循环水泵(收集5篇)
循环水泵篇1
关键词:立式混流泵;海水循环泵;维护
中图分类号:S611文献标识码:A
一、海水循环泵的结构形式
二、海水循环泵的关键技术
海水循环泵的另一项关键技术为材质选择,除了电动机架结构为碳素结构钢外,其他部件的金属材料均采用双相不锈钢或超级双相不锈钢。滤网、进水口、叶轮、导叶体、泵轴以及扬水管等大型部件的材质化学成分虽相同,但由于制造工艺差异,各部件所对应的双相不锈钢材质类别也不相同,如双相不锈钢2205即CD4MCu;对应于美国材料试验协会的牌号有ASTMA240、A276、A283、A479和A890等。海水循环泵的滤网可采用线材A240焊接而成,泵轴采用棒材A479制成,扬水管采用板材A276焊接而成,叶轮、导叶体等采用A890铸造而成。对于小部件,如螺栓、螺母和垫片也都采用双相不锈钢材质。
克服材料的因素外,海水循环泵的工艺也是关键技术之一。例如叶轮的工艺环节包括化学成分分析、热处理、力学测试、射线检测、着色渗透以及动平衡等,每个环节要保留详细的技术资料。对于滤网、扬水管和出水弯管等部件,主要考虑焊接工艺,如预热温度控制、焊缝处理、焊后热应力消退以及加工过程中消除残余应力等。
三、系统方案设计
LNG接收站原方案中包括海水泵池设计,海水泵池中水取自-15m处海水,海水水质较好,水温适中。海水通过管道进入海水泵池,经过粗细两道过滤器过滤,除掉大颗粒的泥沙和其他悬浮物,再经过电解海水加氯装置处理杀菌祛藻后进入到各泵内。该海水泵池设计有四台海水泵,抽取海水进入厂内的开架式气化器,通过换热将热量传递给LNG使之气化达到外输条件。此外,海水泵池内还设有海水置换泵,冬季温度极低时开启,使取水口海水内外循环置换,避免结冰。因此,可直接用此海水泵池内的水作为海水源热泵系统的冷热源。
通过海水泵提取海水泵池内的海水进入热泵机组,海水的冷热量通过换热器换热传递给热泵工质,为建筑物供热(冷),换热后的海水经海水排放沟,排放到远离取水口的海底。海水源热泵空调系统主要包括海水循环系统、热泵系统及末端空调系统等三部分,其中海水循环部分由取水构筑物、海水引入管道、海水泵站及海水排出管道组成。由于该系统直接取用厂内海水泵池内的海水,因此海水循环系统仅包括海水引入与排出管道及海水循环泵。该系统的主要设备包括海水泵、热泵机组、水处理装置、风机盘管等。
四、循环泵的维修
1、高性能抗冲刷的防磨材料涂层工艺应用
对于缺失严重叶轮,采用特殊冷焊过渡焊方式将缺损部位进行无裂纹、无变形的冷补焊技术恢复缺损尺寸,然后进行表面打磨靠模修形、车床找正工艺使基体恢复外形轮廓;对叶轮进行表面清洗喷砂,叶轮过流表面采用高频爆震熔射无机非晶-陶瓷,涂层厚度0.5mm(涂层与基体结合度达到70MPa),零件过流面得到整体非晶-陶瓷涂层的保护,所有薄弱环节将得到预保护强化;对非晶-陶瓷涂层进行真空封孔固化处理;对叶轮进行表面刮涂高分子陶瓷涂层,第一层底涂润湿表面,第二层刮涂高分子陶瓷颗粒填麻坑并加强防磨,第三层刷涂高分子陶瓷防护层进一步提高表面的光滑度和抗气蚀冲刷能力,使零件流线型更好,耐磨双层保险;对叶轮配合面尺寸进行测量复查,确认不影响装配,依据为泵厂家的企标;对叶轮进行动平衡处理。
通过特殊冷焊工艺使叶轮的豁口重新恢复原来的轮廓并不产生裂纹,同时保证冷补焊达到冶金结合,补焊部位没有开裂脱落风险;改造泵壳叶轮的表面硬度及抗气蚀性,在原过流件上复合一层无机非晶-陶瓷涂层,该涂层具有无机陶瓷特性,既耐磨又耐气蚀,可以很好地确保叶轮本体不被磨损,叶轮线形轮廓完成,出力效率稳定,同时让叶轮具有循环可修性;改造防护涂层的脱落问题-改用爆震熔射工艺后涂层的剪切剥离强度达到70-120MPa,使涂层没有了脱落风险。
2、叶轮维护
脱硫系统吸收塔浆液循环泵叶轮的维护如果不及时,导致浆液循环泵出力下降,进一步导致400MW以下负荷范围内,增加脱硫浆液循环泵的运行台数,才能维持脱硫效率,直接产生巨大的电耗费用。
3、滤网结构的选择
烟气脱硫浆液循环泵入口滤网的结构主要有半圆柱形、三角形。通过运行情况来看,原三角组合式框架采用碳钢衬胶,相对于半圆柱形滤网结构,网板固定点多,网板受力点分散,其机械强度能够满足滤网固定的要求且有一定优势。半圆柱形滤网截面为半圆形,有流通面积较大的优势。根据喷淋喷嘴口径、浆液品质等系统设计工况选择网孔型式。在保证截流大颗粒杂质的性能下,尽量提高网板通流面积,可以减少滤网堵塞的发生,缓解浆液循环泵气蚀现象的出现,提高浆液循环泵可靠性。因此,将原方孔改为圆孔,从而改善浆液通过性,减少浆液在孔下缘沉积,避免结垢。
循环水泵篇2
关键词:发电厂;循环水泵;选型;优化运行
中图分类号:TM62文献标识码:A
引言
目前很多电厂循环水泵运行方式不尽合理,影响机组经济性,为保障机组的正常、健康、合理运行,就要在循环水泵设备选型上进行分析,从而保证机组有效运行。
一、水泵的分类
1、叶片式水泵
叶片式循环水泵的工作原理是靠装有叶片的叶轮高速旋转带动液体运转而完成的。它是在我们的工程设计中应用最为广泛的水泵。叶片式水泵可以分为混流泵、轴流泵、离心泵等。
离心泵:叶轮径向流的称为离心泵。液体流动时质点在叶轮中主要受到的是离心力作用。
轴流泵:轴向流的叶轮称为轴流泵。液体流动时质点在叶轮中主要受到的是轴向斜力的作用。
混流泵:斜向流的叶轮称为混流泵。它是前两种叶轮的过渡形式,这种水泵液体质点在叶轮中流动时既受到离心力作用和轴向升力的双重作用。大容量水冷机组基本都采用混流泵。
2、容积式水泵
容积式水泵对液体的压送主要靠泵体工作室容积的改变来完成的。而使工作室容积改变的方式有往复式运动和旋转运动两种。
二、循环水泵选型
1、流量(Q)
公式:Q=Q1+Q2+Q3
式中Q1――凝汽器冷却水量,Q1=mDk(Dk为凝汽量,m为冷却倍率)。凝汽量一般由机务专业提供,冷却倍率m则通过优化计算后确定。一般热季一个值,冷季取另一个值;
Q2――辅机用水量;
Q3――其他用水量,包括工业用水量、化水专业用水量、暖整理水量、除灰用水量、生活用水量等。
2、扬程
静扬程H0
2.1直流供水系统。确定直流供水系统调和所应遵循的原则是:要最大限度地减少供水几何高度,并保证主厂房不被洪水淹没。采用直流供水系统的工程均要考虑利用一定数量的虹吸作用以降低水泵的工作水头。
公式:H0=H1CH2
式中H0――静扬程,
H1――虹吸井堰上水位,
H2――取水河段设计平均水位,
2.2循环供水系统
带冷却塔的循环供水系统循环水量的静扬程为冷却塔内竖井水位(机械通风
冷却塔时应为进水标高)与冷却塔集水池水面标高的差。
2.3系统的水头损失∑h
系统的水头损失为系统的沿程损失与水头损失之和,大致包括以下几部分:
(1)取水头部以及引水管、进水间的水损失;
(2)水泵房内及四周的水头损失;
(3)循环水管水头损失;
(4)最主要是凝汽器的水头损失;
(5)配水系统的水头损失。
2.4水泵的扬程Hp
供水系统的静扬程H0与供水系统全部水头损失∑h之和,即为循环水泵的扬程,即Hp=H0+∑h
式中Hp――水泵扬程
H0――水泵静扬程
∑h――系统全部水头损失
一般地说,循环供水系统基本上可以按合理的方式进行设置。热季时运行方式可以为一机两泵或三泵,相应地循环水泵有个工况点(Qr,Hr);冷季时运行方式为两机配三泵或两机四泵(即一机两泵)。相应地循环水泵也有个工况点(QL,HL)。
3、循环水泵的耐压强度
循环水泵的出口压力其实就是水泵压力加水泵扬程,叫做循环水泵的最大压力。当定压点设在循环水泵入口时,水泵出口的压力大于水泵的扬程,也就是定压点压力加上水泵扬程,如果压力超过水泵耐压强度,则泵体可能被压裂,然而有的循环水泵机体上并没有给出水泵的压力,这个则是设计者最容易忽视的问题,所以必须引起高度注意,在设计阶段或定货时就应提供水泵压力的数值。避免影响后期使用。
4、循环水泵的吸水性
在水泵抽水过程中,泵内不产生汽蚀情况下所允许的最大吸水高度或所需的最小淹没深度叫做水泵的吸水性。用允许吸上真空Hs或必需汽蚀余量NPSHr表示。在实际的工程应用中,在其他性能条件一样的前提下,所必需的汽蚀余量NPSHr越小,则表示水泵的吸水性能越好,水泵房深度越小,因而水泵房的投资越小。必需汽蚀余量NPSHr是衡量水泵性能好坏的重要参数。
三、发电厂循环水泵管理现状
随着发电厂规模逐渐增大,电气设备的现代化程度也不断提高。近年来,火力发电厂电气设备的数量增多、规模变大、现代化程度不断提高。原始简单的管理方法和技术手段已经不能满足现有电气设备安全运行的要求。在实际工作中,循环水系统暴露出一些存在的问题:自上而下的管理体系不明确,管理层级结构应趋于扁平化;各项管理技术标准不够统一;数据基础不完善,数据共享性差等问题导致系统运行不合理。
四、循环水泵运行优化原理
1、循环水泵采用单元制,使系统更加简化,这样有利于在循环水泵设备发生故障时,快速维护。
2、每台循环系统机组配备2台50%容量的循环水泵,不必要设置备用的循环设备,这样可以节省一次性投资费用。
4、根据发电厂实际情况,可以采取单台循环水泵来对应单独的循环水供水管道,从而防止发生故障泵影响正常运行泵,导致事故扩大。
5、循环水泵电机采用变频率电机,在环境温度较高季节采高速运行,当环境温度较低时,采用低速运转方式,这样可大量节约电能。运行方式如下表:
6、在开式循环水泵工作中,循环水泵出口的压力较低,关闭水泵时,需要倒转的时间比较短,并且最高的倒转速度相对于闭式泵低很多。所以,开式循环水泵应该具有允许倒转的功能,可以设出口蝶阀。这种系统设计方案,一是可以节省一部分投资费用,此外还可以节省大量的维修及运行维护开销。
7、循环水余热利用改造主要包括两部分:一部分为循环水侧;另一部分为热网侧。循环水侧,对供热机组循环水系统进行改造,将凝汽器出口循环水分为两路,第一路经回水电动阀直接回冷却塔;第二路经循环水升压泵进入2台吸收式热泵,用以回收循环水的热量。热泵出口循环水一路直接回至冷却塔;另一路回至冷凝器。在非供热工况下,隔离热泵系统,循环水直接经回水电动阀回至冷却塔;供暖工况下循环水切换至热泵侧,经热泵降温后,通过循环水泵升压进入凝汽器。
8、发电厂电气设备管理与维护中现代化检测技术手段的应用。
在发电厂循环水系统设备管理与维护过程中,运用现代化检测技术手段已经成为时展的主流趋势,同时也是循环水设备运行管理质量和效率得以保证的主要技术手段。实践中可以采用RCM,这是一种较为高级的供水设备管理和维护手段,RCM的管理和维护基本原理是:根据设备出现故障问题的规律和特点对其进行分析,并且根据这一分析结果对可能存在、即将发生的设备故障问题提前进行检修。
结束语
总之,现代社会的发展需要我们不断的对发电厂循环水泵提出创新,更应该要加强选型和优化运行。循环水系统是火力发电厂的重要组成部分,循环水系统及其设备运行的安全、经济、可靠性将对整个电厂的安全、经济运行起着至关重要的影响。
参考文献
[1]吴民强泵与风机节能技术[M].北京:中国电力工业出版社,1998.
[2]李青,张兴营,徐光照.火力发电厂生产指标管理手册[M].北京:中国电力出版社,2007.
循环水泵篇3
【关键词】高压变频器;节能;工作原理;技术特点
伴随着国民经济的持续发展,能源问题也日益显现,节能问题愈来愈引起关注。据有关数据统计显示:目前全国各类电机年耗电量约占全国总发电量65%,而其中大功率风机、泵类的年耗电量约占工业总耗电量50%。因此,最大限度降低风机、泵类等设备耗电量,进行节能改造具有现实意义。焦煤九里山矿洗煤厂设计年处理能力为90万吨,采用跳汰—浮选—尾煤压滤的联合工艺流程。近几年来,随着各类设备更新改造,设备处理能力相应增加,年处理能力已达到120万吨以上。在完成生产任务的同时,如何有效的降低能耗成为摆在煤矿企业面前的一个新课题。
一、水泵变频调速节能分析
(1)节能改造前的工况。焦煤九里山矿洗煤厂属于独立电网,两台定制的高压开关柜各独立驱动一台高压电动机,水泵为工频直接启动,以恒速方式供水。操作员根据用水需求,通过调节水泵阀门的开度来实现水量调节。水泵及电动机运行在低效率工作区,造成能源浪费较为严重,同时工频直接启动对电动机和电网冲击都很大,并容易造成电机笼条松动、有开焊断条危险。(2)水泵变频调速节能原理。由流体力学可知:流量Q与转速n的一次方成正比,压力H与转速n的平方成正比,轴功率Ps与转速n的立方成正比,即Q∞n,H∞n2,Ps∞n3。当所需要的流量减少,水泵转速降低时,其轴功率按转速的三次方下降。如所需流量为额定流量的80%,则转速也下降为额定转速的80%,那么水泵的轴功率将下降为额定功率的51.2%;当所需要流量为额定流量的50%时,水泵的轴功率将下降为其额定功率的12.5%。当然转速降低时,效率也会有所降低,同时还应考虑控制装置的附加损耗等影响。依据水泵工作原理与运行曲线,可以得到图1中的100%转速运行曲线,这条曲线配合水泵在不同流量运行时的特性曲线(阻抗曲线),可以得到在未应用变频调速情况下,使用阀门调节控制流量、压力的特性曲线图。从理论上来看,全流量工作时,采用变频器和阀门调节时,输入的功率一致,其功率为AI0K包围的面积,当水泵运行点由A(100%流量)点移动到B点(80%流量)时,如果采用阀门调节控制时,电动机的功率为BH0L包围的面积,但是采用变频器拖动水泵后,因其特性的改变,其输入功率为EJ0L包围的面积,其节能效果为:BHJE包围的面积。因此,就理论上而言,采用变频器改造水泵后,将会取得很好的节能效果。
基于以上分析,焦煤九里山矿决定对洗煤厂清水循环泵系统进行变频调速节能改造,经考察论证,最后选择焦作华飞电子电器股份有限公司型号为JTDK-GBP高压变频水泵电控系统对两台315kW/6kV循环水泵电机进行“一拖一”改造。
二、清水循环泵系统改造方案
对洗煤厂清水循环泵系统的改造遵循了“最小改动,最大可靠性,最优经济性”原则,此方案的优点是完全保留原有系统配置,在原有线路增加一台馈电开关柜、一台系统切换柜、一台GBP-D-06/031高压变频器和一台TSX调速控制箱,实现新老电控系统各自独立运行,互为备用,并实现本地操作、机旁操作、远程集控三地控制方式。
图2中原有工频系统由两个高压柜组成,每个高压柜内有1个高压隔离开关和1个真空接触器,具有机械互锁和电气互锁,要求不能同时合。进行变频改造后,循环水泵的阀门开度保持全开,基本不需要改变。根据实际所需的水量,由泵房机旁TSX调速控制箱输出2~10V模拟电压信号送给GBP-D-06/031高压变频器,高压变频器通过调节输出频率改变电机的转速,达到调节流量的目的,满足运行工况的要求。当高压变频器需要维护、维修时,配合使用馈电开关柜和系统切换柜,实现变频和工频系统的切换,工频系统完全沿用原有操作方式运行,变频系统完全实现了电气隔离可安全检修。其次,利用GBP-D系列高压变频器强大的通讯功能,通过简单连线和软件设置,可实现在集控中心对清水循环泵系统工况的实时监控。再次,变频改造后电机在启动和调节过程中,转速平稳变化,没有出现任何冲击电流,解决了电机启动时的大电流冲击问题,消除了大启动电流对电机、传动系统、主机及管道的冲击应力,大大降低维护保养费用。
馈电开关柜符合国家标准GB3960《3-35KV交流金属封闭开关设备》及国际标准IEC298的要求,并具有一套完善的性能可靠,功能齐全、结构简单、操作方便的机械式防误闭锁装置,简便而有效的达到两部提出的“五防”闭锁功能。系统切换柜包括变频器隔离开关、工频隔离开关和主电路带电指示器等器件。变频器隔离开关和工频隔离开关为独立操纵机构,两套机构间加装机械互锁,只有工频隔离开关在分闸位置时,允许高压变频器隔离开关合闸,反之亦然。主电路带电指示器用于向操控人员指示主电路带电情况。TSX调速控制箱是焦作华飞电子电器股份有限公司生产具有自主知识产权,具有机旁启停、调速、仪表指示和紧急停止等功能,与GBP-D系列高压变频器配合使用,满足机房机旁控制电动机调速的要求。
三、经济效益
JTDK-GBP高压变频水泵电控系统于2008年5月正式在焦煤九里山矿洗煤厂投运,运行效果良好,达到了改造的目的。根据全国节能计量测试技术服务中心2008年5月29日对JTDK-GBP高压变频水泵电控系统的测试报告,JTDK-GBP高压变频水泵电控系统比原有工频系统用电量降低了34.48%。根据洗煤厂变频改造前的运行记录,清水循环水泵每班工作8小时,耗电为1600KWh,按年工作日为330D,每日工作时间为16H计算,年节电可达:1600×34.48%×2×330≈36.4万度,经济效益十分可观。变频改造以后,循环泵调节阀门一直处于全开状态,对其维护量大大减少。变频启动时电机转速从低速逐渐平稳的升到所需转速,没有任何冲击,电流不会超过额定电流,解决了电机启动时的大电流冲击问题,消除了大启动电流对电机、传动系统和主机的冲击应力,大大降低日常的维护保养费用,延长了电机、水泵寿命。
对焦煤九里山矿洗煤厂清水循环泵系统实施变频改造后,节约了大量的电能,改善了工艺过程,电机实现了软启动,延长设备的使用寿命,减少维修量,取得了预期的效果。“十一五”规划中明确提出了要“突出抓好在电厂等行业中的节能工作”及重点工程“电机系统节能在煤炭等行业进行电动机拖动风机、水泵系统优化改造”。JTDK-GBP高压变频水泵电控系统的推广使用对于建设节约型社会具有重大意义。
参考文献
[1]GBP-D系列高压变频器使用说明书.版本V1.1.2009(5)
[2]王方军,胡令芝.高压变频器在电厂循环水泵上的应用[J].变频器世界.2012(1)
循环水泵篇4
【关键词】热电厂;循环水;热泵;节能
中图分类号:TE08文献标识码:A
一、前言
随着环境、气候的逐渐恶化,发展低碳经济、促进可持续发展成为人类社会未来发展的必然选择。我国已成为世界上最大的温室气体排放国之一,“节能减排降耗”是“十二五”期间我国社会经济发展的一个重要核心。2009年9月联合国气候变化峰会和12月的哥本哈根气候变化谈判会议上,我国政府明确量化碳减排目标(到2023年,单位GDP二氧化碳排放比2005年下降40%至45%),展示了中国在应对气候变化、履行大国责任方面的积极态度。这充分表明我国不再单纯追求经济的增长速度,而是更加强资源的有效利用,关注可持续增长。“节能减排降耗”已被摆在前所未有的战略高度。而提高能源利用率、加强余热回收利用是节约能源、降低碳排放、保护环境的根本措施。
二、国内电厂余热利用现状分析
在电力、冶金、化工、纺织、采油、制药等行业的工艺生产过程中,往往会产生大量的废热(废蒸汽、废热水等),若不加以利用,不仅造成能源浪费,而且污染环境。目前国内开展余热利用的电厂较少仅有16%左右,余热利用发展空间很大。电厂循环水流量巨大,而且水相对恒定,冬季一般为20~35℃,达不到直接供热要求。若想利用该部分余热,主要采用两种形式的余热利用技术:低真空运行供热技术和热泵供热技术。
1、低真空运行供热技术
中小型汽轮机可以采用低真空运行供热技术,类似于传统的背压机组,可将凝汽器作为热网加热器,直接将乏汽凝汽的潜热释放到循环水中,提高循环水温度(60~80℃),达到了能源的高效利用。该项技术已有很多台机组成熟投运的案例。已投运大型机(200MW以上)组因设计制造、运行环境及材料安全等条件制约,不允许直接采用这种方式进行供热。“NCB”模式、更换低压汽轮机转子等低真空供热技术,需对汽轮机结构做出相应的改造。虽然该项技术理论上实现较灵活,可实现余热高效利用,但实现起来相对困难,综合投入较大,不适合已投运的大容量、高参数的供热机组。
2、热泵供热技术
热泵,利用少量高品位能源驱动压缩机,吸收电厂循环水内的热量,提高热网循环水的温度,这样的供热方式这就是热泵供热技术。热泵由四大部件压缩机、气体冷却器、节流阀和蒸发器组成。制冷工质依次在上述四大部件循环。如图1热泵原理图所示,采用逆卡诺原理,制冷工质蒸发器内通过工质不断的蒸发吸取并带走循环水中的热量,工质经过压缩机压缩后,在冷凝器中将热量释放给热网循环水,节流后的工质回到蒸发器,继续吸热,如此循环达到制热的目的。
图1热泵原理图
通过热泵将电厂循环余热回收进行供暖,可以灵活调整不同用户对供热量的需求转换。此外安装改造热泵对发电厂的热力系统影响也较小,适合已投产的热电联产机组也适合凝汽机组的供热改造。
三、热泵技术用于电厂余热利用的主要形式
从已经调研的热泵余热供改造的机组来看,目前国内热泵有两种应用型式:一是溴化锂吸收式热泵配合加热器的形式进行余热回收,二是跨临界二氧化碳水源热泵技术。
1、溴化锂吸收式热泵
吸收式热泵(即增热型热泵),通常简称AHP(absorptionheatpump),它以蒸汽、废热水为驱动热源,把低温热源的热量提高到中、高温热源中,从而提高了能源的品质和利用效率。
溴化锂吸收式热泵包括蒸发器、吸收器、冷凝器、发生器、热交换器、屏蔽泵(冷剂泵、溶液泵)和其他附件等。它以蒸汽为驱动热源,在发生器内释放热量Qg,加热溴化锂稀溶液并产生冷剂蒸汽。冷剂蒸汽进入冷凝器,释放冷凝热Qc加热流经冷凝器传热管内的热水,自身冷凝成液体后节流进入蒸发器。冷剂水经冷剂泵喷淋到蒸发器传热管表面,吸收流经传热管内低温热源水的热量Qe,使热源水温度降低后流出机组,冷剂水吸收热量后汽化成冷剂蒸汽,进入吸收器。被发生器浓缩后的溴化锂溶液返回吸收器后喷淋,吸收从蒸发器过来的冷剂蒸汽,并放出吸收热Qa,加热流经吸收器传热管的热水。热水流经吸收器、冷凝器升温后,输送给热用户。
2、二氧化碳压缩式热泵
二氧化碳压缩式热泵使用了环保的自然制冷剂,对大气臭氧层无破坏作用,温室效应很小,是R410A的1/1730,R22的1/1700,R407C的1/1600,R134A的1/1300。其次,它的跨临界热泵循环制热性能系数高,目前产品的实际值已达到419以上。第三,它的出水温度高,可达到90℃,特别适用于热水器各种温度的需要。而常规制冷剂的热泵热水器只能达到55℃左右。第四,有效利用夜间低价的低谷电力,将制取的热水保存在贮水箱中,供全天24小时使用,显著降低运行费用。跨临界二氧化碳水源热泵机组,其基本原理:低温气态制冷剂CO2由压缩机吸气阀经压缩机压缩,变成高温高压CO2气体,然后进入气体冷却器将热量传递给供暖水产生供暖热水,从气体冷却器出来的CO2气体,流经节流降压后变成低温低压液态CO2进入蒸发器。
四、热泵系统设计方案
图2为吸收式热泵在电厂回收余热的应用。汽轮机凝汽器的乏汽原来通过循环水经双曲线冷却塔冷却后排放掉,造成乏汽余热损失,而循环水由26℃经凝气器后温度升为30℃。现采用吸收式热泵,以30℃的冷却水作为低温热源,以汽轮机抽汽作为驱动热源,加热50~80℃左右的采暖用热网回水,循环冷却水降至26℃后再去凝汽器循环利用。这样可回收循环水余热,提高电厂供热量,即提高了电厂总的热效率。
图2系统图
1、蒸汽及凝结水系统。蒸汽系统为溴化锂吸收式热泵机组提供驱动热源,同时为热网加热器提供热源。如某项目2×300MW机组,汽轮机抽汽一部分供热网加热器,另一部分经减温减压后为溴化锂吸收式热泵机组提供驱动蒸汽。凝结水采用闭式回收系统,回收热泵和热网加热器的凝结水,凝结水通过凝水泵打回电厂除氧器。
2、电厂循环水(余热水)系统。电厂循环冷却水(余热水)经加压泵打入热泵机组,经热泵吸热后再返回冷却塔的系统。余热水取水时采用两路并联,为了便于管理和计量,在使用时只从一台机组取出,经热泵机组吸热后,回到对应的冷却塔。溴化锂热泵机组从余热水中提取热量,使余热水由35℃降至27℃。
3、热网循环水系统。热网循环水系统是将热力网回水加温加压到满足热力网供水参数的系统。城市热网的回水经过除污器从溴化锂热泵机组吸热,将城市热网回水由50℃提高至85℃。再通过热网循环泵加压后进入热网加热器,将水温从85℃升高到110℃,向外供热。
4、补水系统。补水系统为热网提供补充水。根据热网循环水量设置一条补水管线,正常补水时,由化水车间来水进入软水器软化后经除氧器除氧,除氧水经补水泵打入热网回水管。软化水一支为补水箱供水,在事故状态,除氧水不能满足补水量要求时,将补水箱的水直接打到热网回水管。补水系统兼做定压系统。
五、热泵的影响
如果以循环水温度2820℃的边界条件,那么热泵只是充当了冷却塔的角色,只要将循环水水量和温度调整好,运行稳定后,就不会对汽轮机产生任何实质性的影响。由于热泵负责的温度区间处于最低段,所以整个供暖季中,不论初末期还是尖峰期,热泵均处于全负荷运转工况,所以也不必担心负荷变化造成的循环水温度波动。如果以循环水温度3527℃的边界条件,在引入热泵后,需调整汽轮机背压,提升循环水温度。本方案的供暖面积不变,抽汽量降低,排汽量上升,发电量增大。为不增大发电量,就会略降低主蒸汽流量,从而减少了燃煤量。如果是要实现供暖面积扩容,供暖负荷增大,汽轮机的工况也产生相应变化。
六、热泵系统节能性分析
如某项目两台300MW供热机组,设计热网额定供水量为11000t/h,设计供水温度130℃,设计回水温度70℃。供暖面积约1100万平方米,峰值负荷为484MW(1742.4GJ/h),耗汽量约800t/h。热泵机组进出水温度为50℃和85℃,能效比1.65,热网加热器进出水温度为85℃和130℃。按最大热负荷计算,热泵系统相关参数计算如下:
热水管网流量:
484×3600÷4.18÷(130-50)=5210t/h;
热泵机组供热负荷:4.18×5210×(85-50)÷3600=211.7MW;
热网加热器供热负荷:4.18×5210×(130-85)÷3600=125.22MW;
热泵机组驱动蒸汽供热负荷:211.7÷1.65=128.3MW(折合蒸汽183.3t/h);
从余热水回收供热负荷:211.7-128.3=83.4MW(折合蒸汽119.14t/h);
占总热负荷484M(折合蒸汽691.4t/h)的17.23%年回收余热:1742.4GJ×17.23%=300.22GJ(折合标10244t)
可见吸收式热泵机组全年运行回收的余热折合标煤10244t,不仅经济效益明显,而且满足用户供热需求的同时,减少对环境的污染。
节水量计算:
1台机组满负荷时,冷却循环水量约为33600t/h,冷却塔设计补水量为672t/h。热负荷余热水量为5210t/h,占循环水量的15.5%,这部分水不需要回冷却塔去散热,而直接回水池,减少了回冷却塔的蒸发和风吹损失,
按减少损失80%计算,节水量约为672×15.5%×80%=83.33t/h,整个采暖期节水量约为23.99万吨。
七、结束语
通过采用热电厂循环水热泵供热技术对循环水余热的回收,在新增供热的同时,无需消耗新的能源,不产生烟尘、SO2和NOx等污染物,从而改善了环境空气质量,不产生温室气体CO2,降低温室效应,具有可观的环境效益。改善供热质量,有助于提高人民生活水平,具有良好的社会效益。由于免建供热锅炉房,节省了再建锅炉房投资,可免去土地征购费和每年的运行费用,并节约用水和用电,节省维修资金等具有良好的节能效益,经济效益显著。
如上所述,采用热泵技术,可为节约能源和改善环境做出贡献,具有明显的环境效益、社会效益和经济效益。热电厂循环水热泵供热技术的推广及实施,符合国家的节能减排政策,也是应对全球气候变化的需要。
参考文献
循环水泵篇5
【关键字】水泵;循环系统;自动控制;应用
前言
采用PLC自动控制水泵循环系统能够根据水站的用水特点实现水泵的自动化控制,进而提高循环供水的供水性能和可靠性。下面我们通过举例某工厂的水泵循环系统采用PLC自动化控制保证工厂用水需求。
1数据自动采集与检测
PLC自动控制水泵循环系统具有各项参数的自动采集与检测功能,可将检测的数据分成两类:模拟量数据和数字量数据。
1.1模拟量数据
模拟量数据包括:水位、电机工作电流、水泵轴温、电机温度、流量。
1.2数字量数据
数据量数据包括:水泵高压启动柜真空断路器和电抗器柜真空接触器的状态、电动阀的工作状态与启闭位置、真空泵工作状态、电磁阀状态、水泵吸水管真空度及水泵出水口压力。
数据自动采集是利用可编程控制器PLC控制模块实现对传感器检测到的各项数据进行编程,通过计算数据值是否与设定值相符完成数据准确度的判断。模拟量数据可通过A/D转换成数字信号供PLC控制模块识别和编辑,实现自动化控制水泵循环系统。
2自动控制水泵循环系统的功能及特点
(1)采用PLC自动控制程序可将水泵循环系统分段控制,程序结构根据供水与排水需求设计程序性能。程序设计要简单、清晰、明确。
(2)自动控制水泵循环系统具有水压及水位的检测功能,根据水压及水位的变化开启或者关闭水泵,进而能够使水泵不至于超负荷运转。另外,当水位或者水压低于设定标准时,可增加水泵数量,当水位水压超过设定值时,可减少水泵数量。
(3)自动控制水泵循环系统具有水泵优先选择功能,就近选择保证供排水及时。
(4)自动控制水泵循环系统可根据用电负荷调节水泵工作泵数和开关时间,在确保供排水正常的情况下,在用电高峰时期可减少水泵数量。
(5)自动控制水泵循环系统能够根据水位的检测信号判断出水位的上升或者下降率,进而计算出供排水时间和用泵数量之间的关系,合理调配水泵数量。
(6)自动控制水泵循环系统安装有触控显示屏,可实时显示水位信息和设备的各项参数,如水压、电压、温度等,当某项信息错误时,会出现红色预警信号。
(7)自动控制水泵循环系统具有通讯接口,能够实现PLC与各项设备之间的通讯,并且可配置网络设备实现水泵循环系统远程控制。
(8)自动控制水泵循环系统保护功能
1)超温保护功能:当水泵循环系统中的某个水泵长时间运转,会导致水泵温度升高,最终导致水泵使用寿命降低。因此,超温保护功能是当出现水泵温度值超限PLC会发送讯息给显示屏,提示温度超限,并可控制关闭此泵开启另一水泵。
2)流量保护功能:水泵运行过程中,受到外界影响使水泵出水量不能达到设计标准,或者水泵设备出现故障水泵出水量超过设计标准,则开启流量保护装置,停止该水泵工作,并开启备用水泵。
3)电动机故障保护功能:水泵供电稳定性是水泵循环系统正常运转的关键,PLC控制系统可监测到水泵电压值,当出现不稳定状况是可开启电压保护装置,防止电气故障造成的水泵停止。
4)电动闸阀故障保护功能:当自动控制水泵循环系统出现电流过载、短路、漏电、电动闸阀故障问题,自动控制系统可进行自动断电,确保人及财产安全。
(9)自动控制水泵循环系统具有全自动控制、半自动控制、手动控制三种工作方式。
3自动控制水泵循环系统的应用实例
为某农田排涝系统设计安装自动控制水泵循环系统,其是由6台37千瓦水泵构成,水泵可轮流工作,根据水泵循环系统进水量和水位自动调节水泵开启数量,进而能够保证农田水位保持在相对水平线上,保证农田给水与排水正常。
3.1自动控制水泵循环系统设计要求
(1)水泵启动数量和更换时间要根据排涝系统的进水量和水泵运行时间来确定,水泵数量要根据水池水位标准进行确定,更换时间根据水泵运行新能进行确定。
(2)农田排涝系统设计安装自动控制水泵循环系统无需全部水泵同时工作,水泵增加一台则需减少一台,每个水泵的工作周期要保证相同,避免水泵超负荷运转,降低使用寿命。当出现某一水泵工作异常时,可自动停止该水泵,并补充新水泵进行运转。每个水泵都有其工作运转的周期,避免资源的浪费。
(3)自动控制水泵循环系统配置有电压稳定系统,保证水泵通电稳定,排除水泵频繁启动的故障。水泵在启动时,要进行系统自检,保证水泵能够可靠运行。设置最低水位保护控制和最高水位狱警功能。
3.2自动控制水泵循环系统结构
自动控制水泵循环系统要求具有可编程控制器PLC控制模块,水泵电源电压稳定模块、显示器、模拟输入与输出模块、控制开关模块和数据显示仪表及其他辅助模块。
(1)可编程控制器PLC控制模块
可编程控制器PLC控制模块可以对水泵循环系统进行有效控制,其通过指令的接收与发送实现水泵的正常运转。所以,可编程控制器PLC控制模块的稳定性和高效性是自动控制水泵循环系统的关键。
(2)水泵电源电压稳定模块
水泵电源电压稳定模块可以保证水泵循环系统供电的稳定性,水泵电源电压稳定模块具有功率预留功能,当出现电压问题,功率余量可保证系统正常运行一段时间,用来为供电检修提供时间。
(3)显示器
显示器采用触控屏,可实现人机互动,显示屏可显示水泵循环系统的各项参数信息,当出现某项信息错误时,会出现红色预警信号。
(4)模拟输入与输出模块
模拟输入与输出模块可以为可编程控制器PLC提供信息的输入与输出,能够保证信息输入输出的稳定性,并且其具有电池波隔离新能。
(5)控制开关模块
控制开关模块接收到控制指令后可完成水泵循环系统中各水泵的开启与关闭。
(6)数据显示仪表
数据显示仪表可以向可编程控制器PLC正确反映水泵循环系统中水泵等设备的运行状态,仪表显示的数据准确性是确保信息的正确的关键。
(7)其他辅助模块
其他辅助模块包括系统自检、系统维护、系统恢复等,可保证自动控制水泵循环系统具有自我修复能力。
4结束语
自动控制水泵循环系统节能高效,可以应用在各种环境中,通过可编程控制器PLC实现软件控制系统硬件工作形式,在相同水泵循环系统中,设定不同的参数,可实现不同的控制方式,进而节约投资成本,提高水泵循环系统利用效率。自动控制水泵循序系统的应用领域非常广泛,可应用于各大钢厂用于冷却还可用于农田水利用于灌溉等,具有很高的应用价值。
参考文献:
[1]工厂常用电气设备手册[M].北京:中国电力出版杜,1998(3).
