数学书籍读后感(整理9篇)
数学书籍读后感篇1
今天,爸爸给我买了一本书,我一看是《马小跳玩数学》,这是什么书呀?于是我津津有味地读了起来,我发现原来这本书还真有趣,其中有个故事令我非常难忘,就是《扑克游戏》。
故事是这样的,有位魔术师请了一位观众抽了一张扑克牌,让观众不要给他看,而是给其他的观众看,然后魔术师就给了这位观众一个公式,让他把所抽的扑克牌上的数字先乘以2,再加3,和再乘以5,最后再把积减去25,然后让他把算出的结果告诉他,那位观众算好后就把结果50告诉了魔术师,只见魔术师从牌里抽出了一张数字6的扑克牌给观众们看,观众们都感到不可思议,后来又用同样的方法试了几遍,都是正确的,观众们发出了啧啧地称赞声,其实这位魔术师是运用了数学公式,他把结果先加上10,然后再把和除以10,这样结果就出来了。
还有很多这样精彩的数学游戏,让我们在玩的时候就掌握了学习方法,真的很棒!
放暑假了,妈妈给我买了一本书,我很快就被书的名字吸引住了,《马小跳玩数学》,在平时,大家都是学数学,而马小跳把它变成了“玩数学”,我感到很有意思,数学怎么就可以玩呢?想到这,我边翻开了书看了起来,果然和以前的大不一样,很有意思的。
作者已将故事的方式,将数学通俗易懂的讲述给大家,树立有很多有趣的故事,我喜欢《蜗牛爬鱼缸》和《野战有游戏事件》等。
每个故事都有一道数学题,马小跳都能一一解答。马小跳是一个聪明快乐的学生,他有正能量,在生活中遇到各种问题他都能保持积极向上的心态。他爱玩、爱闹、爱哭、爱笑也闯祸不止。成绩一般却有情有意,真诚待人,是一个诚实善良的好学生,我羡慕他,更佩服他。
读了《马小跳玩数学》这本书后,我也明白了学习数学的窍门了,无论难题有多大,只要我们肯用心、下苦功就一定能够找到方法解答的。数学可以玩,语文也可以玩,让我们一同来把课文难题当作游戏来玩玩吧!
数学书籍读后感篇2
这个暑假爸爸给我买了一《数学荒岛历险记》。
这书一共有十小本,我看了很长时间才看完,现在给大家介绍一下里面的人物,里面有依依、罗克、LIBIQ、花花公主、国王等主要人物,就是这些人出了很多有趣的题目。
有一个怪兽了数字王国,它看见了数字5、24、44却只吃了24和44;14、35、100去攻击怪兽,怪兽只吞了100下去,35却安然无恙,为什么怪兽不是所有的数字都吃呢?
我想了很久很久也没有想出来,看到最后,才明白原来怪兽只吃4倍数,24、44、100是因为他们都是4的倍数,而其他的都不是4的倍数,所以怪兽不吃它们,很有趣的题目,呵,所以更让我知道数字没有一定很死板的答案,要多动脑筋多思考一定有很多答案,开学欢迎同学们一起来看《数学荒岛历险记》。
数学书籍读后感篇3
数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。
尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。
而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学着作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。
自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下,破解了五次或以上代数方程公式求解的未解之谜,伽罗瓦被里查德教授发现为千里马,成为了群论的开山祖师,康托尔师从库默尔、魏尔斯特拉斯和克罗内克等着名数学家,创立了无穷集合论,而华罗庚更是当年被熊庆来发掘,如今他又发掘了陈景润。一位伟大的数学家背后往往有一位劳苦功高的老师,也许他们的老师如今已不为人所知,但他们所做出的努力与教导并不亚于这些数学家,正因有了他们耐心的教导,给予的莫大支持、鼓励,才给了他们展露锋芒的机会,而这些数学家虚心从师的精神也值得我们学习、效仿。
除此之外,从数学家的努力探索之中,我们可以发现数学研究所必需的过程。首先,要从细微的事情中发掘数学的道理、发现问题的存在,又或是对某一问题产生莫大的兴趣与研究精神。这一步许多人都能做到,就像牛顿对一个掉下来的苹果做出思考,从而创造万有引力定律一样,在我们的日常生活中,我们都能对一些平常事物提出问题,在遇到一些难题的时候有种想攻破它的冲动。然后,必须锲而不舍地做出深入的探究。这一步往往只有少数人能够做到,但这偏偏就是最重要的一步,缺乏了它,前面的一切苦劳都只是白费。在遇到困难面前,依然能够怀有当初的冲动与勇气想要征服它的,往往就是伟大的开始、成功的关键。但只有这份冲动与勇气是不够的,一位伟大的数学家,还必须拥有创新的精神,有对人们根深蒂固思想做出怀疑的精神,勇于打破个人崇拜与教条主义,创造出自己的新思想,就像笛卡儿对坐标系的建立,牛顿和莱布尼茨对微积分的创立,高斯对非欧几何的确立,伽罗瓦对群论这一新概念的创造,康托尔对无穷集合论的坚信等等,他们之所以能够成为受万人瞩目的数学家,是与他们的创新思维分不开的。
总的来说,这些数学家成功的经验教会了我们学生在现阶段应如何做好准备,迎接未来的挑战。在思想上,我们应该培养创新思维、自信心、对自我坚定的信念、以及面对困难毫不畏惧的精神。在行动上,要虚心从师,不耻下问,积极学习多方面的知识,做到对知识的融会贯通,运用到日常生活的事情中。
“刘徽的割圆术比古希腊的穷竭法要晚几百年”、“笛卡儿和费马不约而同、殊途同归地建立解析几何”、“牛顿和莱布尼茨两位奠基人不约而同的努力,使得微积分作为一门独立学科建立起来”……在数学史的发展历程中,不少相同的研究成果都重复地被人类发掘,这种数学研究的时间差无疑耽误了数学的发展,重复地为同一个问题而努力,却不知道事实上他人早已解决,如果世界能够更早地融合为一体,便能更好地互相交流数学文化,共同研究、共同进步,那么就不需要花上几百年甚至更长的时间重复地走同一条弯路,而能更快地推动数学的发展,也许世界数学的发展速度就不只现在的步伐了。
而此书也提到了数学创立的一个条件:“在实用的技术发明之后,那些并不直接为生活的需要或满足的科学才会产生出来。它首先出现在人们有闲暇的地方,数学科学最早在埃及兴起,就是因为那里的祭司阶层享有足够的闲暇。”这说明了“闲暇”对于科学兴起的重要性。的确,当温饱问题没有解决,脑力劳动与体力劳动尚未分开时,人们无暇去发明科学,只有当享有闲暇时,人们才有足够的时间与精力花费在科学的创造中,才会从最初的玩弄数字起,逐渐深入探究,从生活琐事中发现数学的问题,从而创造谜题,再去解决,这样一步步地走来,才会有如今的数学学科。要是没有了闲暇,很可能就没有了后面的一切。同样,作为学生的我们也需要空出闲暇来认真研究数学,如果连每天的作业都难以按时完成,那么还哪说得上去破解数学的难题呢?
数学的发展还很长久,还有许多路要走,我们就像牛顿说的那般,只不过是在海边玩耍的小孩,在我们面前仍有一片未知的真理的海洋,数学的无穷魅力就埋在这里面,等着我们去发掘,等着我们去探索。
数学书籍读后感篇4
暑假里,我读了《数学在哪里》这本书,它主要是唐彩斌和彭翕成编写的,这两位文学作家很有名气,我还读过他们好多的书籍。
《数学在哪里》里面讲解了许多有趣的数学知识,运用故事讲解,让我很容易理解,树立的内容各种各样,有乘除法估算,有简便运算和认识毫米和千米,还有认识周长、面积等等。那里面还有好多趣味的题目,难的题目有时候让我苦思冥想,一个多小时才能解出答案,简单的也很快,我可以5分钟之内就做出来。真是一本有挑战的书啊。
这本书我读过之后,感觉真是一本有趣的书,希望所有的小朋友都可以看一看里面的数学知识,挑战一下有难度的题目,锻炼自己的思维,让自己不断成长。
数学书籍读后感篇5
我已经是第二次看马小跳玩数学了。杨红樱老师写的马小跳玩数学书很受我们小学生的喜爱。书中含有80个趣味数学故事,如“厉害的侦探”,最让我着迷的是“奇妙的舞蹈队形”里头讲了芭蕾舞队要排练一个节目。一共分两队,它们分别是12人和11人,各要求排成6行,每行4人。夏林果不知该怎么排,结果是马小跳和路曼曼帮她解决,也让我明白了怎样排。
我很喜欢这本书,因为它让我懂了很多以前不懂的解题诀窍。如100米围墙每隔5米栽1棵树,我们经常不想就把它得20棵,但两端却把它给忘了,所以栽的棵数要比段多1棵,就是21棵。
这本书让我们玩中学,学中玩,不再无聊。这本书还让我们懂得了生活中处处都是数学。
数学书籍读后感篇6
在这个暑假里,我看了一本叫《马小跳玩数学》,从中我学到了不少数学知识,还学到了生活中的很多数学题。
比如说:书中的人物唐飞想像福尔摩斯那样擅于断案。他就决定去外面寻找机会,于是就约了毛超和张达一起去。他们在公园里溜达时看到有一辆车子不小心撞到了一位老爷爷,而后急忙掉了个头,开走了。唐飞他们就赶过去把老爷爷扶起。唐飞想:这就是一个好机会,可是车子跑太快了,不知道车的车牌号。张达说:我记得车牌号,是四位数,百位比千位多3。毛超接着说:十位是百位的2倍多1,个位比十位少2。唐飞冥思苦想,终于想出来了,车牌号是:1497。最后,这辆车终于被警方抓获。
从这件事我知道了,生活中有一些小事,要我们去观察,去思考。
数学书籍读后感篇7
今年暑假妈妈带我到市大众书局,向我推荐了《趣味数学》这本书,刚看到书名我想又是一本辅导类书,有什么好看的。妈妈建议我先看一看再说,读着读着我就被书的内容吸引住了,书的内容真的很有趣,难怪叫趣味数学。
这本书用很多个有趣的数学游戏活动,介绍了富有教育意义的数学故事,如摆树叶、军事游戏、填幻方到从幻方中寻找"和"为已知的四维数组、根据实际问题列方程组、收集数据、整理数据、分析数据……每一次数学活动都是培养思维能力、想象力、实践力的最好课外训练。它寓教于乐,是对我们小学生进行有趣的、益智训练的好书。
假期中我一有空就拿出来读,书里的很多游戏都是我和爸爸、妈妈一起合作完成的,在玩中学,在学中玩,时间不知不觉就过去了,在轻松、愉快的气氛中,我不仅学到了许多数学知识,还深刻体会到了父母对我爱。现在我已经迷上了《趣味数学》,和它成为好朋友了,
《趣味数学》真的是太有趣了。
数学书籍读后感篇8
原来数学在生活中也有这么大的用处:在《智斗蜘蛛精》里,八戒被4个女妖围在了中间他得先打死头儿蜘蛛精但他不知道她变换以后的位置,然而数学观察到了:位置是按顺时针方向转动的,每变4次又回到原来的位置,根据这个规律能列出一个除法算式:(变阵的次数=n)n÷4=□…□这个余数是几,就是几号位置。
还有一次在《悟空戏猕猴》那一集里,1~66报数,(以一、二、一、二的顺序报凡是报以的都有可能是自己,直到最后那个才是自己,不过悟空让数学猴不能报数)悟空要数学猴一次把自己指出来数学猴马上就说:“64号,你是悟空,你出来吧。”原来他是这样想的:有五只羊,9只羊一排,最后留下的一定是8号他的规律是2,4=2×2,8=2×2×2……对于66来说,具有最大特点的数就是64因为64=2×2×2×2×2结果这才找出了孙悟空。
所以,我以后一定要好好学数学,解决生活中的一些小问题。
数学书籍读后感篇9
崭新的一天开始了,我在做作业时,突然眼前闪过一本书的背影,我好奇地停下手里的作业,转身拿起看了起来。
这本书可有趣啦。我仿佛置身其中,聪明,机智,活泼顽皮的马小跳带着我,来到了数学世界。并在这里解开了一道又一道难题。例如开空调,天冷了,三家人都开空调,但大家一起开的时候功率大,线路承受不起,因此大家要想办法解决实际的.苦难,大家把难题扔给了马小跳处理,马小跳严肃而又认真地考虑问题,并又做了实际的考察,最后合理解决了大家的问题。原来空调在同样的功率下可以计算出它的用电量,4台空调是一样的功率下,假设3台空调同时开,每天可以开24小时,用电量等于24×3=72小时,现在平均4台空调上,每台可以用72÷4=18小时。我觉得好有意思。
这本书我喜欢,他把数学知识寓于故事中,让我既读了故事,又学会了知识和道理。