球科技巨头人工智能投资已达300亿美元,2015至2016年,人工智能的媒体关注度暴涨632%,2017年上半年在此基础上再增长45%……重视人工智能已经成为全球的共识。
什么是人工智能?人类会被机器取代吗?当新事物扑面而来,人们内心总是会充满迷茫与不安。
“随着互联网、大数据、超级计算、传感器等技术的加速突破和广泛应用,人工智能发展进入新阶段,这一阶段呈现出深度学习、跨界融合、人机协同、群智开放和自主操控等新特征。”科技部部长万钢说。
在中国工程院院士潘云鹤看来,中国人工智能正进入升级时代。未来,人工智能与人的智能相结合,在各自擅长的领域发挥作用,能介入的产业规模非常巨大。
科技界和产业界普遍认为,新一代人工智能技术,会带来颠覆性的影响,具有多学科的综合、高度复杂的特性,它将引发科学技术产生“链式”的突破,带动“面上”的发展,帮助各领域创新能力快速跃升。
连珠的妙语、闪烁的字幕……通过智能语音识别技术,演讲者的内容能够实时以中英文在大屏幕上呈现出来,反应迅速、几乎没错。科大讯飞开启了一场“以语音和语言为入口的‘认知革命’”。过去6年中,他们的语音识别技术准确率从60、2%提升到95%以上。
“人工智能的关键是把复杂的世界简单化。”百度公司董事长兼首席执行官李彦宏表示,未来30年至50年,人工智能将成为推动人类历史进步的最大动力。
未来中国AI有多强
人工智能是新一轮科技革命和产业变革的核心驱动力,世界各国纷纷抢滩布局。
力争到2030年实现把我国建设成为世界主要人工智能创新中心的“新目标”――这份具有里程碑意义的《规划》对中国人工智能发展进行了战略性部署,描绘了我国新一代人工智能发展的蓝图,提出“三步走”的目耍明确以提升新一代人工智能科技创新能力为主攻方向,以加快人工智能与经济社会国防深度融合为主线。
“规划的是我国科技发展史上的一件大事。这份我国在人工智能领域的首份战略规划,重点对2030年前我国新一代人工智能发展的总体思路、战略目标、主要任务和保障措施进行了系统部署。”科技部副部长李萌说。
以人工智能技术突破带动国家创新能力全面提升,为我国未来经济繁荣创造一个新的增长周期。李萌认为,中国人工智能的发展,不仅支撑中国经济社会转型发展,也能为世界人工智能发展作出贡献。
语音识别、机器视觉、机器翻译领域全球领先;人工智能创新创业非常活跃,影响力不断增强,我国在人工智能多个领域取得一系列突破。
“应该清醒看到,与发达国家相比我们仍有短板。研发上,基础理论、核心算法、高端芯片等方面原始创新成果还比较少;产业生态上,还没有形成有国际影响力的生态圈和产业链。”潘云鹤表示,希望通过加强人工智能技术的研究和应用,来加速我国建设世界科技强国的进程。
有AI的世界怎么变
人工智能有多强?它就像传说中“别人家的小孩”一样:记性比你好、算算术比你快、体力还比你强……
人工智能,这一火爆的词汇诞生至今已有60多年,正在互联网和大数据的联合推动下深刻改变人类生活。
“作为新一轮科技革命和产业变革的核心驱动力,新一代人工智能也将改变世界,推动经济社会各领域从数字化、网络化向智能化加速跃升。”中国工程院院士李伯虎说。
大数据驱动知识学习、跨媒体协同处理、人机协同增强智能、群体集成智能、自主智能系统成为人工智能的发展重点,受脑科学成果启发的类脑智能蓄势待发,人工智能发展进入新阶段。
“今天的人工智能,往往流于让机器模仿人,让机器去做人做的事。这是对‘智能’的肤浅理解。”阿里巴巴董事局主席马云认为,发展机器人,更应让机器做人类做不到的事情,中国有机会走出独特的发展之路。
新一代人工智能将重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业,引发经济结构重大变革。
同时,新一代人工智能也将带来社会建设的新机遇,人工智能在教育、医疗、养老、环境保护、城市运行、司法服务等领域的广泛应用,将提高公共服务精准化水平,全面提升人民生活品质。
中国AI之路如何闯
“发展人工智能是一项事关全局的复杂系统工程。”李萌表示,新一代人工智能重大科技项目已被列入“科技创新2030-重大项目”,国家“十三五”规划中此前明确提出的15个重大项目,现在加上就有16个了。
据悉,新一代人工智能重大科技项目,将和已经安排的项目任务,共同形成国家人工智能研发的总体布局,形成“1+N”的人工智能项目群。“1”就是新一代人工智能重大科技项目,专门针对新一代人工智能特有的基础理论、关键共性技术进行攻关。“N”就是围绕人工智能相关的基础支撑、领域应用形成的各类研发任务布局。 2017年7月5日,百度
集团总裁兼首席运营官陆奇作主
题演讲
李萌介绍,“科技创新2030-重大项目”是动态的、开放的,将根据科学技术发展的前沿趋势及时调整。此外,新一代人工智能重大科技项目的实施将充分调动中央政府、地方政府、企业、社会资本等各方积极性,多渠道出资、共同发力。
专家建议,我国人工智能发展应注重:把握发展新阶段,重点发展以深度学习、跨界融合、人机协同、群智开放、自主操控为基本特征的新一代人工智能;突出创新能力建设,推动建立基础理论和关键共性技术体系;形成前瞻系统布局,坚持研发攻关、产品应用和产业培育“三位一体”。
“新一代人工智能科技重大项目,主要瞄准人工智能技术前沿,结合国家重大需求进行设计。”科技部高新技术发展及产业化司司长秦勇介绍,大数智能、跨媒体混合智能、群体智能、自主智能系统,这些恰恰是新一代人工智能技术发展的重要方向。
中国AI之路如何“控”
高技术有时会像“脱了缰的野马”肆意奔腾。既要让马儿跑,又不能让它“脱缰妄为”。
有不少科技界产业界知名人士在支持人工智能发展的同时,也对人工智能发展可能带来的就业、伦理、安全等方面的挑战高度关注。
与所有的颠覆性技术一样,新一代人工智能具有高度的不确定性,可能带来改变就业结构、冲击法律与社会伦理、侵犯个人隐私等问题。因此需要统筹谋划、科学引导。
科技的人工智能篇6
在我国的科技发展领域,人工智能的出现带来了新的发展前景和发展动力。伴随着科技大发展的信息化时代的到来,现在涉及到人们生产生活的各个领域都开始实现了人工智能技术的研究和尝试性应用,通过实践应用表明,人工智能确实发挥了巨大的技术推动作用。本文从人工智能的概念入手,详细阐述了人工智能在计算机网络技术中的运用和未来发展方向,最后对人工智能的科技发展措施进行了完整总结。
【关键词】
人工智能;计算机网络技术;运用
引言
到目前为止,我国的很多领域都已经开始了人工智能技术的应用,人工智能的技术应用大大方便了我们的生活,同时,也实现了生产和服务领域的革新和进步,对我国整体的科技进步和发展发挥了重要作用。
1人工智能简介
1、1概念
人工智能是在近些年逐步兴起和开始被大家熟知的技术名词,人工智能主要应用在人工模拟操控以及实现人的智能性扩展和延伸,人工智能综合了相关领域的智能性技术、智能操作方法以及智能技术应用,属于一门综合性较强的技术类应用科学。属于一门独立的新型技术学科。人工智能主要的应用载体为计算机,通过技术研究尝试实现计算机实体发挥出人的智能,实现对人的智能性模拟应用,智能性延伸和扩展。从根本上来讲就是寻求高应用技能的计算机,通过科学的设计和新型的建造方式实现计算机应用系统的高智能水平发挥。人工智能的概念是以人类智能为参考的,主要的应用方法是利用人工技术,通过人类智能行为的计算机开发和引入,综合性研究的科学载体。近些年来,伴随着计算机软硬件的技术更新发展速度不断加快,计算机的实际应用速度和效率不断提高、实际的资源存储能力不断提高,同时,实际的网络技术普及促使电子类产品价格不断下降,许多人工无法短时间内快速完成的任务通过计算机已经可以轻松搞定,人工智能也由此拥有了更多的现实应用能力和基础。目前,我国的人工智能研究主要集中在三个重要领域,其中包括了智能化的接口设计、智能化的数据搜索以及智能化的主体系统研究[1]。
1、2接口技术研究
为了实现更加便捷自然的人工智能交流技术应用,智能接口技术的研究在近些年来越来越受到关注。数据的提炼和有效信息的挖掘技术需要从大量模糊和随机的数据中进行有效信息提取,从而实现对潜在和隐含信息中有价值数据的搜索和提炼的过程。所以,这一过程就需要搜索的主体具有一定的意念、选择性能力以及辨识方法,属于一个智能化的概念主体。同时具有明显的自主性特征。通过对人类大脑智能化识别以及模糊数据处理功能模仿,实现智能化计算机的应用。未来,人工智能将会在人工神经网络中进一步应用和普及,成为未来可具发展潜力的全新领域。在人工智能技术应用过程中,包含了语言信息自动处理、定理化的自动证明以及智能化信息检索和问题解答等等。所以,人工智能应用中人机关系的变化将会进一步对人们生活方式以及生产模式产生重要影响,成为整体信息技术发展的新方向和新课题。在新的发展阶段,人工智能也将拥有新的应用领域需要出现[2]。
2人工智能在网络技术中的应用
在网络安全领域,人工智能技术应用也逐步广泛发展起来。互联网信息时代人们的交流和联系日益密切起来。人们的生产生活也因此大为便捷。但是,信息交流沟通的便利性加大的同时也必然引起网络信息的安全系数降低,网络安全隐患多种多样。所以,人工智能技术的网络安全维护应用将成为重要的突破口,大大提高网络安全系数,同时实现网络安全性能的提高,对用户的信息安全进行充分保护。人工智能最突出的特点就是对于不确定性信息以及不可知性信息的理解以及整合能力较高,这些都是可利用在网络安全维护中的重要技术优势。能够很好的对入网访问者进行智能识别,提高信息的安全和稳定性[3]。同时,人工智能技术还可以很好的应用到计算机网络信息服务领域中,一般被称为智能信息处理技术,通过这一技术的融合可以有效提高人工智能的个性化任务设置,丰富实用方式,提高综合服务水平。在软件方面,各类新型开发工具都在不断应用,人工智能的领域化拓展速度不断加快,在硬件方面,技术革新带来了性能的不断提高,同时价格也在不断降低。
3结论
综上所述,我国的人工智能科学技术在很多领域的应用已经得到了很大的突破,科学技术与计算机网络都是在人工智能发展过程中得到自身应用拓展的重要组成。通过以人工智能计算机网络应用模式的分析和研究,进一步为人工智能的未来发展提供理论研究和参考价值。
作者:谷世红 毕然 单位:石家庄信息工程职业学院
参考文献
[1]熊英、人工智能及其在计算机网络技术中的应用[J]、技术与市场,2011,02:20、
科技的人工智能篇7
关键词:机器人大脑;双培计划;联合培养
1高水平人才交叉培养计划实施背景
《北京市教育委员会关于印发北京高等学校高水平人才交叉培养计划的通知》(京教高[2015]1号)提出共建高校双方要根据经济社会发展急需人才所应具有的知识、能力与素质,联合相关行业企业,共同制订专业和方向的培养目标、培养标准,构建与之相匹配的专业培养计划,包括专业核心课程体系、实践能力培养体系和素质提升体系,培养基础扎实、专业过硬、能力突出的高素质人才。
北京科技大学、北京信息科技大学智能科学与技术专业“机器人大脑方向”双培项目于2015年开始正式实施。目前主要采用“3+1”培养模式,即前3年在北京科技大学自动化学院智能科学与技术专业学习,第4年在北京信息科技大学自动化学院智能科学与技术专业学习并完成毕业论文。
2“机器人大脑方向”双培方案的构建
北京科技大学是教育部直属的985、211大学,其智能科学与技术专业在京为一本招生,而北京信息科技大学为北京市属学校,其智能科学与技术专业在京为二本招生。两校要交叉联合培养学生,需要充分考虑两校的生源情况,在充分论证的基础上制订出相应的培养方案。
2015年4―5月,北京信息科技大学与北京科技大学相关负责人先后进行两次会谈,就两校智能科学与技术专业的建设情况、双培计划的基本情况,“机器人大脑方向”教学计划和培养方案交换了意见,形成了双培计划培养方案制订的初步设想。两校的智能科学与技术专业具有相似的历史渊源和专业方向,因此,在充分讨论的基础上,决定以两校现有的教学计划为基础,按市教委双培的要求修订“机器人大脑方向”教学计划和培养方案。两校分工实施课程教学、实践教学、学生指导、质量评价、组织学生科技创新、学科竞赛等工作。
2、1专业培养目标
具有坚实的数理基础、信息技术的基础知识以及脑科学与认知科学的基础知识,系统地掌握智能科学技术的基础理论、基础知识和基本技能与方法,受到初步科学研究和工程实现的训练,具备智能系统集成、智能技术应用方面研究和开发的基本能力。同时具有全面的文化素质、良好的知识结构和较强的新环境适应能力、自主学习能力和创新意识,并具有良好的语言和计算机运用能力。本科毕业后能够在研发部门、学科交叉研究机构以及高校从事与智能科技相关领域的科研、开发、管理或教学工作,并可继续攻读智能科学与技术专业以及相关学科和交叉学科的硕士和博士学位。
2、2专业课程体系
智能科学技术是一门研究智能现象的本质与机理、智能模拟的方法与技术以及智能机器与智能系统应用的新兴学科,由脑科学、认知科学、人工智能、信息科学技术等学科综合交叉而成。图1给出的智能科学与技术专业的知识体系,确定了课程设计的基本原则:智能应用的过程中需要有信息学科中的计算机、通信、控制和检测等方面技术的支撑;建立以计算机、通信、控制和检测技术为工具,以智能机器人为载体,结合信息科学和智能科学理论基础的课程体系。
为体现“机器人大脑”的专业方向与特色,课程体系中加强了脑科学与认知科学、脑机接口、软件开发与应用、虚拟现实技术等内容。表1给出了智能科学与技术“机器人大脑方向”的专业课程体系,其课程体系模块设计为计算机基础、电路基础、信息与控制基础、机器智能、智能系统五大模块。
“机器人大脑方向”专业核心课程确定为:电路分析基础、模拟电子技术、数字电子技术、信息论与编码、信号处理、控制工程基础、嵌入式系统、微机原理与应用、脑科学与认知科学、人工智能基础、机器人组成原理、计算智能基础、智能机器人、机器学习等。
2、3专业实践体系
按照工程认证相关标准要求,建立了包括金工实习、电子工艺实习、各类课程设计与综合实验、工程认识实习、专业实习(实践)在内的、完备的、面向工程需要的实践教学体系,如图2所示。
3“机器人大脑方向”双培方案的实施
“机器人大脑方向”双培计划是北京地区高等教育综合改革的试点,其目的在于推进北京地区高校之间的合作和优质教育资源的共享,提升北京高校办学水平和人才培养质量。为此,两校通力合作进行了有益的探索与实践。
3、1学风建设
北京信息科技大学为双培学生配备了辅导员和班导师,班导师由学院主管教学的副院长承担。在新生入学的第一个学期,班导师就从中学生到大学生的过渡、适应大学高强度的学习、学习方式方法、班委改选、期中考试后的总结等方面对学生进行指导。学院组织学生集中晚自习,由班导师、辅导员检查。同时班导师、辅导员经常走访宿舍,与同学谈心,使他们明确目标并养成良好的学习习惯。
同时,学校通过微信,不定期与共建高校的教师、学生沟通,随时掌握双培学生的学习生活状况,如自动化学院开通的心动传媒公众号,成为双培学生母校情节的有效纽带。
3、2学生活动情况
北京信息科技大学和北京科技大学充分利用本校的资源,要求双培学生积极参加两校的各类活动,以达到市属学校和央属学校联合培养学生的目的。例如,北京信息科技大学2015年4月邀请双培学生开展了师生党建活动“奔跑的人工智能”研讨会,组织专业引领型学科竞赛――新生R Auto杯智能小车竞速比赛。
由于北京信息科技大学智能科学与技术专业在北京市为二本招生,而北京科技大学智能科学与技术专业为一本招生,导致参加双培计划的同学与北京科技大学的同学在录取分数匕就存在差异,如北京生源的平均分数相差88分,部分同学不适应高强度的学习。经过在北京科技大学半年的学习,虽然双培计划的学生入校时基础较弱,但只要管理严格,也能跟上大部分一本学生的脚步。
科技的人工智能篇8
关键词:新医科;智能医学;人才培养
1绪论
健康中国已上升为国家战略,新医科在我国高等教育中掀起了一阵新的改革浪潮,“智能医学”的应用性人才培养模式也随之开启。智能医学工程是以现代医学与生物学理论为基础,融合先进人工智能及工程技术,挖掘人的生命和疾病现象的本质及其规律,探索人机协同的智能化诊疗方法及其临床应用的新兴交叉学科。目前,高校在进行医工融合培养学生的指导过程中,存在许多问题,如医学和工科的理论结合层面较为薄弱,多学科交叉联合指导的机制不完善,成果转化和临床应用性不高。实践层面,在现有的医学教育模式下,医学生缺乏全面的对数据进行收集、处理与分析的能力。但是在智能医学时代,对数据的处理与分析能力会成为医生工作的重要组成部分。面向医疗健康的智能医学工程交叉学科人才的迫切需求,智能医学工程交叉学科的人才培养的机制有待完善。2019年,一些院校如南开大学和天津大学获得教育部的审批,已经率先实行招收智能医学工程专业的新生[1]。高等医学教育对新医科背景下智能医学工程专业人才培养认知还处于探索阶段,智能医学工程如何实现医工交叉学科的融合发展,如何获取人才培养中的合适方法、模式、关键技术等的研究,协同医学发展、社会需求的人才,还需要深入思考和进一步探索。
2新医科背景下智能医学人才培养
2、1新医科符合医科改革的内在需求
随着“健康中国2030”国家决策不断推进,医疗健康逐渐被国家视为重要的基础性战略资源,在大数据和人工智能技术影响下,临床应用、疾病预测与预防、公共卫生、循证公共卫生决策、健康管理、健康监测与个性化医疗服务等方面的研究以及产业发展,将是未来整个医疗领域的提升方向,给智能医学分析与决策赋予了新的意义和内涵。
2、2医工融合发展的必然趋势
随着精准医疗与智能医学诊疗技术的深度融合,理论层面,把握新医科背景下智能医学工程专业复合型创新人才培养目标,以临床应用性为导向,多学科领域知识相互渗透。调整医工结合课程体系,既符合新医科需求,又实现医工融合课程模块间的交叉互补,体现医工结合特色的宽口径学科结构。培养既懂医药科学、数据科学又懂人工智能应用的高级复合型人才。实践层面,精准医疗与智能医学工程技术紧密结合,利用临床医生在传统医学中积累丰富的临床经验,并融入到智能医学诊疗模式变化中,将彻底改变现有诊疗模式。
2、3人工智能助力智能医学工程人才培养
随着科学技术的飞速革新,人工智能核心技术推动传统学科专业建设和医工交叉融合。助力人才培养主要表现在以下三个方面。一是从智能医学诊疗技术创新的角度,技术的革新引领人工智能与各个产业领域深度融合,创造新的产业或领域,计算机模拟人脑的思维过程,实现人机交互,提高医疗资源的利用率,推动医疗产业的高效运转。智能医学诊疗主要包括疾病早期诊断、临床决策支持、正确用药、诊疗方案的选择等。如KopR和HoogendoornM等探索了医院对病人电子病历(EMR)数据进行分析,结合结直肠癌预测模型,更准确的预测早期直肠癌和干预治疗实践[2];HoshyarAN和Al-JumailyA等探索了医学影像自动诊断皮肤癌,通过数据预处理去除噪音和不必要的背景图像,提高图像质量,辅助医生进行临床决策[3]。二是从医疗健康大数据的角度,随着大数据、数字技术、机器学习和人工智能等信息技术在医疗领域的应用,电子健康记录数据呈指数型增长,医疗大数据来源包括医院记录、患者医疗记录、医疗检查结果和物联网设备[4]。智能医疗系统具有识别、筛选和决策等智能医疗辅助功能。2017年上海计算机软件技术开发中心对医疗大数据可视化系统的实践与研究[5];2018年,阿里健康与阿里云宣布共建阿里医疗大脑2、0[6],加强在图像识别、生理信号识别、知识图谱构建等能力的建设[7];同年,腾讯推出医疗AI引擎“腾讯睿知”,具备更智能化的医疗垂直搜索功能,帮助患者精准匹配合适的医生。三是从人才培养的角度,多学科交叉融合发展是大势。人工智能将打破不同学科专业的壁垒,推进多学科交叉融合发展,形成“人工智能+”的专业新的人才培养模式。高校也应根据产业需求变化调整专业设置,构建新的专业结构。高校人工智能相关的本科专业将会蓬勃发展,形成颇具特色的“人工智能+”专业集群。“人工智能+”技术所衍生的新医科、新工科专业之间的协同创新发展,实现技术创新与医疗应用的统一。以“人工智能+医学”为契机,结合医学产业发展趋势和智能医学工程专业的特点,研究相应的教学体系、制定科学的教学计划,建立具有行业特色的课程群、制定合理的课程大纲,解决学生在医学诊疗和工程技术两方面协调发展的问题,全面提升医学生的综合素养以及未来的职业竞争力。综上所述,新医科人才培养在人工智能助力下,培养学生具备较强的创新意识和具有智能医学领域科研能力,掌握关键理论与方法,创造性地将计算机科学技术、人工智能技术和方法、大数据关键技术与医学应用系统相结合,进而创新性完成的医学信息处理、行为交互和人工智能系统集成及应用。以上需培养的能力,对现有医学专业的改造升级、人才培养模式的改变、师资队伍的全面建设具有较高的要求。
3培养新医科人才的实施路径
3、1从医工融合研究的视角
智能医学工程的专业培养建设要体现医工融合发展需求,推进智能工程、医学与教育的深度融合,提升人工智能在医学中的应用,满足新医科发展要求的卓越工程师为育人目标,强调学科交叉渗透、重视临床应用、把握科技前沿,推动教学创新等。
3、2从医工融合研究的广度
目前我国部分高校开展了医工融合人才培养模式的探索,但有区域特色的医工融合研究还不多。针对新医科临床需求分析,把握智能医学工程高等教育体系,重点聚焦区域特色,研究面向健康和重大及特殊疾病防治需求的“新医科”对人才的需求。
3、3从医工融合研究的深度
(1)整体设计智能医学工程专业教学环节。建立知识能力矩阵,整体设计教学、实验、课程设计、专业实习、毕业设计等环节,突出新医科相关课程及实践,加强附属医院和教学医院的联系,深化临床实践能力。(2)培养学生专业能力和科研创新能力。智能医学工程专业教学与知识能力培养的思考是以智能医学学科的特点为基础,通过知识能力矩阵的智能医学工程专业课程创新教学,根据智能医学工程专业课程知识点的内在联系和相对独立性,优化核心知识模块形成知识能力矩阵,构建课程内容架构。通过系统理论知识教学、优化课程实验和上机安排,引导学生自主设计性学习,提高学生的学习积极性,达到有效教学效果。(3)结合学生兴趣偏好,研究如何提高学生的专业兴趣,探索将专业兴趣转换为“工匠精神”的教育理论及方法:广泛调研,全面建立当前地方高校智能医学工程专业学生与专业偏好的培养模式。
4结语