当前位置: 首页 > 范文大全 > 办公范文

继电保护的灵敏性范例(12篇)

时间:

继电保护的灵敏性范文篇1

关键词:500kV;电力变压器;继电保护

作者简介:温源(1975-),男,江西信丰人,广东电网公司佛山供电局,工程师。(广东佛山528000)

中图分类号:TM588文献标识码:A文章编号:1007-0079(2013)36-0209-02

一、500kV电力变压器的继电保护装置概述

继电保护装置能够在电力系统及其元件出现故障问题时,及时检测到故障并立即触发报警信号,再由控制系统接收报警信号并进行保护装置动作,从而实现对故障问题的有效排除,确保系统的正常运行。一般来说,继电保护装置的基本性能主要有灵敏性、可靠性、快速性和选择性等几种。其中,灵敏性一般是采用灵敏系数来加以表示的,装置灵敏系数越高,则其反应故障的能力也越好;可靠性是表现在继电保护过程中,装置不会发生拒动作;快速性体现在装置消除异常与故障问题的时间问题上;而选择性则是在可能的最小的区间内切除故障,以确保设备供电的正常。在供电系统当中,继电保护装置在检测系统运行情况、控制断路器工作以及记录故障问题等方面,有着极为重要的作用。

二、500kV电力变压器继电保护的相关问题分析

1.500kV电力变压器的常见继电保护问题

(1)瓦斯保护。在500kV电力变压器的继电保护中,往往容易因变压器在滤油、加油时未将内部空气及时排出,而导致变压器运行过程中油温升高将空气逐步排出,引起瓦斯保护信号动作。同时,受到500kV电力变压器穿越性短路的影响,也易于造成瓦斯保护信号动作。另外,由于内部严重故障、油位迅速下降等,也容易引起瓦斯保护动作及跳闸。

(2)差动保护。差动保护主要是通过对500kV电力变压器的高压侧和低压侧电流大小及相位差别加以利用,从而实现保护。由于差动保护灵敏度相对较高,能够无延时对各种故障做出选择性的准确切除,且又具有选择性好、实现简单以及区分故障性能好等特点,使得差动保护在当前大多数电路保护中受到广泛应用。

(3)过励磁保护。在500kV电力变压器的工作过程中,若在其高压侧出现500kV的高压,那么此期间变压器的磁密度会接近饱和状态,此时如果有频率降低、电压升高等情况出现,将很容易导致变压器发生过励磁现象。过励磁保护便是基于此原理来反映过励磁引起的过电流,以延长变压器使用寿命。

(4)过电流保护。电力变压器过电流保护作为瓦斯保护和差动保护的后备,通常可以根据变压器的容量以及短路电流的不同情况,进行过电流保护、复合电压启动的过电流保护以及负序电流及单项式低电压启动的过电流保护等。其中,过电流保护常用于降压变压器;复合电压启动的过电流保护通常是在升压变压器,或是在过电流保护的灵敏度不够等情况下方才采用;而负序电流及单项式低电压启动的过电流保护,则在63MV-A及以上大容量升压变压器,以及系统联络变压器较为常用。

2.500kV电力变压器常见故障

一般来说,500kV电力变压器的常见故障类型主要有两类,即油箱内部故障和油箱外部故障。油箱内部故障,常见的有高、低压侧绕组间的相间短路,轻微匝间短路、中性点接地系统的侧绕组处单相接地短路,铁芯绕损烧坏等故障。电力变压器内部发生故障时,往往会产生一些电流及电弧,给绕组绝缘、铁芯等造成损坏,严重时甚至会使变压器油受热分解大量气体,引起爆炸。为此,需要继电保护及时、有效地对这些内部故障予以切除。油箱外部故障,最常见的有绝缘套管和引出线上发生相间短路、接地短路等。

三、500kV电力变压器继电保护问题的解决对策

为了使500kV电力变压器的正常、稳定运行,保障系统供电的可靠性和整个电网运行的安全性和稳定性,并尽最大限度避免一旦停运给整个电网造成巨大的经济损失,可以考虑从以下几个步骤对电力变压器继电保护问题进行有效、彻底解决。

1.利用微机及相关信息,处理继电保护故障

首先,应对微机提供的故障信息加以充分利用,以排除简单的继电保护故障;其次,应重视对人为故障的处理,例如在有些继电保护故障发生后,单从现场的信号指示并无法找到发生故障的原因,可能与工作人员的重视程度不够、措施不力有关,对于这种情况,需要如实反映,以便分析和避免浪费时间。另外,还应重视对故障录波和事件记录的充分利用,包括微机事件记录、故障录波图形、装置灯光显示信号等。通过这些记录,能够对一、二次系统进行全面检查,此时若发现继电保护正确动作是由一次系统故障所致,则可判断不存在继电保护故障处理的问题;若发现故障主要出在继电保护上,则应该尽可能维持原状,做好故障记录,通过制定相应的故障处理计划后再进行故障处理。

2.合理应用检查方法

在变压器继电保护出现误动时,可采用逆序检查法,从故障发生的结果出发,逐级往前查找微机事件记录及故障录波等;在出现拒动时,可采用顺序检查法,通过外部检查绝缘检测定值检查电源性能测试保护性能检查的顺序,进行检验调试。另外,在检查继电保护装置的动作逻辑和动作时间时,还可应用整组试验法来进行。通过短时间内再现故障的方式,来判断继电保护发生故障的原因并加以解决。

3.继电保护常见故障的解决

结合瓦斯故障的处理方式来看,在发生瓦斯保护动作时,可通过复归音响,密切监视变压器电流、电压及温度,检查直流系统绝缘接地情况以及二次回路是否存在故障等来排除故障。若检查发现瓦斯继电器内存在氧化,则应即刻排出瓦斯继电器的气体,同时收集并检查气体,若气体无色、无臭且不可燃,则变压器仍可继续运行;若气体为白色、淡黄色,并带刺激味或为灰黑色且可燃,则说明变压器内部发生故障,需要取油样化验其闪点,若其闪点较前次低于5℃以上时,应停运变压器,并联系检修进行内部检查。

另外,结合差动保护故障的排除方法来看,可以为新安装的变压器进行5次空投变压器试验,以测试差动保护能够躲过励磁涌流,并检查TA回路接线是否正确,同时进行差压和差流测试等。例如在接线错误所致误动时,首先,应对变压器TA进行极性试验和一次通流试验,以检查其变比和二次回路的完好性,其次,应对电缆线、屏内二次接线等加以检查,以确保二次回路的绝缘性良好。此外,还应对TA二次回路的接地点进行检查,以确保其在保护屏内,且仅有一点接地。

四、结合差动保护,探讨500kV电力变压器继电保护的改进

为了更好地减少和预防电力变压器继电保护故障问题的出现,可以通过对变压器外部保护的死角加强控制来实现。为此,本研究拟采用差动保护来对500kV电力变压器继电保护的主保护进行强化,具体分析如下。

1.差动保护的构造

根据基尔霍夫定理,差动保护能够在电力变压器正常运行或外部短路期间,实现变压器三侧电流向量值相抵消,即三者之和为0,从而起到保护电路的作用。

在变电器内部出现故障时,;在变电器外部发生故障或是无故障问题存在时,。

2.差动保护的整定

结合图2来看,为满足500kV电力变压器侧动、热稳定、穿越功率等要求,通常情况下,1ct的变比均设定在2500/1A。不过受到启动变额定电流61A的影响,导致500kV电力变压器差动保护无法完成整定工作。此时若是根据变电器继电保护装置的最小整定电流整定,则会导致该装置的抗干扰能力发生相当程度的降低,并致使差动保护灵敏度发生下降。其中,差动保护整定的最小动作电流Id的表达式为:

Id=K(Ker+ΔU+Δm)In/n

式中,In表示电力变压器额定电流;n表示电流互感器变化比;K表示可靠系数;Ker表示电流互感器比误差;另外ΔU和Δm分别表示变压器调压误差和电流互感器变化比未安全匹配差产生的误差。

3.比率制动和谐波制动的应用

在差动保护整定要求满足的前提下,电力变压器的灵敏性、可靠性等,可以通过比率制动原理来实现提高,同时,应用比率制动,也可避免区外故障问题时产生误动。而在电力变压器空载投入或是外部故障问题切除完成后,利用谐波制动,可以使得变压器在电压恢复期间,借助产生的励磁涌流而对变压器进行分量制动。

五、结束语

继电保护是保障电力系统安全、稳定运行的重要装置。本研究对500kV电力变压器继电保护的相关问题以及电力变压器常见故障进行探讨,可以看出,电力变压器继电保护问题的处理,除了可以利用微机及相关信息处理之外,还可通过合理正确利用检查方法和针对性处理等方式加以解决,从而提高继电保护系统的工作可行性,减少故障问题的发生。另外,在500kV电力变压器继电保护中应用差动保护,还能够较为全面顾及到电力变压器内外部故障,进一步保障电力系统的安全、稳定运行。

参考文献:

[1]王雷,500kV启动/备用变压器继电保护配置的浅谈[J].大众科技,2009,(12):112-113.

[2]梁凯.500kV变电站微机继电保护的技术改进研究[D].北京:华北电力大学,2006.

[3]鲁春燕,赵月,张伟.供电系统中继电保护问题的分析和探讨[J].科技致富向导,2011,(18):326-327.

[4]李建萍.500kV线路串补系统保护与控制技术研究[D].北京:华北电力大学,2012.

继电保护的灵敏性范文篇2

【关键词】:10kv配电继电保护装置

一、电网10kV配电系统在电力系统中的重要位置

电网10kV配电系统是电力系统发电、变电、输电、配电和用电等五个环节的一个重要组成部分,在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。例如,当系统中的某工矿企业的设备发生短路事故时,由于短路电流的热效应和电动力效应,往往造成电气设备或电气线路的致命损坏还有可能严重到使系统的稳定运行遭到破坏,为了确保城市供电10kV配电系统的正常运行,必须正确地设置继电保护装置。

二、电网10kV配电系统继电保护的基本类型

电网10kV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故

的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。

在电力系统中利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置。如在电网10kV配电系统中应用最为广泛的是反映电流变化的电流保护:有定时限过电流保护、反时限过电流保护、电流速断保护、过负荷保护和零序电流保护等,还有既反映电流的变化又反映电压与电流之间相位角变化的方向过电流保护;利用故障接地线路的电容电流大于非故障接地线路的电容电流来选择接地线路,一般均作用于发信号,在部分发达城市因电容电流较大10kV配网系统采用中性点直接接地的运行方式,此时零序电流保护直接作用于跳闸。在10kV系统中利用熔断器去完成上述任务是不能满足要求的。因为熔断器的安秒特性不甚完善,熄灭高压电路中强烈电弧的能力不足,甚至有使故障进一步扩大的可能;同时还延长了停电的历时。只有采用继电保护装置才是最完美的措施。因此,在10kV系统中的继电保护装置就成了供电系统能否安全可靠运行的不可缺少的重要组成部分。

三、电力系统对继电保护的基本要求

3.1选择性

继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行:(1)主保护和后备保护。10kV供电系统中的电气设备和线路应装设短路故障保护。短路故障保护应有主保护、后备保护,必要时可增设辅助保护。当在系统中的同一地点或不同地点装有两套保护时,其中有一套动作比较快,而另一套动作比较慢,动作比较快的就称为主保护,而动作比较慢的就称为后备保护。后备保护不应理解为次要保护,它同样重要。后备保护不仅可以起到当主保护应该动作而未动作时的后备,还可以起到当主保护虽已动作但最终未能达到切除故障部分的作用。(2)辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护,称为辅助保护。

3.2速动性

快速切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低情况下工作的时间,以及缩小故障元件的损坏程度。对于继电保护速动性的具体要求,应根据电力系统的接线以及被保护元件的具体情况来确定:(1)根据维持系统稳定的要求,必须快速切除高压输电线路上发生的故障。(2)大容量的发电机、变压器以及速动性快速切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低情况。下工作的时间,以及缩小故障元件的损坏程度。因此,在发生故障时,应力求保护装置能迅速动作切除故障。电力系统在某些情况下,允许保护装置带有一定的延时切除故障。因此,对于继电保护速动性的具体要求,应根据电力系统的接线以及被保护元件的具体情况来确定:(1)根据维持系统稳定的要求,必须快速切除高压输电线路上发生的故障。(2)大容量的发电机、变压器以及电动机内部发生的故障。(3)1-10kV线路导线截面过小,为避免过热不允许延时切除的故障。(4)可能危及人身安全、对铁路通讯系统或铁道号志系统有强烈干扰的故障。故障切除的总时间等于保护装置和断路器动作时间之和。一般的快速保护动作时间为0106~0112s,最快的可达010l~0104s,一般断路器的动作时间为0106~0115s,最快的可达0102~0106s。

3.3灵敏性

继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在事先规定的保护范围内部故障时,不论短路点的位置、短路的类型如何,都能敏锐感觉,正确反应。保护装置灵敏与否,一般用灵敏系数来衡量。保护装置的灵敏系数应根据不利的运行方式和故障类型进行计算。灵敏系数越高,则反映轻微故障的能力越强。各类保护装置灵敏系数的大小,根据保护装置的不同而不尽相同。

四、几种常用电流保护的分析

4.1反时限过电流保护

继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护叫做反时限过电流保护。反时限过电流保护是由GL215(25)感应型继电器构成的,这种保护方式广泛应用于一般工矿企业中,感应型继电器兼有电磁式电流继电器(作为起动元件)、电磁式时间继电器(作为时限元件)、电磁式信号继电器(作为信号元件)和电磁式中间继电器(作为出口元件)的功能,用以实现反时限过电流保护;另外,它还有电磁速断元件的功能,又能同时实现电流速断保护。

4.2定时限过电流保护

继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。这种保护方式一般应用在10kV~35kV系统中比较重要

的变配电所。

4.3电流速断保护

电流速断保护是一种无时限或略带时限动作的一种电流保护。它能在最短的时间内迅速切除短路故障,减小故障持续时间,防止事故扩大。电流速断保护又分为瞬时电

流速断保护和略带时限的电流速断保护两种。电流速断保护是由电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般不需要时间继电器。常采用直流操作,须设置直流屏。电流速断保护简单可靠,完全依靠短路电流的大小来确定保护是否需要启动。它是按一定地点的短路电流来获得选择性动作,动作的选择性能够保证,动作的灵敏性能够满足要求,整定调试比较准确和方便。

五、结束语

10kV配电网继电保护是一项综合性、系统性的工作,在实践工作中除了采用以上方法处理相关故障和问题外,还需采取以下措施综合性的保证10kV配电网继电保护的可靠性。对继电保护装置进行定期检修;实现继电保护的智能化与网络化建设;加强继电保护管理,完善制度建设;与时俱进,积极引进和使用新技术等。随着电力科技含量不断提高,保护装置不断地更新换代,要保证电网安全稳定运行,必须不断提高管理水平,完善继电保护相关

管理制度,加大人员培训力度,增强继保人员的工作责任心,变被动管理为主动管理,才能防患于未然。

参考文献

[1]谢冰.配电系统继电保护存在的问题及改进措施[J].科技创新导

报,2008,(30).

[2]崔家佩,孟庆,陈永芳,熊炳辉.电力系统继电保护与安全自动装置整定

计算[M].北京:水利电力出版社,1993.

[3]吴晓梅,邹森元主编.国家电力调度通信中心编.电力系统继电保护典型故障分析[M].中国电力出版社.2001.

[4]陈健.淮安电网继电保护运行管理[J].科技信息.2007.(10).

[5]李江龙,陈云燕.电网微机继电保护装置应用中的几个问题[J].科技情

继电保护的灵敏性范文

【关键词】供电可靠性;技术先进;经济合理;时限速断保护

0引言

众所周之,继电保护装置越来越多,无论是电磁式继电器、感应式继电器和晶体管继电器,还是微机保护装置。它们都是让继电保护的选择性、速动性、灵敏性和可靠性更加完善。线路保护也是供电保护的一个重要组成部分。线路保护中通常使用了过流保护和瞬时速断保护,然而,时限速断保护也是线路保护的一个重要组成部分。时限速断保护的整定值比过流值大,比瞬时速断值小,正好处于过流保护值和瞬时速断值之间,如果有了时限速断保护,线路保护过程会变的平滑;瞬时速断保护存在死区,时限速断保护能通过其保护和延时弥补瞬时速断保护的死区;在瞬时保护无法校验时,时限速断保护也可以进行保护,并符合校验要求。

1时限速断保护配合过流保护和瞬时速断保护,可以使线路保护变得更加平滑

线路保护中,瞬时速断保护值比较大,而过流保护值比较小或者保护延时时间比较长,添加时限速断保护后,整个保护就有了一个连续保护的动作过程,让整个保护过程变得平滑。当电流值达到过流值的大小时,造成过流动作保护;当电流值增大至时限速断值时,造成时限速断动作保护;当电流值瞬间增大到瞬时速断值时,造成瞬时速断动作保护。这样,这个保护过程有了一个阶段过程性,让整个动作保护过程能平滑实现,强化了整个继电保护过程的选择性、可靠性、速动性和灵敏性。进一步保证了线路和整个电网的正常供电。

2时限速断保护,可以弥补瞬时速断保护的“死区”

由于电流速断保护的动作电流是按躲过线路末端的最大三相短路电流整定的,所以电流速断保护只能保护线路的一部分,不能保护线路的全长。其中没有受到保护的一段线路,称为电流速断保护的“死区”如图1所示,纵轴Is表示短路电流,横轴L表示距离。线路WL1、WL2上分别装有电流瞬时速断保护装置1和2。图中给出了在线路不同地点短路时,短路电流IS与距离L的关系曲线。图中曲线1是系统最大运行方式下,最大三相短路电流的曲线;曲线2是系统最小运行方式下,最小两相短路电流的曲线;直线3是速断装置1的动作电流Iop1的直线。

图1

直线3与曲线1的交点A到线路始端的距离Lmax,是瞬时速断保护装置1对最大三相短路电流的保护范围。直线3与曲线2的交点B到线路始端的距离Lmin,是瞬时电流速断装置1对最小两相短路电流的保护范围。由此可看出,电流瞬时速断装置对最大运行方式下的三相短路电流有一定的保护范围,而电流瞬时速断装置对最小运行方式下的两相短路电流的保护范围有限,特别是系统电网波动比较大时,电流瞬时速断装置对最小运行方式下的最小两相短路电流的保护范围就几乎为零。而时限速短保护装置,通过把保护范围延伸至下一级线路和限时时间,达到保护本级线路全长的目的。

3当瞬时速断保护的灵敏度无法校验时,可以用时限速断保护进行保护

线路保护中,用最大运行方式下线路末端的最大三相短路电流计算出瞬时速断保护的整定值,用最小运行方式下线路末端的最小二相短路电流进行灵敏度校验时,无法校验。这时就应该用时限速断保护进行整定保护。时限电流速断保护是按躲过相邻元件末端短路时的最大三相短路电流进行整定,用本级线路末端最小两相短路电流来校验。下面用实例进行说明:

降压变电所引出10kV电缆线路,线路接线图图2如下所示:

最大运行方式下:

降压变电所母线三相短路电流I■■为5500A,配电所母线末端三相短路电流I■■为5130A,配电变压器低压侧三相短路时流过高压侧的电流I■■为820A。

最小运行方式下:降压变电所母线两相短路电流I■■为3966A,配电所母线两相短路电流I■■为3741A,

配电变压器低压侧两相短路时流过高压侧的电流I■■为689A。

DL1的A、C相电流互感器变比为ni=300/5。

图2

整定计算(计算断路器DL1的保护定值)

①瞬时电流速断保护

瞬时电流速断保护按躲过最大运行方式下线路末端的最大三相短路电流进行整定,保护装置的动作电流计算如下:

I■=K■K■■=1.3×1×■≈111,取110A

I■:计算的整定值

K■:可靠系数,取1.3

K■:接线系数,取1

保护装置一次动作电流I■I■=I■=■=110×■=6600A

灵敏系数按最小运行方式下线路末端最小两相短路电流来校验:

Klm=■=■=0.57

由此可见瞬时电流速断保护不能满足灵敏系数要求,因此需装设时限电流速断保护。

②时限电流速断保护

时限电流速断保护按躲过相邻元件末端短路时的最大三相短路时的电流整定,则保护装置动作电流

I■=K■K■■=1.3×1×■≈17.8,取20A

Kjx:接线系数,取1

K■:可靠系数,取1.3

保护装置一次动作电流

I■=I■=■=20×■=1200A

灵敏系数按最小运行方式下线路末端最小两相短路电流来校验:

Klm=■=■=3.3>2

限时电流速断保护动作时间:

此保护中不存在就瞬时速断保护即t1=0,

由于速断保护的延时极差为Δt=0.5S

因此:由于速断保护的延时间t2=t1+Δt=0.5S

因此,瞬时速断保护的灵敏度无法校验时,

就应该用时限速断进行保护整定和校验。

4结束语

线路保护中,时限速断保护整定值计算简单,整定时间也容易确定,在电磁式继电器、感应式继电器、晶体管继电器和微机保护装置也好设置,时限速断保护让线路整个保护装置的选择性、可靠性、速断性和灵敏性更好,因此,时限速断保护让线路保护更加完善。

【参考文献】

[1]张学成.工矿企业供电[M].北京:煤碳工业出版社,2005.

[2]李成虎.矿山供电技术[M].徐州:中国矿业大学出版社,2008.

[3]葛耀中,赵梦华,彭鹏,等.微机式自适应馈线保护的研究和开发[J].电力系统自动化,1999(03).

[4]黄震,陈平.配电线路自适应电流速断保护的实用化研究[J].四川电力技术,2008(S2).

[5]吴娟娟,杨晓敏.基于两相电流差和线电压的中低压线路自适应保护[J].电力系统保护与控制,2008(24).

[6]曹道勇.配电线路自适应电流保护方案[J].西南民族大学学报:自然科学版,2011(02).

[7]姚李孝,赵化时.分布式发电系统保护方法研究[J].电网与清洁能源,2010(05).

[8]陈金星.瞬时电流速断保护及瞬时电流闭锁电压速断保护性能分析[J].水利科技,1999(01).

[9]何伟忠.解决速断保护无选择性问题的办法[J].农村电气化,2002(03).

[10]葛耀中.对自适应电流速断保护的评价[J].电力自动化设备,2000(06).

继电保护的灵敏性范文篇4

【关键词】失灵保护;热工保护;瓦斯保护;配合

失灵保护是电网的重要保护,在220kV及以上电压等级电网中,按照近后备的保护配置原则,根据GB14285-93《继电保护和安全自动装置技术规程》的要求,均配置了失灵保护。

据统计,1990年以来全国失灵保护的动作情况如下:

从上表可见,失灵保护的正确动作率一直不高,远低于其它保护的正确动作率(一般在90%以上)。不正确动作中基本为误动。误动原因主要是误接线、误操作和制造质量问题。

从高压电网的要求和电网的实际运行经验看,应该特别强调失灵保护的安全性,在失灵保护的起动回路和出口回路的接线上,应力求安全,在安全的基础上,提高可依赖性。

但目前各网各站失灵保护的接线有很大不同,其中有一些问题值得我们注意。如发电机热工保护与失灵保护、三相操作开关的失灵保护、瓦斯保护与失灵保护等。下面就结合实际情况就这些问题进行分析。

1.发变组高压开关失灵保护

1.1热工保护与失灵保护

电厂热工保护跳闸和起动失灵保护的情况大不一样。一、热工保护动作后起动失灵保护,瓦斯保护虽未直接起动失灵保护,但动作于全停的电气主保护(差动、瓦斯、定子接地、匝间、速断等)会使热工保护动作,再起动失灵保护。二、热工保护动作后,不直接跳主开关,待逆功率继电器Ⅱ动作后,经延时跳主开关。逆功率起动失灵保护。三、热工保护动作后,待主汽门关闭信号接点闭合后,跳主开关,起动失灵保护。

根据目前发电厂热工设备运行的实际情况,热工保护动作的机率还比较高,因此还应当起动失灵保护。但由于热工保护的接点在开关跳闸后一般不返回,如果失灵保护仅依赖电流元件把关,会降低失灵保护的安全性,因此应解决热工保护动作后接点不返回的问题。

解决方案一:热工保护不再起动失灵保护。如果热工保护动作跳主开关,必同时关闭汽门,此时若汽门关闭而主开关失灵,逆功率保护应当动作,经延时再跳主开关并起动失灵保护;若主开关不失灵,逆功率保护不动作,失灵保护也不会被起动。这样逆功率保护就可以起到替代热工保护的作用。此方案的问题在于:(1)发电机必须装有可靠的逆功率保护。现代大型发电机一般配置此保护,在使用中应注意保证该保护的灵敏性和可靠性。(2)由于该方案失灵保护的动作时间较长(需等待逆功率保护的动作),如果主开关三相失灵,发电机要作为电动机运行较长时间,可能对发电机和系统不利,当系统无功缺额较大而发电机又已经灭磁时,问题更严重;如果主开关单相失灵,逆功率保护的灵敏度如何,需要验证,当然,此时,发电机其它电气保护(如负序反时限保护等)也可能动作,起动失灵。

解决方案二:热工保护起动失灵保护。按照技术规程的规定,采用双重化构成和回路的判别方式进行闭锁。

1.2判别回路

对分相操作开关,可按照能源部电火(1992)157号文件的要求,采用两零序电流继电器。根据计算,零序电流的灵敏度基本无问题,能保证失灵保护的可靠起动。

对三相操作开关,因为要考虑开关三相和分相失灵,其失灵判别回路必须重新考虑。

用传统的相电流元件时,考虑发电机、变压器故障的特点,较难选择电流元件的定值。电流元件的定值较大,在某些故障时,如匝间短路、热工保护动作等,可能不能保证电流元件的动作,也即开关三相失灵时,判别回路不能起动,失灵保护拒动;而降低电流元件的定值,受条件限制,仍难保证任何故障时的灵敏度,且相电流元件正常处于动作状态,需要在主开关跳开时可靠返回,这就对此元件及相应接点提出了很高的要求。

如果用分相操作开关的零序电流方案,开关三相失灵时,若为热工保护动作或故障为对称性故障,判别回路将不能起动,失灵保护拒动。

1.3电压闭锁

电力部颁“电力系统继电保护及安全自动装置反事故措施要点”强调,“除发电机变压器组的断路器非全相开断的保护外,均应设有足够灵敏度的电压闭锁控制多接点回路…”,但如同对电流元件的分析,电压元件在某些故障情况下是没有灵敏度的,或者说,发变组某些类型故障时,系统母线电压变化不大。因此,对分相操作开关,电火(1992)157号文要求采用零序电流元件的动作接点解除复合电压闭锁,以保证此时失灵保护的动作。但对三相操作开关,就很难找到合适的解除电压闭锁的判据,如果用相电流元件,正常运行时就可能解除了电压闭锁,使电压闭锁起不到应有的作用;如果用保护动作接点,则在处理保护缺陷或部分保护校验时,失灵保护的安全性又大为降低;如果再增加其它判据,回路又可能过于复杂。

综合上面的分析,我们可以得出:主开关为分相操作开关时,热工保护可以直接起动失灵保护,也可以不直接起动,由逆功率保护起动失灵。采用两零序电流继电器构成判别回路并解除电压闭锁。零序电流按照躲过正常运行时的不平衡电流整定。

2.瓦斯保护与失灵保护

按照技术规程规定,不允许瓦斯保护起动失灵保护。目前,某些设计的主变瓦斯保护动作时起动操作箱的永跳继电器,永跳继电器动作后起动失灵保护,相当于主变瓦斯保护起动失灵。要保证变压器瓦斯保护不起动失灵保护,可使瓦斯保护单独起动一出口中间继电器,接至操作箱的手跳端子,而手跳不起动失灵保护。

在瓦斯保护尚未分开出口时,若断路器失灵保护采用集成电路型或微机型装置,从电流判别到失灵计时均在一个装置内时(新设计的3/2接线的厂站一般用此类装置),由于它们之间不采用接点联系,不存在电流继电器接点粘连的问题,应该说,失灵保护的安全性还是有保证的。有严重问题的是使用电磁型电流继电器作为判别元件,而瓦斯保护又未分开出口时,非常容易误起动失灵保护。

3.结束语

失灵保护运行的可靠性是大家都非常关注的问题,为最大限度地减少失灵保护的不正确动作次数,需要我们从接线、操作和设备质量等各环节着手努力。采用高可靠性的失灵保护判别元件或装置,合理接线、整定,严格按规程操作,必将极大地提高失灵保护的正确动作率,为电网的安全运行作出应有的贡献。

【参考文献】

[1]国家电力调度通信中心编.电力系统继电保护典型故障分析.中国电力出版社,2001.

[2]黑龙江省电力有限公司调度中心编.现场运行人员继电保护知识实用技术与问答.中国电力出版社,2001.

[3]国家电力调度通信中心编.电网调度运行实用技术问答.中国电力出版社,2000,3.

[4]国家电力调度通信中心编.电力系统继电保护实用技术问答(第二版).中国电力出版社,1999,11.

继电保护的灵敏性范文篇5

【关健词】继电保护;整定计算;微机继电保护

某矿洗煤厂第一套重介选煤系统自2001年改造投产,供配电系统安全稳定运行,其相应的继电保护装置也已工作十年之久,考虑到线路老化,元器件可靠性降低等,以及继电保护技术的日新月异、飞速发展,继电保护系统优化升级已迫在眉睫,下面就其运行过程中的相关问题进行分析。

1.洗煤厂继电保护的现状分析

洗煤厂I回路由矿变电所27#柜送出,主要负责重介主厂房设备以及一台高压电机的供电。其供电系统图如下:

图1供电系统图

继电保护回路采用GL-20型感应式电流继电器,当主设备或输配电系统出现过负荷及短路故障时,该继电器能按预定的时限可靠动作或发出信号,切除故障部分,保证主设备及输配电系统安全运行。此继电器为早期的过流保护装置,其可靠性及速断性与上级保护即矿变电所的微机型继电保护相比相差很多,很容易造成误动作,甚至有可能造成电网上其他配电线路的掉闸事故,并且洗煤厂新建重介系统供配电继电保护III回路也已全部采用微机继电保护装置,为了维护方便、备件统一,在继电保护系统升级改造时应考虑到全部更新为新型的继电保护装置。

2.继电保护的要求

根据继电保护所担负的主要任务,基本要求如下:

(1)选择性:

当供配电系统发生短路故障时,继电保护装置动作,应只切除故障元件,使停电范围最小,以减小故障停电造成的损失。保护装置的这种能选择故障元件的能力称为保护的选择性。

(2)速动性:

为了减小由于故障引起的损失,减少用户在故障时低电压下的工作时间,以及提高供配电系统运行的稳定性,要求继电保护在发生故障时应能尽快动作,切除故障。快速地切除故障部分可以防止故障扩大,减轻故障电流对电气设备的损坏,加快配电系统电压的恢复,提高供配电系统运行的可靠性。

由于既要满足选择性,又要满足速动性,所以工厂供配电系统的继电保护允许带一定时限,以满足保护的选择性而牺牲一点速动性。对工厂供配电系统,允许延时切除故障的时间一般为0.5-20s。

(3)灵敏性:

灵敏性是指在保护范围内发生故障或不正常工作状态时,保护装置的反应能力。即在保护范围内故障时,不论短路点的位置以及短路的类型如何,保护装置都应当能敏锐且正确地做出反应。继电保护的灵敏性是用.灵敏度来衡量的。不同作用的保护装置和被保护设备,所要求的灵敏度是不同的。

(4)可靠性:

可靠性是指继电保护装置在其所规定的保护范围内发生故障或不正常工作时,一定要准确动作,即不能拒动;而不属其保护范围的故障或不正常工作时,一定不要动作,即不能误动。在考虑继电保护方案时,要正确处理它们之间的关系,使继电保护方案在技术上安全可靠,在经济上合理。

3.继电保护装置的整定

供电系统继电保护装置的可靠运行涉及到继电保护装置的配置设计、安装制造、正定计算、运行维护等诸多方面,其中合理的保护配置和正确的进行整定计算对保证继电保护装置的可靠运行具有十分重要的作用。因此在整定计算时要注意:

①要对常见的电网故障进行全面的分析,故障包括三相短路、单相接地、两相接地、两相短路、单项断线、两相断线等故障。

②整定结果要精确。对反应到被保护元件单侧电气量的继电保护如零序电流保护、距离保护等,其整定的关键在于计算最大和最小分支系数,以及计算最大零序电流系数时运行方式和短路点位置选择的原则都极为重要。

4.系统运行管理

继电保护装置的不正确动作,人员误操作、误整定、误接线等造成的事故也占了较大的比例,因此在技术管理、人员管理上应做进一步改进。

(1)加强技术培训和岗位练兵工作。

由于继电保护及安全自动装置的技术含量高,且发展更新快,因此,一定要努力提高各级技术人员的专业素质,以便为安全生产打下坚实的基础。争取各种培训机会提高专业技术水平,提高分析问题、解决问题和实际动手的能力。同时,现代社会具有资讯发达、信息交流快的特点,要利用这个优势,在需要的时候向能够提供帮助的部门如调度所、厂家、设计人员等寻求技术支援。

(2)抓好二次图纸资料的管理工作。

由于电气工种的特殊性,在现场工作时应按图纸进行,严禁凭记忆作为工作的依据。如果图纸资料与现场实际接线不一致,就会给维护工作带来较大的麻烦和安全上的隐患。所以必须重视图纸资料的管理,若发现图纸与接线不符时,应查线核对,确认接线正确后,在原图纸上改正,如改动较大,在原图纸上修改已不清晰,须尽快绘制新图以符合实际情况,同时,班组留用资料及档案资料也须作相应修改。

(3)建立继电保护校验备忘录。

工作时间越长、保护校验次数越多、缺陷处理范围越广,工作经验就越丰富,快速增加工作经验,建立继电保护校验备忘是一个有效的途径。技术人员将每一次校验、缺陷处理和发生的事故障碍的经过、原因、处理过程、注意事项、经验教训详细记录并及时组织讨论学习,这样技术素质就会逐步提高。

5.继电保护新技术的发展

当今继电保护技术.己经开始逐步实现网络化和保护、测量、控制、数据通信一体化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,其与继电保护的结合是实现现代电力系统安全、稳定运行的重要保证。现代电力系统继电保护要求每个保护单元都能共享全系统的运行和故障信息的数据,使得各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现这种系统保护的基本条件是将全系统各主要电气设备的保护装置用计算机网络连接起来,实现微机保护装置的网络化。

人工智能、自适应算法等技术的引入。人工智能技术(如专家系统、人工神经网络等等)被广泛地应用与求解非线性问题,较之传统的方法有着不可替代的优势。

6.结束语

继电保护是保障电网安全稳定运行的第一道防线。随着电力系统的高速发展,对线路继电保护的要求也就更高。因此,如何在今后确保继电保护的更可靠运行,实施继电保护全过程管理,是牵涉继电保护可持续发展的重要课题,也是安全生产的重要保证。

参考文献

[1]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[2]高亮.电力系统继电保护[M].北京:中国电力出版社,2007.

继电保护的灵敏性范文篇6

关键词:电力系统自动化网络化一体化

1、前言

市场经济建设的飞速发展使人们的生活质量和水平得到了不断提升,人们对于电力系统供、配电服务质量、工作效率、服务设施建设、安全措施保障建设也有了越来越高的要求。这一高标准、严要求的物质文化需求又给电力系统的自动化发展提供了强劲的动力并指引了明确的前进方向。随着人们越来越多的关注安全生产、安全用电,主要从事故障发现、及时排除或中断危险的继电保护技术得以充分的发展。继电保护装置通过对电力系统及设备的实时监控来发现异常,及时的发出警示危险信号,对于超负荷的工作线路则通过跳闸的方式、自动隔离或切除电路连接的方式暂时保障电力系统的安全,从而杜绝安全隐患带来的重大损失。因此,可以这样说,继电保护系统的自动化发展在很大程度上影响着电力系统全面自动化建设的进程,成为我们需大力研究的重要技术。

2、继电保护技术的发展历程及现状

电力系统的科学发展使继电保护技术得以产生,并随之不断强化,随着科技的创新、现代化科学技术的广泛应用,继电保护系统功能越来越强大,在自动化电力系统的维护中发挥着巨大的作用。继电保护装置最初的模型即是熔断器,从20世纪50年代至今的50年发展中,继电保护技术装置经历了四个发展阶段,即从电磁式保护装置、晶体管式继电保护装置、集成电路继电保护装置演变为今天的计算机继电保护装置。众所周知,计算机强大的综合功能使之深远的影响了我国各行各业生产管理的持续发展与创新,随着高科技技术的广泛应用与完善,网络化、数字化、智能化、一体化的电力系统初步建立。然而,由于我国电力系统的庞大建设、持续扩容与增容、地域环境的复杂变化使得基于电力系统自动化建设的继电保护系统发展还处于相对滞后的局面。我们深知,仅靠简单的熔断、等断电保护措施已远远不能适应电力系统的多元化发展进程与持续化建设需求,倘若我们只一味的搞建设、搞开发、搞经营,却忽视了安全生产环境的控制与保护,那么一旦庞大的电力系统出现故障,造成的后果及经济损失则是无法估量的。

3、继电保护装置的自动化性能标准

当电力系统中的电力元件如发电机、线路或电力系统本身发生故障时,继电保护装置可采取安全的控制措施预报或终止故障现象的大范围发生,是一种自动化的防范设施的成套集合,其重要的组成部分包括感受元件、比较元件和执行元件等。当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置则能最大限度地减少这种损坏的程度,从而降低对电力系统安全供电的影响。如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等。同时,继电保护装置还可根据电气设备的不正常工作情况及运行维护条件采取发出相应的不同信号、自动进行设备调整及切除易引起事故的电气设备等方式进行故障提醒、设备维护及故障延时,从而在及时的提示、规范的防护操作中使设备尽快的恢复正常的工作状态。继电保护装置的工作方式及重要职能决定了其必须遵循以下计特性的要求。

3.1灵敏性

高度灵敏的保护装置可以最快的速度切除短路故障,从而有效的提高系统的稳定性,减轻设备的故障率,使损害的程度降到最低、范围缩到最小。在维护安全供电运行的同时,能通过灵敏的保护提高自动重合闸和备用设备自动投入的效果,使经济损失、生产损失、设备损失受到合理的控制。继电保护装置的灵敏性体现设备在保护范围内发生故障或不正常运行状态时继电保护装置的反应能力,通常以灵敏系数进行标定。在选择、设计继电保护装置时,设备的灵敏度是我们首要考虑的衡量标准,它是整个电力系统安全运营的可靠保障。

3.2可靠性

可靠性是指继电保护装置应该进行的合理保护功能,简言之即是电力系统在正常的工作状态下,继电保护装置可不需要采取任何的措施,而在故障状态下才应采取判断准确的防护措施。如本身没有故障的电力系统发生跳闸、本身没有危险信号的系统发生错误报警信号等现象则说明继电保护装置也出现了故障,缺乏可靠性。因此,我们应严格的选用可靠性高的继电保护装置,将其纳入最基本的选择衡量标准,且任何电力设备如线路、母线、变压器等都不允许在无继电保护的状态下运行。

3.3快速性

与灵敏性相似,快速性是指在系统故障时,继电保护装置应迅速的切断短路故障线路,从而防止故障范围的进一步扩大,使线路损害程度降到最低、危险系数降到最小。同时,快速性还包括在设备故障后的迅速修复,立即故障排除,从而保持电力系统的用电畅通及高效稳定的服务。

4、继电保护自动化的创新发展

基于以上继电保护装置的自动化性能要求,我们应充分的本着创新的意识不断强化继电保护装置的完善与多元化应用,充分的利用计算机技术、网络技术、一体化技术促进继电保护的自动化发展与变革。在继电保护装置实现基本保护功能的基础上,我们还应用智能化的高端要求促进各种技术参数的合理化制定,通过科学的调研、故障参数的不断分析,利用计算机强大的数据保存能力、运算能力、匹配能力、决策能力使继电保护技术得到创新的发展。同时,促进继电保护装置的网络化系统建设,减少单个继电保护装置的使用,利用网络的共享服务、智能服务建立更完备的故障分析体系及检测校准体系,从而为继电保护装置的准确、高质量服务提供必要的技术支持。另外,我们还应本着始终把单一的继电保护装置作为整个电网运行系统的一个终端设备的原则,实现继电保护装置在数据处理上的一体进程,最终通过故障信息的整理、网络的获取及上传构建电力系统继电保护的完备、一体化的分析、校验体系,为继电保护的进一步自动化、全面化、智能化发展提供有力的决策依据。

继电保护的灵敏性范文篇7

关键词:35kV线路;继电保护;整定计算

中图分类号:TM77文献标识码:A

1概述

35kV系统结线复杂,运行方式变化频繁,线路潮流变化大,保护整定计算难度大。220kV仙桥变的35kV线路保护整定计算就是一例。在正常运行方式下由220kV仙桥1#主变对35kV潘村变、赤松变、栅川变三座变电站供电,一次供电接线方式,如图1所示:

图1正常方式供电一次主接线图

由于正常方式220kV仙桥变供电系统阻抗为大方式j0.1722,小j0.2185:变化方式110kV孝顺变阻抗为:大方式0.3414+j0.8197,小0.3414+j1.10135。不同方式供电系统阻抗相差之大,对故障点提供的短路电流变化也大。整定计算要满足保护“四性”带来困难。经对不同方式保护整定利弊的综合分析和计算,220kV仙桥变采取了下列保护整定方案。

235kV线路保护整定方案

35kV桥潘3782、桥赤378、桥泥3786、桥松3788线路保护为微机保护型号CSL216E。配置三段式电流电压式保护。

2.1正常方式:220kV仙桥变送35kV线路

2.1.135kV桥潘3782

方向电流闭锁电压速断(Ⅰ段):电流元件按线路未端小方式故障有2的灵敏度整定,电压元件按接处线路末端故障整定,线路长度的20%处故障有灵敏度。

方向限时电流速断(Ⅱ段):按与潘村变35KV孝潘限时电流速断配合。

方向过流(Ⅲ段):按导线LGJX-185/30冬季500A考虑,小方式潘村变10KV母线及线路故障有灵敏度。

2.1.2桥泥3786线保护

方向电流闭锁电压速断(Ⅰ段):电流元件按线路未端小方式故障有2的灵敏度整定,电压元件按躲二泥T接处线路末端故障整定。线路长度的20%处故障有灵敏度。

方向限时电流速断(Ⅱ段):按大方式下躲35KV栅川变低压侧故障整定,同时躲过二泥变低压侧故障。

方向过流(Ⅲ段):按小方式下35KV栅川变低压侧10KV母线故障有1.5倍灵敏度整定。

2.2变化方式

变化方式下当220kV仙桥变主变检修(或220kV仙桥变一回220kV线路停役),220kV仙桥变35kV倒至35kV桥潘3782由110kV孝顺变供电。一次供电接线方式,如图2所示:

图2变化方式供电一次主接线图

110kV孝顺变通过35kV潘村变供220kV仙桥变桥泥3786、桥松3788、桥赤3787线。

变化方式运行时220kV仙桥变桥泥3786、桥松3788、桥赤3787线保护另设一套定值。由于110kV孝顺变主变35kV后备保护时间2秒,35kV母分1.7秒,35孝潘线过流保护时间1.4秒,220kV仙桥变35kV时间经几及级差只能0.8秒以致35kV变电所时间难以配合,经和上级调度协商110kV孝顺变主变、母分提高时间整定。变化方式运行时桥泥3786、桥松3788、桥赤3787线保护改临时定值。临时定值整定原则为:

2.2.1桥泥3786线保护临时定值

方向电流闭锁电压速断(Ⅰ段):电流元件按110kV孝顺变供线路未端故障有1.5倍的灵敏度整定,电压元件按躲线路末端故障整定.线路长度的20%处故障有灵敏度。

方向限时电流速断(Ⅱ段):按大方式下躲二泥低压侧故障整定计算.

方向过流(Ⅲ段):按小方式二泥变压器6kV母线故障有1.2倍灵敏度计算.

方向过流(III段)保护和二泥用户定值不配合。

2.2.2桥松3788线保护临时定值

方向电流速断(I段):按大方式下躲线路末端故障整定计算

方向限时电流闭锁电压速断(II段):电流元件按110kV孝顺变送线路未端故障有1.5倍的灵敏度整定,电压元件按躲赤松变2#变压器低压侧故障整定。

方向过流(Ⅲ段):按孝顺变供与潘村变桥潘方向过流保护配合整定,小方式供赤松#2主变10kV母线故障有。

3.变化方式运行存在问题的解决

35kV桥泥3786线连接的35kV栅川变10kV忠鹏线路接入9000KW的发电机,当110kV孝顺变通过35kV潘村变35kV桥潘线供桥泥3786、桥松3788、桥赤3787线时。如在35kV桥潘3782线发生故障,35kV桥潘3782线220kV仙桥变侧开关,220kV仙桥变由于存在不同的供电方式,正常运行方式下35kV桥潘3782重合闸鉴定为线路无压、母线有压重合,变化运行方式下35kV桥潘3782重合闸鉴定为线路有压、母线无压重合,由于桥潘3782保护型号为CSL216E,该装置重合闸鉴定方式整定只能选择同期或无压不能满足系统变化要求。同时220kV仙桥变35kV线路型号为CSL216E微机保护装置存在不满足重合闸动作条件瞬时放电,当35kV桥泥3786线故障时,在35kV栅川变失压解例装置尚未将发电机解例时,就将35kV桥泥3786线的重合闸放电,造成重合闸拒动。为此将问题提交装置厂家进行整改,要求重合闸鉴定方式满足双向电源供电,同时将不满足重合闸动作条件瞬时放电延时一定时间,经过厂家对装置整改,满足了运行要求,在35kV线路多次故障中保护均动作正确,可靠地切除故障,重合成功,确保系统正常供电,避免扩大事故。

结语

电网继电保护整定是一个综合性的问题,它与一次系统的接线方式,发电厂变电所在系统中的位置,负荷性质的重要程度,电网的保护方式以及保护装置的类型等有关。正确的整定计算时保证电力系统安全运行的重要环节,要做好继电保护整定计算必须熟悉一次系统和二次保护装置,在不同的系统运行方式应做一些特殊的考虑,确保整定符合保护“四性”。

继电保护的灵敏性范文篇8

【关键词】继电保护装置;电力系统;35kV变电站

随着我国社会经济的稳步发展,电力需求不断增大,越来越多的变电站不断建设起来。35kV变电站作为我国电网的重要组成部分,其安全性和可靠性是电能能否稳定传输的重要保障。电力系统在运行过程中,会因为各种各样的原因发生故障,由电力系统故障引发事故所造成的损失往往是不可估量的,因而,继电保护技术和装置的应用已成为确保电力运行安全和稳定的最迫切的任务。

一、继电保护装置的基本构成

通常来讲,完整的继电保护装置由测量部分、逻辑部分和执行部分三个部分组成。尤其是在微机继电保护装置中,上述三个部分更是不能够截然分离开的。

1.测量部分

测量部分由数据采集、数据处理、保护判据运算等部分组成。测量部分是针对测量得到的被保护对象的相关电气量进行计算,并将计算结果与给定的整定值进行比较,比较结果以“是”、“非”、“大于”、“不大于”等逻辑信号的形式表达,进而做出是否需要执行保护动作的判断。

2.逻辑部分

逻辑部分基于测量部分给定的各输出量的大小、性质及输出的逻辑状态和其出现顺序或组合,使继电保护装置按一定的逻辑关系进行分析和对比,最后确定是否应该发出报警信号或使断路器跳闸的动作信号,并将相关的信号指令传送给执行部分。

继电保护装置中常用的逻辑关系回路包括:“与”、“或”、“非”、“是”、“否”、“延时启动”、“延时返回”等。

3.执行部分

执行部分,即继电保护装置的输出部分,执行部分的任务是根据逻辑部分输出的信号,最终实现该继电保护装置所承担的保护动作。

二、电力系统中继电保护装置的动作过程

对于继电保护装置来说,其动作过程可分为启动、判断和闭锁三个阶段。

第一个阶段启动,当系统处于正常运行的状态下,继电保护装置的启动元件会将各个出口闭锁,只有当电力系统处于某种故障条件下,相应的启动元件才会具备启动条件,准备启动相应的出口。

第二个阶段判断,是指在满足了启动条件的前提下,由继电保护装置内部的逻辑判断部分进行分析和判断,而此时起到决定性作用的评判标准,便是前期输入到装置中的“整定值”。如果反馈没有达到整定值的标准,那么装置不会做出任何反映;如果满足了整定值的要求,则保护装置将进入最后的闭锁阶段。

第三个阶段闭锁就是在反馈满足了保护装置整定值的要求的前提下,在对相应出口发出启动指令之前进行的对电力系统中一些附加条件的自行判断的过程,一旦附加条件也得到满足,跳闸指令将被发出,进而实现保护动作。

三、在35kV变电站中继电保护装置的主要任务

1.监视系统运行状况

35kV变电站是电力系统的重要组成部分,承担了区域供电的任务,所以一旦发生重大故障,将严重威胁该区域的供电稳定和用电安全。而当故障发生时,继电保护装置将快速、准确地向距离故障点最近的上级断路器发出跳闸指令,以求尽可能地控制故障的影响范围,弱化故障对电力系统的影响。因此,在35kV变电站选用继电保护装置时,应该着眼于大局,合理地完成继电保护设计、装置选型和安装调试,使整个电力系统连接成为一个统一的整体,这样才能够确保对35kV变电站及相应电力系统进行合理、有效地跟踪和监视。

2.及时反馈电力系统的非正常状态

应用于35kV变电站中的继电保护装置的另一项主要任务,即及时反馈相应电气设备的非正常运行状态。当相关的电气设备及元器件出现异常状态或满足需检修的条件时,继电保护装置将通过通信系统将信息及时反馈给值守人员,以便做出相应处理。

四、35kV变电站对继电保护装置的基本要求

对于35kV变电站,继电保护装置的主要作用是:当元器件或外线路发生有可能危及电力系统运行的故障时,装置自动发出报警,并在一定条件下发出跳闸指令使相应断路器跳闸,以避免由于故障的进一步扩大化而造成更大的损失甚至事故。现阶段我国35kV变电站所采用的继电保护装置需要满足四项基本要求,即:灵敏性、快速性、可靠性和选择性。

1.灵敏性

灵敏性所指的是继电保护装置对发生在其保护的范围内的任何元器件故障,以及非正常运行状态的反应能力。

应用于35kV变电站中的继电保护装置,要对相关设备的正常运行及故障状态具有明确的感知、判断并做出相应的动作,从而最大限度地控制故障带来的隐患。一般来说,装置的灵敏性是要根据相关的灵敏度系数来设定的,而并非越高越好。

2.快速性

对故障部分迅速地进行切除,不但可以提高电力系统并联运行的稳定性,减少设备在低电压状态下的运转时间,也可以减小故障元器件的损坏程度,进而避免对电力系统更大规模的破坏。因而,当电力系统发生故障时,应力争使继电保护装置能够快速地动作,将故障切除。

故障切除的总时间,等于继电保护装置和断路器的动作时间的总和。通常情况下,继电保护装置的速断保护动作时间约为0.02s到0.04s之间,有些装置可以达到0.01s到0.02s之间;而断路器跳闸动作时间通常为0.06s到0.15s之间,比较灵敏的断路器可能达到0.02s到0.04s之间。

3.可靠性

针对发生在电力系统中的各种各样的故障或非正常模式下运行的状态时,继电保护装置要避免误动、拒动等情况的发生,在快速判断系统运行状态是否正常的同时,做出相应的正确且可靠的动作。

4.选择性

当运行中的电力系统发生故障时,继电保护装置在保证快速和可靠的同时,要有针对性地对故障段的供电进行切除,即选择距离故障点最近的开关设备进行关断处理,从而达到使故障影响范围尽量缩小、保障系统中没有故障的部分仍能够正常工作的目的。

参考文献:

[1]王文灿35kV变电站继电保护装置的科学应用[J].中国高新技术企业2011(20)

继电保护的灵敏性范文1篇9

关键词:智能配电网;继电保护;设计

中图分类号:TM727文献标识码:A文章编号:1674-7712(2012)18-0008-01

近年来,智能电网技术在全世界范围内兴盛起来,这些都有效提高了电网的智能化运行,智能电网也是电网未来发展的方向,相关的电力部门也提出了关于建设坚强只能智能电网的工作任务,要建设以特高压电网为骨干框架,达到不同等级的电网之间协调配合,实现电网的信息化、自动化与互动化,力图达到一个更高的建设目标,达到从传统电网向现代电网转化,确保电网的高效运行,大力开发节能技术,促进清洁能源的发展。

一、智能配电网继电保护发展现状与方向

在现代的配电网络中尤其是线路方面多数都由多级断路器串联而成,现在的一些配电网的继电保护仍然运用传统的电流保护原理进行继电保护,这种保护工作多数是由人工操作来完成的,在对继电保护进行整定运行过程中,这种配置以及失去了有效作用。

一般来说,故障出现以后,要想及时解除故障,要发挥计算机设备的作用,首先在变电站的出口出现动作,再依照继电保护的规定流程,进行大规模停电,在对各大电力故障进行分析以后,来得到一个保护的整定值。

在计算机系统作用的保护下,能够大力解决继电保护的快速性与选择性之间的矛盾,这样才能确保继电保护灵敏地反应,快速地发生保护动作。

由于电力规模的持续扩大,电网结构也呈现出复杂的局面,如果继续采用多级断路器串联发生作用,能够保证距离事故发生点最近的断路器出现跳闸的现象,这样就要耗费大量的人力与物力,为了解决这一问题,可以通过引进计算机网络技术,满足系统的通信技术要求,有效达到对继电保护装置的优化,减少资金的支出,优化继电保护质量,确保电力系统的安全运行。

二、配电网继电保护设计的优化

首先,电压保护。中压或者低压配网中出现的经常面临的问题就是输电线路短路,需要保护的级别多。由于运行方式的不同会导致电流的速断保护以及电压速断保护的灵敏度发生变化,由于配电网的用电负荷密度持续上升,当电力运行最旺盛时,往往电压速断或者电流速断最具灵敏性,与此不同的是,高压输电线路往往相对密集,需要电流速断保护的区域更长,而且会出现诸多的短距离输电线路,如果电力运行方式较小,就会降低速断反应的灵敏度,无法使保护范围全方位覆盖。这就需要对输电线路进行科学的保护配置,确保在电力传输过程中,一些故障能够被迅速清除,与此相反的是电压速断,一旦出现问题会导致母线短路,通常在电力运行最小时,往往具有相对较高的灵敏度,而且保护区比较长,随着当前电力系统的容量不断增大,当电力系统持续运行时,灵敏度不高,保护范围相对较小。这样就使继电保护面临着选择的问题,无论是电流速断还是电压速断,都带有一定的问题与弊端。下面是电流电压联合作用速断保护示意图:

其次,纵联保护在配电网中的运用。现阶段,由于电子与信息网络等现代化技术的快速发展,对于电力供应的安全性要求也越来越高,这样就使纵联差动保护装置得到了普及,这种保护措施要求将配电线路故障全部切断,有效控制了电压跌落的持续时间,杜绝了因为母线电压降低造成的甩负荷现象,所以,运用纵梁保护设备,能够有效解决问题,确保电力线路输电的安全与快速,保证电力供应质量,控制经济损失。

第三,光纤纵联差动保护。光纤通信是电力系统中比较普遍的通信方法,要根据配电系统的特征以及配电网通信系统的现实情况,来采取合适的方法,利用光纤进行通信吗,尽全力采用已经被研发的通信技术与设备,来减少投资,继电保护要求信息要快速传播,还要确保传输的安全性,当前光线资源相对充足,也能够大大降低工作量,技术方面也不很复杂,这样就决定了能够运用独立的光纤通道传送继电保护技术,一旦在工作过程中,遇到要重新铺设通信系统的情况,要有点考虑降低成本,并采用高度发达的现代技术,全面确保电力线路的安全,稳定运行。

三、总结

随着经济的发展,居民用电量的不断增多,对电压的需求的等级也越来越高,这就自然对供电系统提出了更高要求,在这样的背景下,要加强对配电系统的继电保护,确保其运行的安全性,提高运行效率,不断对继电保护系统进行优化,并将优化设计的方案在实际中进行操作运用,这样才能有效减少越级跳闸的弊病,在现代化社会背景下,要注意引进高端技术,实现对电路的优化设计。

参考文献:

[1]ZhouEZ.Object-OrientedProgramming,C++andPowerSystemSimulation[J].IEEETransonPowerSystems,1996,11(1).

[2]FoleyM,BoseAetal.AnObjectBasedGraphicalUserInterfaceforPowerSystem[J].IEEETransonPowerSystems,1993,8(1).

继电保护的灵敏性范文1篇10

摘要:电力系统由各个重要组成部分构成,其中电力系统的继电保护是其核心内容。电力系统的运行目前也成为全国各企业公司面临的最棘手的问题。因为如果电力系统运行时间过长,内部小零件就会出现故障,机器设备被损坏不能正常运行,而且严重的话很可能会带来生命危险。更重要的是国民经济的发展也会受其影响而走下坡路。因此,管理者在生产过程中要极其注意继电保护的运行和维护这一关键环节。本文主要是对如何提高继电系统的安全性和可靠性的问题进行研究和讨论。

关键词:电力系统;继电保护;运行维护

要提高电力系统的安全性和可靠性,必须要求继电保护装置的先进。如果继电保护装置使用不当就会直接造成意外事故的发生,而且电气设备也会随之受到影响,而电气设备又是电力系统高效运行的中心环节,电气设备一旦被损坏电力系统也会随之无效。

1.继电保护装置的特点

(1)可靠性。继电保护装置最基本的特点便是可靠性。当部分电力系统发生故障出现断电情况时,继电保护装置可以灵敏的察觉到故障点,并且进行隔离,避免事故越发严重,以免发展到一发不可收拾的地步。

(2)选择性。当电力系统发生事故时,继电保护装置能够判断故障路线,有选择性的断开故障附近的开关,而不是将所有开关都关闭,这样一来就可以保证其他完好无损的系统可以继续运行。

(3)灵敏性。电力系统自身就是灵敏度超高的系统,因为即使是一个小小的零件出现微故障也会出现供电安全性的风险。对于继电保护装置而言,他就相当于保镖的职务,要求具备更高的灵敏性,才能保护好完整系统。要具备一发生故障就能迅速做出反应的能力,以确保电力系统的正常运行。

(4)迅速性。在电力系统出现问题时,要快速的做出反应并且及时处理问题。因为如果故障短时间内得不到解决会快速扩大蔓延,所以保护装置必须具备迅速性的特点,以便在最短时间内减少损坏程度,降低危险指数。

2.影响继电保护装置可靠运行的因素分析

继电保护装置的运行受多方面因素的影响,在实际运行过程中,他的运行会受到环境、温度、粉尘、内部元件的老化等因素的影响,而且其灵敏性、安全性及稳定性也会随之下降。一般影响继电保护装置的运行因素可以概括为三种,分别是软件因素,硬件因素和人为因素。在继电保护系统的软件设置的故障问题会对电路系统造成影响,出现问题如:需求定义不全面、软件结构设计不合理、编码有问题等。继电保护系统中的保护装置及断路器出现问题等设备装置的故障对电力系统继电保护系统造成不利的问题就是硬件因素。有关技术人员若因没遵守相关原则进行继电保护系统的安装或维修工作,导致继电保护系统无法确保电路正常运转的因素为人为因素。

3.电力系统继电保护的运行维护措施

随着电力系统的不断发展,对继电保护装置的维护技术的要求也随之增加。目前电力系统继电保护的维护工作还有待改善,系统软硬件和人为因素对系统运营的影响和系统的维护工作有直接联系。电力系统的维护是确保电力系统平稳运行的关键因素,改善维护措施可以提高故障排除工作效率。因此,要发挥好电力系统继电保护装置的保护功能,首先要确保系统自身的稳定工作,再此基础上在做好维护管理工作。此时,如何提高电力系统的维护水平成了重中之重,以下便是笔者的方法:

3.1运行维护方法规范化

电力维修人员要通过正确的检修方法维修继保护系统,规范化处理继电保护装置和旧线路。不忘按规律性时间对继电保护系统做维护,及时检测重点设备系统。这是他们在日常的工作中必须要做到的,这样才能促进电路的安全。他们要在检测中发现非正常现象,一定要将具体情况告知相关部门,还要对具体问题采用具体的解决方法,要是情况太过严重,也能要求停止系统运行,待将问题彻底解决后,再通知相关部门继续运转,建设安全高效线路。

3.2继电保护系统状态检修规则化

继电保护系统的检修工作可以分为定时检修和状态检修,前者对于检修工作并没有太大的帮助,后者则多被运用在现实检修工作中。状态检修就是通过对继电保护系统相关设备的运行状态的观测,来对系统做适当的检测及推测多久做一次检修工作。检修继电保护系统并不是一个简单的工作,在我国也尚未成熟,这一工作的实施应制定好总策略,再按策略一步一步开展工作。当然先选择好一个试行点先做示范,从中摸索规律,而后扩大施行范围的措施也是相当不错的。所以,在做继电保护系统检修工作时,要先有个合理规划,确定好工作如何开展,未来又要向何处发展,然后也别陷于空想,实事求是的作为才是最重要的,不妨尝试小先小点、后大片的发展方式。

3.3继电保护系统设备管理格式化

设备管理信息系统对继电保护系统的软、硬件变化做出的及时、可靠的记载,可以促进继电保护系统状态的检修工作开展,也能避免软件因素和硬件因素对继电保护系统造成的不安全影响,所以这一举措应大力推广。

3.4因地制宜的确保装置技术安全化

继电保护系统的性能在不同的地方的发挥状况不同,所以要时刻关注其性能及构架与所在地具体情况的适应状况。不同地方的气候、电力负荷及地质状况都会对继电保护系统提出不同的要求,这也要求相关人员及时检测,对不符合要求的要求的,要及时发现并将具体情况告知相关部门,然后推动继电保护系统因地制宜的发展。

3.5及时评测配电屏性能状况

要通过检查配电器的操作把手、按钮与其实际所在位置是否一致,及电气原件的名称和相关编号是否有误,确定指示灯的使用状况等来完成对配电器性能的评测工作。但也别忘了检测隔离开关、断路器和熔断器的触点是否牢靠,以及及时检测其温度,避免发生过热而变色。导线的老化现象常会发生在非一次线路上,可其他线路就时常发生了,若出现绝缘层破损现象,要及时更换,平时也要做好检查工作。在对配电屏开展检查工作时,还不能忘了仪表的使用状况,看它们是否还能正常工作,要是发现有些许灰尘,也应该及时清理,防止电路出现问题。

3.6做好机器运转调休工作

要先明确电路跳闸原因,再对相关零件进行调换,如更换触头或灭弧罩。要是发现断路器跳闸,就马上更换,就会造成问题解决不彻底的麻烦,断路器还是会不断发生问题。要定期检查工作量大的交流接触器,促使它能正常、高效的工作,还要确定熔断器熔体与当前电量负荷是否相匹,若不相匹配,就及时更换熔体,还要看看不同接触点连接状况,要是有问题,就及时解决。

4结语

电力系统不同,继电保护系统采取的保护装置也应不同,当然合适的保护设施对电路的保护效果发挥也极为重要。电力系统的继电保护工作对电力系统、电路安全状况、客户的正常用电都极为重要,所以要采用正确的电路保护设施,使不同设备各展其优,为用户用电带去安全感,使供电效率更高、消耗更低。

参考文献

继电保护的灵敏性范文篇11

一、继电保护运作的风险评估

既然继电保护的运行存在一定的风险,有关部门和单位在使用该装置前,就必须对可能产生的风险进行评估和预测,以此来推测可能产生的危害,并做好预防工作。因为风险产生的方式是多样的,不是单一的,不同的继电保护运行风险有可能组合出现。一般来说,在进行风险分析的过程中,主要应用的公式为R=P・I,R表示的是运行风险,P表示该风险所可能产生的概率,I表示该风险发生的后果。

在电力系统运行过程中,对于继电保护的基本要求包括选择性、灵敏性、速动性及可靠性。首先,继电保护的选择性即当电力系统的某些设备或者线路发生故障,继电保护会将故障设备或线路从系统中切除,若出现保护拒动,则会通过相邻设备或线路进行保护动作,将故障从系统中切除。继电保护的选择性对于保护功能的正常发挥非常重要,如果选择性存在问题,则电力系统故障扩大甚至出现重大事故的风险就会加大。其次,继电保护的灵敏性即当设备或线路发生故障时继电保护装置的反应能力。如果继电保护的灵敏性达到要求,则在任何运行状态下当系统发生故障时,继电保护系统都能正确进行保护动作。继电保护的灵敏系数,可以作为风险评估的重要参数。再次,继电保护的速动性也是另一个重要的要求,速动性即继电保护系统应具备在故障发生时快速地实施保护动作的能力,快速地实施保护动作有助于减少设备在故障中的损坏程度,有助于在故障发生时整个电力系统能相对稳定地继续运行。因此对继电保护进行风险评估,速动性也是重要的评价依据。最后,可靠性是继电保护最根本的要求,可靠性即继电保护不应发生拒动和误动,无论是保护拒动还是保护误动,都会给电力系统带来严重的损害。因此在对继电保护进行风险评估时,应将这些基本要求考虑在内,评估继电保护是否达到了以上要求。在实际工作中,主要通过两个方面对继电保护进行风险评估。即对保护定值的运行风险进行评估和对硬件系统缺陷进行评估。

(一)对保护定值进行风险评估

在继电保护开始投入运行前,需要设置相应的保护定值,用以设置好继电保护的选择性,同时提高其灵敏性。实际工作中,一般是在离线条件下对保护定值进行计算和设定,但电网在实际运行过程中,情况是处于变化之中的,因此保护定值的设定对于电网安全的保护一般存在以下三种不同的效果:第一,保护定值未能达到继电保护所要求的灵敏度,则使继电保护存在隐患。第二,保护定制未能满足继电保护所要求的选择性,例如未能达到对越级跳闸的选择。第三,对相间距离三段保护值的设定未能满足大负荷时的选择。对定值设定不合理,会使继电保护存在不同的风险及隐患,而且对不同位置的定值设置不合理时,产生的危害也有所不同,同时对于电网处于不同运行状态或者不同负荷水平时,定值的设定也存在不同的风险。

继电保护定值的不合理设定使继电保护可能发生的不正确保护动作存在着一定的范围,这个范围就是定值不合理时的隐患范围。继电保护的不合理定值引发的风险是不同的,在实际评估过程中,应结合具体电网系统的实际情况,由其相间距离的保护的定值设定情况来进行研究,例如,可以从某一时刻的断面进行分析,发现定值不合理的隐患,再从整个系统的主要断面进行分析,可以基本推算出在故障发生时继电保护正常与不正常保护动作的规律性。

(二)对于继电保护硬件系统的内部缺陷进行风险评估

继电保护的硬件系统包括设备和线路,不同的设备和线路的不同性质的缺陷,对继电保护的保护功能具有不同程度的影响。这类影响主要包括:第一,系统发生故障时,可能由于继电保护某些硬件存在问题而产生拒动;第二,当系统发生故障时,由于继电保护某些硬件存在问题导致其它硬件产生保护误动;第三,即使在系统没有发生故障的情况下,也可能由于电网运行状态不同,由继电保护系统的硬件问题而导致保护误动。因此,当故障点由于继电保护硬件缺陷而发生不正确的保护动作,对相邻设备的误动概率会增加,可能会产生连续的不正确的继电保护动作,从而引发事故。

二、继电保护的可靠性

继电保护的可靠性就是能够在电网正常运行的情况下,不发生误动,不作出错误的操作。对继电保护的可靠性进行研究,不但要使继电保护在故障发生时实施可靠的保护动作,做到不拒动不误动,而且要对继电保护系统的缺陷情况进行监测,统计其缺陷信息,因为即使是很小的缺陷也可能影响继电保护的保护功能,甚至可能造成拒动和误动。充分利用监测到的缺陷信息,进行深入的研究分析,可以作为对继电保护可靠性进行评估的重要依据之一。

对于继电保护的可靠性进行评估,应该从可能性和后果两个方面进行充分评估。继电保护可靠性的评估体系利用相应的可靠性模型,综合考虑各种影响因素后进行评估分析。目前在对继电保护的可靠性进行分析时,常用的模型有故障树解析法。故障树解析法从继电保护系统的故障模式出发,利用瞬间抓拍技术,进行推理。这种模式存在着很多不足,因此目前较为广泛采用的是成功流法,即GO法。这种模式是从系统的结构出发,仿真模拟系统部件之间的逻辑关系和分析数据,使分析更为直观。

三、总结

总的来说,在电力系统中针对继电保护的可靠性研究大致能够分成确定性评估、概率评估、风险评估这三个部分。其中,确定性评估基本上是对较为严重的事故进行评估,其评估效果非常保守。而概率法是主要考虑了事故发生的概率,但对事故可能造成的后果没有充分考虑在内,因为即使概率很小的事故,如果会造成严重的后果,也应该对其进行评估。风险评估是确定性评估和概率评估的延伸,它除了考虑概率外,也能将概率以外的安全指标考虑在内。想要确保继电保护风险评估的准确度,以及继电保护运行过程中的可靠性,必须对继电保护风险评估及可靠性问题展开更加深刻的研究。

参考文献

[1]杜骁释.考虑继电保护影响的大电网安全性风险评估[D].华中科技大学,2010.

[2]江成,潘晓峰,沈旭晓.继电保护可靠性评价及风险评估研究[J].机电信息,2013,12:25+27.

继电保护的灵敏性范文

【关键词】高压电;失灵保护;技术

失灵保护是电网的重要保护,在220kV及以上电压等级电网中,按照近后备的保护配置原则,根据GB14285-93《继电保护和安全自动装置技术规程》的要求,均配置了失灵保护。失灵保护的正确动作率一直不高,远低于其它保护的正确动作率(一般在90%以上)。不正确动作中基本为误动。误动原因主要是误接线、误操作和制造质量问题。

从高压电网的要求和电网的实际运行经验看,应该特别强调失灵保护的安全性,在失灵保护的起动回路和出口回路的接线上,应力求安全,在安全的基础上,提高可依赖性。

但目前各网各站失灵保护的接线有很大不同,其中有一些问题值得我们注意。如发电机热工保护与失灵保护、三相操作开关的失灵保护、瓦斯保护与失灵保护等。

1.发变组高压开关失灵保护

1.1热工保护与失灵保护

目前,某电网几大主力电厂热工保护跳闸和起动失灵保护的情况大不一样。个别电厂热工保护动作后起动失灵保护,瓦斯保护虽未直接起动失灵保护,但动作于全停的电气主保护(差动、瓦斯、定子接地、匝间、速断等)会使热工保护动作,再起动失灵保护。有的电厂热工保护动作后,不直接跳主开关,待逆功率继电器Ⅱ动作后,经0.5s延时跳主开关。逆功率起动失灵保护。有的电厂热工保护动作后,待主汽门关闭信号接点闭合后,跳主开关,起动失灵保护。

根据目前发电厂热工设备运行的实际情况,热工保护动作的机率还比较高,因此还应当起动失灵保护。但由于热工保护的接点在开关跳闸后一般不返回,如果失灵保护仅依赖电流元件把关,会降低失灵保护的安全性,因此应解决热工保护动作后接点不返回的问题。

解决方案一:热工保护不再起动失灵保护。如果热工保护动作跳主开关,必同时关闭汽门,此时若汽门关闭而主开关失灵,逆功率保护应当动作,经延时再跳主开关并起动失灵保护;若主开关不失灵,逆功率保护不动作,失灵保护也不会被起动。这样逆功率保护就可以起到替代热工保护的作用。解决方案二:热工保护起动失灵保护。按照技术规程的规定,采用双重化构成和回路的判别方式进行闭锁。

1.2判别回路

对分相操作开关,可按照能源部电火(1992)157号文件的要求,采用两零序电流继电器。根据计算,零序电流的灵敏度基本无问题,能保证失灵保护的可靠起动。

对三相操作开关,如某电厂发变组高压开关,因为要考虑开关三相和分相失灵,其失灵判别回路必须重新考虑。

用传统的相电流元件时,考虑发电机、变压器故障的特点,较难选择电流元件的定值。电流元件的定值较大,在某些故障时,如匝间短路、热工保护动作等,可能不能保证电流元件的动作,也即开关三相失灵时,判别回路不能起动,失灵保护拒动;而降低电流元件的定值,受条件限制,仍难保证任何故障时的灵敏度,且相电流元件正常处于动作状态,需要在主开关跳开时可靠返回,这就对此元件及相应接点提出了很高的要求。

如果用分相操作开关的零序电流方案,开关三相失灵时,若为热工保护动作或故障为对称性故障,判别回路将不能起动,失灵保护拒动。

1.3电压闭锁

电力部颁“电力系统继电保护及安全自动装置反事故措施要点”强调,“除发电机变压器组的断路器非全相开断的保护外,均应设有足够灵敏度的电压闭锁控制多接点回路…”,但如同对电流元件的分析,电压元件在某些故障情况下是没有灵敏度的,或者说,发变组某些类型故障时,系统母线电压变化不大。因此,对分相操作开关,电火(1992)157号文要求采用零序电流元件的动作接点解除复合电压闭锁,以保证此时失灵保护的动作。但对三相操作开关,就很难找到合适的解除电压闭锁的判据,如果用相电流元件,正常运行时就可能解除了电压闭锁,使电压闭锁起不到应有的作用;如果用保护动作接点,则在处理保护缺陷或部分保护校验时,失灵保护的安全性又大为降低;如果再增加其它判据,回路又可能过于复杂。

1.4综合上面的分析,我们可以得出

主开关为分相操作开关时,热工保护可以直接起动失灵保护,也可以不直接起动,由逆功率保护起动失灵。采用两零序电流继电器构成判别回路并解除电压闭锁。零序电流按照躲过正常运行时的不平衡电流整定。

主开关为三相操作开关时,热工保护不宜直接起动失灵保护,宜由逆功率保护起动失灵。

判别回路由两组相电流元件构成。每相用两个独立的静态电流继电器,其接点串联后,三相并联作为判别元件。如采用微机型失灵起动装置时,可仅用一组电流元件。相电流元件的定植,可按较低定值整定,以提高灵敏度。复合电压闭锁元件因无合适的解锁元件,可不考虑解除,定值则宜整定灵敏些。这种方案,可能造成在某些故障(如匝间短路、热工保护动作等)情况下,失灵保护不能起到作用(电流、电压元件均可能不动作)。

2.瓦斯保护与失灵保护

按照技术规程规定,不允许瓦斯保护起动失灵保护。主变瓦斯保护动作时起动操作箱的永跳继电器,永跳继电器动作后起动失灵保护,相当于主变瓦斯保护起动失灵。要保证变压器瓦斯保护不起动失灵保护,可使瓦斯保护单独起动一出口中间继电器,接至操作箱的手跳端子,而手跳不起动失灵保护。

在瓦斯保护尚未分开出口时,若断路器失灵保护采用集成电路型或微机型装置,从电流判别到失灵计时均在一个装置内时(新设计的3/2接线的厂站一般用此类装置),由于它们之间不采用接点联系,不存在电流继电器接点粘连的问题,应该说,失灵保护的安全性还是有保证的。有严重问题的是使用电磁型电流继电器作为判别元件,而瓦斯保护又未分开出口时,非常容易误起动失灵保护。

现在高压电网运行的降压变电站中,双母线接线的变电站,由于部分主变瓦斯保护尚未与其他保护出口分开,主变保护统一暂不起动失灵保护;而3/2接线,主变直接上母线时,主变保护起动失灵保护(瓦斯保护除外)。这样的方式规定,虽然与技术规程规定的“一般不考虑由变压器保护起动断路器失灵保护”一致,也与能源部电技(1989)55号文中关于变压器失灵保护的要求一一“可根据各地区实际情况,采取;不起动失灵;起动失灵但其中瓦斯保护出口单独分出来不起动失灵等不同处理办法”不矛盾,但我们应当意识到,若变压器开关真的拒动,其它后备保护完全可能不动作,变压器有可能损坏。如此方式也是不符合“所有运行设备都必须由两套交、直流输入和输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护”这一基本原则的。