当前位置: 首页 > 范文大全 > 办公范文

四年级数学教学反思(6篇)

时间:

四年级数学教学反思

本节内容是在观察由3个、4个同样大小的正方体拼成的物体,分别从正面、上面、侧面三个不同的角度去观察的基础上,添加一个同样大小的正方体所摆成的物体,从正面、上面、侧面所看到的形状不变。

在学习新知识的开始,我引导学生仔细观察所摆物体的正面的形状,抛出这样一个问题:“添加一个同样大小的正方体,从正面看形状不变,想一想,该怎样摆?这当中强调要有各自独立思考,在独立思考的基础上,再在小组里讨论,待有结果以后,再尝试拼摆,通过自己亲身实践,验证自己的设想,这样设计一是充分体现学生的自主性,发挥学生的主体地位,主动权交给学生,让学生大胆猜想,富于实践。二是亲身经历数学学习历程,体验知识的形成过程,由猜想、假设到操作验证,既掌握了知识,又形成了能力。

得出各种不同摆法以后,再让学生通过观察比较,不难发现摆在原物体某一个正方体的前面或后面,对齐着摆就行了。摆在后面,如果允许不对齐,就会出现更多不同的摆法。

此刻,我又作了拓展;可以再添加相同的小正方体了吗?学生回答:可以。可以添加多少个?1个、2个、3个……一直到无数个。学生的思维很发散,很有创意,真了不起,他们已经发现拼摆中的规律:只要在原某一个小正方体的前面或后面即可。

从上面、侧面看形状不变,改变了教学的策略,先研究侧面,后研究上面。因为侧面的摆法和正面摆法有相似之处,仍然有无数种不同的摆法,在教学中直接让学生拼摆,再借助多媒体演示多种不同的摆法。当研究从上面看时,要求学生直接通过展开丰富想象无需拼摆,直接借助电脑上拖动小正方体展示不同的摆法,同时还提问:有不同的摆法吗?学生举出了多种不同的摆法。

整个探究过程,大胆放手、扎实有效,取得了较好的教学效果。

四年级数学教学反思

在教“上海在北京的南偏东约30°的方向上。北京在上海的什么方向上。”这一内容时,关键教师要让学生把握好以什么为观察点。“上海在北京的南偏东约30°的方向上。”它是以北京为观察点。而“北京在上海的什么方向上。”它是以上海为观察点。如果学生把握好了观察点,就比较容易地得出北京在上海的北偏西约30°的方向上。

在教“我向正南方向走50米到路口,再向南偏西约30°走100米到公园。要求学生画出路线示意图。”这一内容时,教师要让学生明白此题中的观察点是在不断地变化,一开始自己要确定一个起点作为观察点,然后向正南方向走50米到路口,到了路口要以路口为观察点,再向南偏西约30°走100米到公园。老师不但要让学生明白图上的1厘米代表实际距离多少米,还要提醒学生每画(走)到一个地方,就要画上方向标,标出名称。

如果学生弄懂了以上两道例题,这一单元的其它几道题也是大同小异,那么学生对这一单元的知识自然而然地全学会了。这样,教师教得轻松,学生学得也轻松,起到了事半功倍的效果。

四年级数学教学反思

本周教学了《商不变的性质》这一节课中学生能积极参与教学活动,主动探索规律。

我从学生感兴趣的故事出发设计问题情境,使学生从自身内部的需要产生了问题(至少使学生感到教师引发的问题是自己想探究的问题)。学生从已有的生活经验和知识经验出发,经过自己的观察、思考,大胆地提出了自己的猜想。学生在相互不断补充中,不断完善自己的猜想。波伊亚认为教师不但要教学生严格演绎思维证明问题,而且要教学生学会猜测问题。他甚至还向教师呼吁:"让我们教猜想吧"。本节课学生在课堂中自己动脑分析,提出猜想,研究猜想的合理性。通过猜想——修正——再猜想——再修正……,逐步获得商不变规律的条件,并发现结论,在这一复杂的思维过程中,学生的活动方式是多样化的,有个人独立思考,也有小组合作交流,更有班级集体探究。这样有利于学生自主探索,又能集思广益、思维互补、思路开阔。

学生的自主探索是小学生成为课堂小主人的必要条件,而留给学生自由探索的时间和空间更是必要。(对于这个规律,是否具有普遍性呢?请你再举一些例子来证明)教师这个问题再一次激起学生的挑战性。从现场看就有学生提出24÷5≠(24×2)÷(5×2),这难能可贵的疑问折射出学生绞尽脑汁之后的欢乐,他终于与别人看法不一样。由此想到应该给学生多一些自由探索思考时间,少一些指令性的操作程序,效果会更好!学生不但发现结论,还学会"猜想——验证"的探究方法,会有一种"心中悟出始知深"的感觉。

四年级数学教学反思

本节课的教学目标是通过具体的情境,体验“调商”的过程。能正确计算三位数除以两位数,并能解决简单的实际问题。本课教学中,我精心设计与实际生活相联系的数学情境,把那些需要学生解决的矛盾问题带到一定的情境中去,以引发学生的学习兴趣,强化学生的学习欲。教学时,我让学生说一说情境图上的信息,然后讨论怎样安排乘车,在学生充分讨论的基础上,引出第(1)题;接着估计商的得数。教材中呈现了两种估计的方法:一是把除数看作整十数,估计约需要9辆车;二是车辆数直接取整十数,知道需要的车辆应比10辆少。在讨论时,学生可能会有其他的估计方法,只要他们说得合理,就应肯定。在试商的

过程中,学生仍会把“34”看作“30”来进行试商,但在具体的计算时,会发现“9×34的积”比被除数大。那么,积大了说明什么,为什么会大呢,这些都是讨论的重点问题。学生明白了其中的道理,那么商是改大还是改小,自然就理解了。

四年级数学教学反思

《商不变规律》是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。课堂上我能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,学生不仅学会知识,更重要的是提高了独立思考,主动探索、研究和创造的能力。

四年级数学教学反思

“植树问题”是新课程标准实验教材四年级下册的资料,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。

教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助资料的教学发展学生的思维,提高学生必须的思维潜力。

我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉个性好,反思整个教学过程,我认为我执教的这节课整体是成功的。

首先,设计流畅简单易懂。

整节课设计基于我班学生实际状况,课前创设情境使学生明确要学习的资料,紧之后引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,终总结出:段数+1=棵数。这节课的设计依据了认知规律:透过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点资料进行难点的突破。

其次,注重实践体验探究。

教学中,我创设了情境,向学生带给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

再次,联系生活拓展思维。

有好处的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有好处。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生带给体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲。

这节课虽扎扎实实,但问题也存在着。

一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的潜力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数—1,路长=间隔数X间隔长”等等知识的扩散。

二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。

比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,就应思考学生的知识构建,学生的知识认知一般是在具体情景中透过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。