日常生活中的纳米技术(6篇)
日常生活中的纳米技术篇1
什么是纳米?这一定是每一个首次接触纳米的人提出的第一个问题。其实纳米就字面来说,只是一种尺度,它和我们所熟悉的米、毫米、微米一样都是长度计量单位。1纳米等于10-9米,也就是说,l纳米只有10亿分之一米,百万分之一毫米,和千分之一微米。仅从上述的数字,也许我们不能马上想像出纳米的大小,让我们再进一步来描述一下:1纳米大约是3-4个原子排列在一起的长度;是人头发直径的万分之一。由此看来,纳米是一个很小很小的长度单位,其意义也仅此计量长度而已,本身并没有任何的“价值”可言,而真正有“价值”的是纳米技术。
纳米技术是20世纪80年代末期刚刚诞生并正在迅速崛起的用原子和分子创制新物质的技术,是研究尺寸范围在1一100nm之间的物质的组成。这个极其微小的空间,正好是原子和分子的尺寸范围,也是它们相互作用的空间。在这样的一个尺度空间,由于量子效应、物质的局域性及巨大的表面和界面效应,使物质的很多性能发生质变。这些变化渗透到各个工业领域后,将引导一轮新的工业革命。纳米技术所追求的最终目标,正像Feynman当年预言的那样,就是要使人类能够按照自己的意愿任意地操纵单个原子和分子,并在对自然界物质的本质进行深入探讨和研究的基础之上,按照人们的期望,在原子和分子的水平上设计和制造全新的物质。
纳米技术是一门以许多现代先进科学技术为基础的科学技术,是现代科学(量子力学、分子生物学等)和现代技术(微电子学技术、计算机技术、高分辨显微技术、核分析技术等)结合的产物。纳米技术在不断渗透到现代科学技术的各个领域的同时,形成了许许多多的与纳米技术相关的新兴学科,如纳米医学、纳米机械学、纳米化学、纳米电子学、纳米材料学、纳米生物学等
纳米技术的内涵非常广泛,它包括纳米材料的制造技术,纳米材料向各个领域应用的技术(含高科技领域),在纳米空间构筑一个器件实现对原子、分子的翻切、操作以及在纳米微区内对物质传输和能量传输新规律的认识等等。但是,我们不要把纳米技术仅仅看作是纳米材料,也不能把纳米材料仅仅理解为是纳米粉体。纳米粉体仅仅是纳米材料的一个内涵,实际上纳米丝、纳米管、纳米线、纳米电缆、纳米薄膜、三维纳米块体、复合材料等等都是纳米材料,范围相当广。另外,纳米材料不单纯是固态的,也有液态,例如纳米水,用高频超声处理,使水分子结成小汽团。
二纳米技术的战略地位三纳米的现有成果
(1)碳纳米管:碳纳米管是由石墨中一层或若干层碳原子而卷曲而成的笼状“纤维”,内部是空的,外部直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。轻而柔软又非常结实的材料最好用途是制作防弹背心。如果用碳纳米管作出绳索,是从月球上挂到地球表面,而唯一不被自身重量所拉断的绳索。如果用它制造地球-月球乘人的电梯,人们在月球定居就成为一件很容易的事情了。纳米碳管的细尖极易发射电子。用于做电子枪,可做成几厘米厚的壁挂式电视屏,这是电视制造业的发展方向。
(2)纳米陶瓷:我们平常用的陶瓷材料具有硬而脆的特点,一摔就碎。现在,用纳米陶瓷粉制成的陶瓷更坚韧、更耐高温和耐腐蚀,它将会在汽车发动机上大显身手,汽车会跑的更快,飞机会飞的更高。添加了纳米陶瓷粉体的特种涂料涂在塑料或木材上,具有防火、防尘和耐磨的性能。四中国科学家在这一领域所取得的主要成果:
“中国”1993年,中国科学院北京真空物理实验室自如地操纵原子成功写出“中国”二字,标志着我国开始开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。
一维纳米棒1998年,清华大学范守善小组成功地制备出直径为3-50纳米、长度达微米量级的氮化镓半导体一维纳米棒,使我国在国际上首次把氮化镓制备成一维纳米晶体;
“稻草变黄金”1998年,美国《科学》上刊登了我国科学家的论文。中国科技大学钱逸泰等用非水热合成法,制备出金刚石纳米粉,被国际刊物誉为“稻草变黄金-从四氯化碳制成金刚石。”
最长的碳纳米管1999年,中国科学院物理研究所解思深研究员率领的科研小组,不仅合成了世界上最长的“超级纤维”碳纳米管,创造了一项“3毫米的世界之最”,而且合成出世界上最细的碳纳米管。
最细的探针1999年,北京大学纳米技术研究取得重大突破,电子学系教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。
高质量的储氢碳纳米材料1999年,中科院金属研究所成会明博士合成出高质量的碳纳米材料,使我国新型储氢材料研究一举跃上世界先进水平。这种新材料能储存和凝聚大量的氢气,并可能做成燃料电池驱动汽车。
“能屈能伸、百折不挠”的纳米铜2000年,中科院金属研究所卢柯博士率领的小组,在世界上首次直接发现纳米金属的“奇异”性能-超塑延展性,纳米铜在室温下竟可延伸50多倍而“不折不挠”,被誉为“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。
纳米电缆2000年,我国成功合成出只有头发丝5万分之一细的纳米级同轴电缆,这项工作是国家重点基础研究规划纳米领域首席科学家张立德研究员率领的研究小组完成的。同轴纳米电缆的内芯是直径仅有10纳米左右的碳化物,外层包有氧化硅绝缘体。显微图片显示,放大几十万倍后,纳米电缆的直径仍只有普通电缆一般粗细。据悉,我国科学家有关同轴纳米电缆的论文在国际被引用次数已达18次。
“神奇”纳米布人们一直希望自己的衣料能像荷花般出污泥而不染,现在这种梦想已由中国科学家实现。中科院化学所雷江教授等2000年宣布研制成功一种不粘油污、不粘水的新型纳米材料——超双疏性界面材料。使用这种材料的纺织品和建材,不用洗涤,也不染油污。它的诞生可使石油工人的衣服不再油渍斑斑,也使生产研制水陆两用服成为可能。如果将这一材料用于建筑物表面,还具有自清洁和防雾、防霜效果,可免除人工清洗。
纳米带2001年3月8日的美国《科学》杂志刊登了三位留美中国科学家的研究成果-“纳米带”。这三位科学家是美国亚特兰大州佐治亚理工学院的王中林教授、潘正伟博士和戴祖荣博士,他们利用金属氧化物制造出10至15纳米厚、30至300纳米宽的新材料,这是世界上首次发现并合成出半导体氧化物的纳米级带状结构材料。这种材料有可能制造出价格便宜的超微感应器和元件。
五应用领域展望
(1)日常生活
对普通百姓来说,纳米是一个远比网络、基因更为陌生的科技新名词,似乎既不可望更不可及。其实纳米离我们的生活并不遥远。的确,一纳米仅为十亿分之一米,是一个肉眼无法感知的微观世界,似乎比梦想更为遥远。但事实上,生活中的化妆品、涂料、食品……都可能应用了纳米技术。我们就可以根据需要在各种产品中加入不同的纳米微粒,改变传统产品的性能、颜色等等。于细微处显神奇的纳米技术“润物细无声”,正悄然进入我们寻常百姓的生活中。让我们首先从自己身边的衣、食、住、行说起。
衣:在人们格外追求美的今天,工业化布料带给我们许多的烦恼,像衣服的静电现象,我们每个人在脱衣服时都曾有过被静电所扰的经历。而应用纳米技术,在化纤布料中加入少量的金属纳米微粒就可以使这一问题迎刃而解。
随着纳米技术的突破和应用,未来的衣服还可以自己清洗和修补。衣服的特殊面料通过细微的物质运动,能自动将衣服表面上的污垢排挤掉,如同人类肺部的污垢自动从鼻孔和喉咙中排出一样。
纳米微粒添加的纤维具有红外吸收特性,还具有保暖作用,可用来制作隐身服或保暖服。
食:在食物中添加纳米微粒,可以除味杀菌。聪明的厂家利用这一技术生产出可以抗菌的冰箱,放在里面的食品延长了食用期,居民不用过于担心食品腐烂。在食品制造中采用纳米技术,可以帮助我们提高肠胃吸收能力。
住:把纳米技术运用到涂料中,使外墙涂料的耐洗刷性由原来的1000多次提高到了1万多次,老化时间也延长了两倍多。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,任何粘在表面上的脏物,包括油污、细菌,在光的照射下,由于纳米的催化作用,可以变成气体或者容易被擦掉的物质。表面“涂”上透明的纳米颗粒的镜子,在充满水蒸气的浴室会依然光亮。
行:过去轮胎通常是“一统天下”的黑色,原因是生产橡胶制品过程中需要加入碳黑来提高强度、耐磨性和抗老化性。但运用纳米材料生产的轮胎不仅色彩鲜艳,性能上也大大提高,轮胎侧面胶的抗折性能将由10万次提高到50万次。不久的将来,我们周围的汽车、摩托车、自行车轮胎都是彩色的,我们的街道将汇成五彩缤纷的流动风景。
用:目前已有许多防晒油、化妆品因为加入了纳米微粒而具备了防紫外线的功能。纳米氧化铝粉体对250nm以下的紫外光有很强的吸收能力,这一特性可用于提高日光灯管使用寿命上。在塑料、油漆制品中加入纳米微粒,亦可防止老化。纳米微粒用于红外反射材料上主要制成薄膜和多层膜来使用。纳米微粒的膜材料在灯泡工业上有很好的应用前景。20世纪80年代以来,人们用纳米二氧化硅和纳米二氧化钛微粒制成了多层干涉膜,总厚度为微米级,衬在有灯丝的灯泡罩的内壁,结果不但透光率好,而且有很强的红外线反射能力。有人估计这种灯泡亮度与传统的卤素灯相同时,可节省约15%的电。
(2)生物医学
纳米技术不光改变着或即将改变着我们的生活,而且在生物医学方面,纳米技术更是潜力巨大。人类控制基因的实现必须以纳米技术作为支撑和依赖,纳米技术可以重新排列遗传密码。人类可以利用基因芯片迅速查出自己基因密码中的错误,并迅速利用纳米技术进行修正,使人类可以消灭各种遗传缺陷。
分子马达分子马达是由生物大分子构成,利用化学能进行机械做功的纳米系统。旋转式分子马达工作时,类似于定子和转子之间的旋转运动,比较典型的旋转式发动机有F1-ATP酶。美国康纳尔大学的科学家利用ATP酶作为分子马达,研制出了一种可以进入人体细胞的纳米机电设备-“纳米直升机”。该设备共包括三个组件,两个金属推进器和一个附属于与金属推进器相连的金属杆的生物分子组件,其中的生物分子组件将人体的生物“燃料”ATP转化为机械能量。据美国《科学》杂志报道,研究人员把金属镍制成的螺旋桨嫁接到ATP酶分子中轴上,制造了400个分子马达。当它们被浸于ATP溶液后,其中395个保持不动,但另5个则转动了起来,转速达到每秒钟8转。据介绍,这种马达只有在显微镜下才能被观察到,其镍螺旋桨相对来说较长,达到750纳米。根据拍摄到的画面,研究人员可以看到一个尘埃粒子先被旋转的螺旋桨吸入、再被甩出的情景。研究人员说,分子马达潜在的应用价值非常巨大。如果在分子上嫁接其它东西,可以制造出其它纳米机器,譬如可探测有害化学物质的纳米传感器。当被有害物质激活后,这种传感器内的马达就打开阀门释放出可见的物质告警。这种技术仍处于研制初期,它的控制和如何应用仍是未知数。将来有可能完成在人体细胞内发放药物等医疗任务。(右图为“纳米直升机”示意图)。
纳米探针一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA损伤。此传感器还可以探测基因表达和靶细胞的蛋白生成,用于筛选微量药物,以确定哪种药物能够最有效地阻止细胞内,致病蛋白的活动。随着纳米技术的进步,最终实现评定单个细胞的健康状况。
捕获病毒的纳米陷阱美国密西根大学用树形聚合物发展了能够捕获病毒的纳米陷阱。体外实验表明纳米陷阱能够在流感病毒感染细胞之前就捕获它们,同样的方法期望用于捕获类似爱滋病病毒等更复杂的病毒。此纳米陷阱使用的是超小分子,此分子能够在病毒进入细胞致病前即与病毒结合,使病毒丧失致病的能力。
美容美发护理剂纳米氧化锌粉末无毒、无味、对皮肤无刺激性、不易分解、不变质、热稳定性好,本身为白色,可以简单地加以着色。更重要的是,它具有很强的吸收紫外线的功能,对UVA(长波320-400nm)和UVB(中波280-320nm)均有屏蔽作用。此外还具有渗透、修复功能。因此适用于作美容美发护理剂中的活性因子,不仅能大幅度提高护理效果,还可避免紫外线辐射对皮肤的伤害。
疾病检测指示剂纳米粒子微细结构使其对环境中的化学或物理指标的变化极为敏感,因此可对人体内的病原体作出早预测,例如:当肿瘤只有几个细胞大小时就可以将其检测出来,加以根除。
抗菌剂纳米氧化锌粉末在阳光下,尤其在紫外线的照射下,在水和空气中能自行分解出自由移动的带负电的电子,同时留下带正电的空穴。这种空穴可以激活空气中的氧变为活性氧,有极强的化学活性,能与多种有机物发生氧化反应(包括细菌内的有机物),从而把大多数病菌和病毒杀死。有关的定量试验表明:在5分钟内纳米氧化锌的浓度为1%时,金黄色葡萄球菌的杀菌率为98.86%,大肠杆菌的杀菌率为99.93%。
纳米矿物中药研究表明,矿物中药制成纳米粉末后,药效大幅度提高,并具有高吸收率、剂量小的特点;还可利用纳米粉末的强渗透性将矿物中药制成贴剂或含服剂,避开胃肠吸收时体液环境与药物反应引起不良反应或造成吸收不稳定;也可将难溶矿物中药制成针剂,提高吸收率。
纳米导向剂将以纳米磁性颗粒为载体的药物注入人体后,药物在外磁场的作用下会聚集于体内的局部,从而可在对人体的整体副作用很小的情况下对病理位置进行高浓度的药物治疗。这对于癌症、结核等有固定病灶的疾病十分适合。
(3)航天航空
纳米技术在航天航空领域的应用很广,与其它领域相比,相对重要的应用可能有:低能耗、抗辐射的高性能计算机;用于小型太空船的纳米仪器;通过使用纳米结构传感器和纳米电子器件,进一步发展航空电子器件,从而进一步发展航空电子学;阻热和耐用的纳米结构涂层。(4)环保领域
治理废气
大气污染一直是各国政府需要解决的难题,空气中超标的二氧化硫、一氧化碳和氮氧化物是影响人类健康的有害气体。纳米材料和纳米技术的应用,可从污染源上最终解决这一难题。
工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生二氧化硫气体,这是二氧化硫的最大污染源。所以石油提炼工业中有一道脱硫工艺以降低硫含量。纳米钛酸钴就是一种非常好的石油脱硫催化剂。经该催化剂催化的石油,硫含量小于0.01%,达到国际标准。
工业生产中使用的煤燃烧也会产生二氧化硫气体,如果在燃烧的同时加入一种纳米级助烧催化剂,不仅可以使煤充分燃烧,提高能源利用率,而且会使硫转化成固体的硫化物,而不产生二氧化硫气体,从而杜绝有害气体的产生。
复合稀土化物的纳米级粉体有极强的氧化还原性能,这是其它任何汽车尾气净化催化剂所不能比拟的。它的应用可以彻底解决汽车尾气中一氧化碳和氮氧化物的污染问题。新一代的纳米催化剂,将在汽车发动机汽缸里发挥催化作用,使汽油在燃烧时就不产生一氧化碳和氮氧化物,无需进行尾气净化处理。
治理污水
污水中通常含有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。由于传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到很好解决。纳米技术的发展和应用很可能彻底解决这一难题。
污水中的贵金属是对人体极其有害的物质。它从污水中流失,也是资源的浪费。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等完全提炼出来,变害为宝。(5)军事应用
读过《西游记》的人都会记得孙悟空钻进铁扇公主肚子里的故事。孙悟空保唐僧去西天取经,路过火焰山,想借铁扇公主的扇子扇灭火焰山的烈火。不料铁扇公主不肯借扇。孙悟空便变成一只小虫子钻进铁扇公主的肚子里,大闹五脏六腑,迫使铁扇公主就范。如今随着纳米武器的出现,这种神话正成为现实。
“麻雀”卫星美国于1995年提出了纳米卫星的概念,这种卫星比麻雀略大,重量不足10公斤,各种部件全部用纳米材料制造。一枚小型火箭就可以发射数百颗纳米卫星。若在太阳同步轨道上等间隔地布置648颗功能不同的纳米卫星,就可以保证在任何时刻对地球上任何一点进行连续监视,即使少数卫星失灵,整个卫星网络的工作也不会受影响。
“蚊子”导弹纳米器件比半导体器件工作速度快得多,可以制造出全新原理的智能化微型导航系统,使制导武器的隐蔽性、机动性和生存能力发生质的变化,利用纳米技术制造的形如蚊子的纳米型导弹,可以起到神奇的战斗效能,纳米导弹直接受电波遥控,可以神不知鬼不觉的潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。
“针尖”炸弹美国密歇根大学生物纳米技术中心的一群科学家到犹他州的美国陆军达格维试验场去了一趟。他们此行的目的是展示“纳米炸弹”的威力。事实上,这种炸弹不会“轰”地一声爆炸。它们是一些分子大小的小液滴,其大小只有针尖的5千分之一,作用是炸毁危害人类的各种微小“敌人”,其中包括含有致命生化武器炭疽的孢子。在测试中,这些纳米炸弹获得了100%的成功率。据说,密歇根大学的这个研究小组正在制造更聪明的新型纳米炸弹,这些针对性极强的炸弹能够在大肠杆菌、沙门氏菌或者李氏杆菌进入肠道之前攻击它们。
“苍蝇”飞机这是一种如同苍蝇般大小的袖珍飞行器,可携带各种探测设备,具有信息处理、导航和通讯能力。其主要功能是秘密部署到敌方信息系统和武器系统的内部或附近,监视地方情况。这些纳米飞机可以旋停、低飞、高飞,敌方雷达根本发现不了它们。据说它还适应全天候作战,可以从数百公里外,将其获得的信息传回己方导弹发射基地,直接引导导弹攻击目标。
日常生活中的纳米技术篇2
1、各国竞相出台纳米科技发展战略和计划
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以发表和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技发表协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行发表与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。
日常生活中的纳米技术篇3
在此之前,养殖场里的育成鸡体重始终不达标,令这个养了20多年鸡的老人苦恼不已。“育成期的鸡距标准体重差1克,就相当于产蛋期少下一枚蛋。”经过分析研究,老人找到了问题症结。小鸡常年喝的是未经处理的地表水,大肠杆菌、沙门氏菌等细菌超标严重。
2011年底,刘清葵在山东畜牧业博览会上,见识了来自日照的日纳功能材料科技有限公司总经理兼发明人陈罘杲带来的纳米场效应活性水质处理技术。没等展会结束,刘清葵就把陈罘杲和他的设备拉到了养殖场。
“喝了‘活水’不久,小鸡的体重很快就达标了,自身免疫力也得到显著提高。广谱抗生素类药物早就不用了,平时仅用点预防性的药物,不仅省了钱,还更环保。第一批鸡的产蛋高峰期比过去提前了20天。用不了1年就会把购买机器的钱给赚回来。”刘清葵兴奋地说。
在山东日照经济技术开发区,笔者在一间简陋的实验室里见到了纳米场效应活性水质处理技术的发明人陈罘杲。与传统的水净化主要采用过滤、添加物等方式来实现有所不同,陈罘杲采用的是具有自主知识产权的纳米效应玻参管技术,即利用光波、磁场、电场和纳米效应对水进行非接触性净化、催化、活化处理,将水中的有机污染物、藻类、农药残留等有害物质分解去除,填补了水净化技术的空白。陈罘杲的技术得到了中国水产科学研究院、山东省农科院畜牧兽医研究所等专家学者的充分肯定。
就是这样一个具有广泛市场的新技术在初期还是经常让陈罘杲捉襟见肘,“最艰难的时候,兜里只剩下1元钱。”同时,资金短缺也直接影响了产品的市场推广。“在市场上赚来的钱都投入到研发中去了,没钱组建营销队伍,没钱投广告。所谓的市场营销,就是靠着4个车轮子和我的两条腿一张嘴。”陈罘杲无奈地说。
2007年10月,陈罘杲在日照经济技术开发区组建了集研发、生产、销售于一体的山东省日照市纳米科技应用工程研究中心。目前,已获得国家授权专利150多项,其中发明专利35项。“日照市经济技术开发区对我很重视,免费为我提供了2000多平方米的实验室及生产车间,4年租金就能省下近百万元。没有这些支持,我的科研成果就是空中楼阁。”每念及此,陈罘杲充满感激。
目前,尽管年产值已达到两三百万元的规模,但陈罘杲坦承自己还是“小不点”。他笑称自己虽然是创业者,但更是“闯关”者。陈罘杲将制约类似技术型小微企业“长大”的困境概括为“五关”:
日常生活中的纳米技术篇4
【关键词】纳米电子技术;发展现状;未来展望
进入21世纪以来,相关专家意识到纳米技术将作为领先科技的前沿,对纳米技术进行深入的研究,纳米电子技术可能为新技术的开发和应用带来革命性的突破。纳米技术的应用范围广,可能深入到每个领域,每个行业,也可能成为人类生活中必不可少的必需品。目前,人类对纳米电子技术的研究还不够深入,应用也不够广泛,但是纳米电子技术已向人们展示出了强大的魅力和应用潜力。目前已经研究出的纳米电子技术产品包括纳米电子元件和纳米电子材料,这些产品不仅功能奇异,而且性能优良。
一、纳米电子技术的发展现状
(一)纳米电子材料的应用
目前大多数纳米材料包括:纳米硅薄膜、纳米硅材料以及纳米半导体材料。其中,纳米硅材料最具有技术优势,非常符合新世纪人类对电子技术的发展需求。硅电子材料的技术相较于其他材料的优势在于:
1.能耗低、准确可靠、运行时间较短、不易受外界的环境影响。
2.得益于科技的保证和不断地开发研究应用,使得其成本价钱有所降低。
3.由于其短距离的分子间距,使得硅电子材料在运行过程中,反应速度很快,这就从另一方面降低了材料能耗,提高工作效率。
从上述的优势不难看出,纳米硅电子材料的问世是材料的一个新突破,它的领先技术使得其相较于同等材料具有绝对的优势。相信随着纳米材料的不断研究,纳米材料在生活中的应用普及之后,会给人类带来意想不到的方便。
(二)纳米电子元件的应用
纳米电子元件问世之前,电子元件经过了集成元件、超大规模集成元件两个发展历程,因此,纳米电子元件是在“两位前辈”的发展基础上开发出来的。
自从美国的研究者J?KILBY在上世纪50年代研究出第一个集成电路以后,集成电路的就开始了快速发展,并不断更新换代,从小规模集成到中型、大型,再到后来的超大型集成电路,如今又发展到了特大型的集成电路。
随着集成规模的不断扩大,电子元件的尺寸却要越做越小,要达到纳米尺寸的范围(0.1-100nm),例如刚刚面试的单电子晶体管,它的一个电子信号就代表了一位信息的数据,意思就是晶体管的尺寸要小到极致,从而颠覆了现代电子技术的高集成、高速度下,一定要高能耗的格局。
(三)纳米电子技术应用于现代医学
随着纳米技术的不断研究和应用,更多的纳米电子技术被应用到医学领域之中。
纳米电子技术的发展有助于细微部位的研究,而这些细微之处通过普通显微镜是无法做到的,纳米电子技术的应用还能有助于纳米传感器的发明,通过纳米传感器可以观察到生化反应的各种不同的化学信息以及电化学信息。此外,还有很多类似伽马刀、螺旋CT以及MRI等高科技医学产品的问世,它们的出现为人类医学注入了新鲜血液。
纳米电子技术作为生物医学与电子学相交的新新技术,它将具有巨大的开发利用价值,它的研究潜力是无穷的。生物医学电子学作为生物医学和电子学两大学科的结合,在生物医学电子设备集成化和微型化方向的研究有着很大的发展空间,这种研究主要基于微电子器件的发展,当器件的尺寸发展到分子或原子的大小水平时,人们对于微小生物体的研究将进入前所未有的新阶段。
二、纳米电子技术的发展动向及展望
纳米技术的研究和应用已经得到世界上很多国家的认可,各国也加大了对纳米技术研究工作的投入力度。其中,美国提出了名为NNI,即国家纳米技术的计划项目,将重点研究纳米电子学。欧盟等多个国家将在支持纳米技术研究的工作上,重点投入到纳米电子材料以及纳米电子器件关于存储系统和信息处理的研究,成立相关委员会,并提出欧盟每年60亿欧元到纳米电子研究工作中的投资报告,以推进和鼓动研究者参与到纳米电子技术研究的兴趣当中。而在亚洲,中国台湾地区和日韩两国也加入到纳米电子技术研究的计划和策略当中来,也采取了不少积极措施,比如建立纳米电子研究所,加大研究经费的投入等,旨在对纳米电子技术的研究工作中抢占先机,掌握主动。而我国则将纳米研究技术作为重要的科学研究规划,主要进行纳米电子学的研究,而纳米电子学也被中科院肯定为2022年左右最易实现,也对纳米科技研究有重大影响的研究。
(一)纳米硅薄膜
硅是目前为止发展最快且用途最广,产量最大的半导体材料,硅在全世界半导体材料的总体比重中占到了95%以上,不可谓不惊人,因此,研究纳米硅是研发高性能半导体的最好途径。纳米硅薄膜的工艺程序与集成电路和硅器件完全相容,因此,它可以成为进一步研制量子功能的基础,将会在今后的纳米电子研究技术中具有很大的影响力。
(二)新型电子元件的开发
随着纳米电子技术研究的深入,新型的电子元件产品也渐渐问世。
2010年2月,美国人研发的纳米处理器可实现编程,可能成为纳米计算机。同年5月,澳大利亚和美国研究者基于隧穿显微镜实现了对单个原子的操控,从而创造出了迄今为止最小的原子晶体管,它标志着世界上第一个人工制造原子的电子设备的出现,向信息处理的超强大和超高速性迈进新的台阶。同年12月,在美国德克萨斯大学,又推出了世界上第一个耐高温工作的自旋场效应晶体管。而在2011年的4月,在美国匹兹堡大学,科学家又制造出了超小型的单电子晶体管,它的核心组件的直径Φ小至1.5nm,这一创举也将成为超大规模集成电路的高密度性和低能耗性的理想电子元件。
在以后的20年,将是电子元件不断发展的时期,在此期间,新型电子元件的研究将更加深入,更多的电子元件产品将会不断问世,为人类探索更高领域提供更科学研究方法。
(三)纳米生物电子
纳米生物电子是一个重要的纳米电子学部分,把纳米电子学的科技应用于生物芯片的领域,从而有了纳米机器人的出现,这种纳米机器人不是传统的机器人,而是能进入人体血管,帮人体清除体内有害物质的清洁器,更有效地为人体排出毒素,为保证人体的正常代谢,保持人体健康做出重大贡献。
(四)碳纳米管
1991年日本科学家第一次发现碳纳米管。碳纳米管自身是拓扑结构,又有很好的机械强度和导电性等,可以说集光学和机械性能以及电子特性三者的优异性于一身,所以,碳纳米管也被世界上的科学家们作为研究的重点。
利用碳纳米管的电子性,使得它可以往单电子器件和晶体管材料方向展开研究。2010年2月,芬兰和日本的科学家研究出了新型碳纳米管,它是最优的介于半导体和金属性两者平衡点之间的材料,基于对新型碳纳米管的研究,科学家们发现它可以制作成集成电路,且该电路具有逻辑顺序,可为纳米计算机的研发带来一些启发和灵感。同年6月份,瑞典的歌德堡大学研发出了一种对纳米管形成的过程可控的方法,利用碳纳米管可以使晶体管的尺寸变得更小,运行速度也更快,制造出的半导体材料比硅晶体管高出70%的碳纳米管,从而使得电子流动性要高于现有普通半导体材料的25%,可以说半导体材料已经在往新型碳纳米管上转型,新型碳纳米管将会在今后得到更多的应用。
三、结束语
纳米电子技术的迅猛发展对人类来说绝对是一大利好消息,随着国际的重视,各国对纳米电子技术的资金投入以及科学研究者们的不断研发,纳米电子技术真正应用到人们的日常生活将指日可待。届时,高效、环保、科学的生物材料,医学设备和电子晶体管的问世,将会大大改善人们的生活现状,让人们切切实实地体验纳米时代。
参考文献
[1]刘长利,沈雪石,张学骛,等.纳米电子技术的发展与展望[J].微纳电子技术,2011,48(10):617-622.
[2]朱利丹,张坤树.纳米技术引领下一代科技发展[J].科技中国,2011(7):103.
[3]陈宇,黎苑楚,王少雨.欧洲纳米电子技术战略展望与发展部署[J].全球科技经济瞭望,2007(10):53-57.
[4]陈文.纳米电子技术:电子工业的技术革命[J].航空维修与工程,2006(4):31-33.
[5]李乃畅,谭宗颖.世界纳米电子发展策略[J].新材料产业,2006(7):54-58.
[6]张峰,张阳德.浅谈纳米电子技术的发展[J].中国现代医学杂志,2005,15(9):1432-1434.
日常生活中的纳米技术篇5
1进行纳米生物医学技术教学的主要目标
纳米生物医学技术是一门非常典型的多领域交叉学科,生物医学、材料、化学和物理等学科的内容都包含在内,因此对人才培养的要求自然也非常高[5]。个人认为,应该将教学目标设计为培养学生具备相关领域多元化的知识结构,富有创新精神与思维模式,在纳米医学生物技术的某一或某几方面具有相当的专业实践技能与经验,能够将纳米生物医学的知识和技术应用于实际的科学研究与实际技术产业化之中,对纳米生物医学技术的发展方向和某一领域的当前产业情况主要发展趋势有所体悟,具有技术研究与项目管理实施的基本专业素养和技能。
2实施纳米生物医学技术教学的主要理念
纳米生物医学技术作为一门多领域交叉的新兴学科。作为一门非常强调实践与实用性的应用型技术学科,在纳米生物医学技术的教育教学过程中,我们必须坚持将理论教学与实践教学很好地结合在一起,通过把理论知识教学与课程实验教学、专业科研活动和产业企业课外实践活动整合成一个综合教学体系才能够真正培养学生的学习素质、自主发现、思考和解决实际问题的能力。因此,纳米生物医学技术的教学内容、方法、教学主体和教学对象等基本要素必需共同有机的地结合在一起,协同服务于学科教学目标,以合理的安排与布局,相互相同综合成一个有效的教育教学整体过程。我们应该充分注重激发与引导学生学习与创新的主动性与积极性,立足于提高学生的综合素质,不能像过去只是进行知识的单向传授,因此忽略了培养学生自主学习与思考、解决问题的能力,建立一种双向沟通、激励引导、教学相长的良性循环机制。在这种机制下,学生成为教学活动的主体,被动的接受知识变为主动的学习探索,教学过程也不再是枯燥、单调的知识传递,而是师生双方之间在智慧、思想与感情上的沟通分享。而且,教学模式应注意技巧设计,创造设计一个问题情境,通过好的提问与启发引导学生提出和发现问题,然后就该问题从不同的多个角度来解析与研究,并且进行持续的提问与思考,逐步分析挖掘该问题发生的根本性缘由,同时鼓励学生多角度多层次的寻找答案,通过答案的适度不固定性引导学生的思维发散开来,从而让学生主动学习和分析处理问题的习惯与素质得到良好的培养[6]。
3纳米生物医学技术教学课程体系的设计
纳米生物医学技术课程设置上要考虑多元化。作为一门多领域交叉融合的新兴学科,不是几个学科领域知识的单纯组合,而是将相关的学科都以一种非常紧密、多元化、多层次的联系在一起形成一个整体的。因此在课程设计的时候,教育者必须要充分认识到并理解透彻这些交叉学科之间的内部联系和知识理论结构,并依据这种联系与结构在多个学科的藕合点基础,设计出具有纳米医学生物专业特色的理论课程体系。这时候,对学科知识的划分上也不宜再过于详细,而应更注重该专业的理论特点,让学生的知识背景建立在宽厚扎实的大专业平台上。纳米生物医学技术课程设置上要考虑前沿性。纳米生物医学技术作为一门新兴技术其发展是日新月异的。所以,在教学内容上,我们要注意将该学科的最新前沿研究成果整理出来,及时、适当地融入到课程教学当中,并结合纳米生物医学技术在医学诊疗领域应用的经典实例,以让学生可以更好的理解本专业的发展方向、应用方式和创新思维方法,也让教学内容更加的丰富化和实用化,进而让学生知道如何学以致用,很好地激发强烈的学习兴趣[7]。纳米生物医学技术课程设置上要考虑应用性。纳米生物医学技术作为一门应用型技术,其实验教学对于培养学生将理论知识用于实践当中,主动发现问题、分析问题和解决问题的能力起到不可忽视的作用。因此,学生在独立设计、完成实验的过程中,其专业思维、创新意识、科研素质和动手能力都能得到很好的锻炼。这就要求我们注意控制死板的验证性实验所占的比例,多设置一些具有较好综合性、可设计性和开放性的实验,课程进行过程中也更注重学生实验得出结论的过程而非实验结果[5]。
4CDIO实践教学模式在纳米生物医学技术教学过程中的应用
CDIO实践教学模式是近年出现的一种全新的实践教育模式。CDIO的主要内涵是将构思(Conceive)、设计(Design)、实现(Implement)与运用(Operate)共同组成一个系统的实践教育方法体系[8]。该方法体系模拟了应用技术从研发到运行的完整流程,能充分培养学生运用主动性和综合性的实践方式来学习与运用学到的专业知识,进而提高学生的综合实践能力,非常适用于纳米生物医学技术教育教学体系。因此,我们应当将这套综合性和操作性都强的CDIO教学模式融入到整个教学活动中,把每个实践能力点的培养都具体落实到实践教学活动中,并且能够很好的与科研活动参与、行业企业实习等课程外实践活动结合在一起,为学生提供一种深度的“学以致用”的宝贵经历和体验,这不仅可以更好地实现学生创新实践能力的培养,还对其人际交往能力和专业思维能力都能提供有益的帮助。
5结语
纳米生物医学技术近年来的发展十分迅猛,同时具有鲜明的交叉与复合特性,能助力整体医学诊疗水平的提高,对人民健康水平的提升起到巨大推进作用。因此如何培养适应专业发展和产业需求的纳米生物医学技术专业人才,是医学院校相关专业高等教育目前所面临的核心问题。通过以上积极教育教学方面的研究探索,以及在后续的教学实践中不断完善与优化,我们若能据此更好地培养出纳米生物医学技术专业的研究与应用兼顾的综合性专业人才,将能发挥更大的教学效果和教育意义,促进人才培养质量和提高和纳米生物技术的更大发展。
作者:刘斯佳孙健凌敏单位:广西医科大学广西医科大学
参考文献:
[4]顾宁.纳米技术在生物医药学发展中的应用[J].AdvancedMaterialsIndustry,2002(12):67-71.
[5]胡建华,张阳德等.促进我国纳米生物医学高端创新人才培养的对策[J].中国现代医学杂志,2008,18(20):3070-3072.
[6]胡高,胡弼成.大学教学协同创新论[J].现代教育科学,2004(4):109-110.
日常生活中的纳米技术篇6
关键词:纳米;添加剂;分析;标准化;环保
中图分类号:TE624.82文献标识码:A
0前言
纳米技术已同信息技术、生物技术一样被称为未来最重要、最核心的三大高新技术。为占有纳米技术和纳米材料的一席之地,世界上已经有30多个国家开展了纳米科技方面活动,一些发达国家还制定了自己的发展计划,如美国的“国家纳米技术计划”、欧盟的“第六框架计划”等。同时,在纳米技术方面的投资增长速度也显著加快,如美国在2005年到2008年计划投入37亿美元,欧洲在2002年到2006年计划投入13亿欧元,日本从2003年起每年计划投入8亿欧元,俄罗斯在近年也将投资6亿卢布用于发展纳米技术[1-4]。
纳米材料是由纳米添加剂、基础油和其他功能添加剂组成,被认为是最值得重视的纳米材料之一,美国在其国家纳米技术计划中就将设计和制造能进行自修复的纳米材料作为可能取得突破的长期目标。将纳米材料应用于剂中,是一个全新的研究和应用领域。由于纳米材料具有高扩散性、表面积大、易烧结、熔点降低、硬度增大等特点,纳米材料作为材料不仅可以在摩擦表面形成易剪切的表面膜,降低摩擦系数,而且还能对摩擦表面进行一定程度的填补和修复。同时,纳米材料中的纳米性添加剂主要是非活性的单质、有机化合物和无机化合物的纳米级固体颗粒,这类物质具有高的热稳定性、机械稳定性以及化学稳定性,在高温、重负荷、高速等使用条件下,纳米性添加剂不易发生氧化、分解与失效,也不像传统添加剂那样会产生腐蚀性物质。因此,纳米材料不易导致金属腐蚀,会减缓材料变质失效的速度,延长设备和材料的使用寿命。
本文简要介绍目前国内外纳米添加剂研究的情况,包括纳米添加剂的主要类型、制备工艺、机理研究情况等,并简要探讨纳米添加剂研究的趋势。
1纳米添加剂研究的状况
纳米材料的研究报道很多,而且每年申请的专利技术也异常的多,为占有纳米材料的制高点,发达国家开展了纳米技术专利的“圈地运动”[5],但从目前有关纳米技术的报道和专利情况看,纳米添加剂的研究主要集中在以下几个方面:新品种、制备工艺、复合作用以及机理等。
1.1纳米添加剂的主要类型
目前报道的可作为纳米添加剂的类型很多,品种也很多。但从化学的角度进行分类时,主要可以分为两种类型,一类是单质,另一类是化合物,而化合物又分为无机化合物和有机化合物等。表1给出了目前研究的纳米添加剂的主要类型和品种[6-7]。
1.2纳米添加剂的制备工艺
由于纳米添加剂具有较大的表面能,纳米颗粒之间存在团聚成块、粒径长大的倾向,因此会导致添加剂性能大幅度降低。同时,作为油的纳米添加剂,若产生团聚,将形成沉淀而析出,
收稿日期:2007-11-04。
作者简介:冯克权(1963-),男,工学硕士,高级工程师,1989毕业于中国科学院有机化学专业,现任杭州新港石油化工有限公司总工程师,长期从事油、脂以及油脂添加剂产品的研究、开发、生产和技术服务工作,已公开20余篇。
人们根据纳米添加剂的不同结构、组成和特点,已经研究出很多种制备纳米添加剂的方法,主要可分为三种类型,即:气相合成法、固相合成法和液相合成法。这些方法又可细分为:机械粉碎法、物理气相法、电火花法、蒸发冷凝法、真空蒸发法、激光法、高频电弧感应法、溅射法、高速干燥法、微乳化液法、水热合成法、化学气相沉积法、化学气相冷凝法、溶胶―凝胶法、氧化―还原法、热分解法、超声化学法、有机配合物前驱体法、化学气相法等[8-10]。表2给出了常用的制备纳米添加剂的方法和原理。
通过普通方法制备的纳米添加剂,具有较大的表面能,固体颗粒之间存在团聚成块、粒径长大的倾向,从而影响稳定性和使用性能。为此,在制备纳米添加剂过程中,近年来开发出表面修饰技术[11-12]。纳米粒子的表面修饰技术是以降低纳米微粒表面能为目标,同时改善纳米粒子在基础油中的分散性。目前较为通用的修饰方法包括:表面活性剂吸附法、化学反应修饰法和聚合物包膜法。表面活性剂吸附法是表面活性剂吸附在纳米粒子表面,非极性与分散介质-基础油发生溶剂化效应,从而防止或减少纳米粒子的团聚;化学反应法是通过修饰剂与纳米粒子进行反应而达到防止或减少纳米粒子的团聚;聚合物包膜法是吸附在纳米粒子表面的单体发生聚合反应或聚合物吸附在纳米粒子表面形成包膜,从而阻止纳米粒子发生团聚,提高稳定性。
1.3纳米添加剂的机理研究
摩擦与是一个相当复杂的过程,因此纳米添加剂机理的研究是一个非常困难的课题。大量研究表明,纳米粒子的效果非常强烈地依赖粒子的化学和物理性质、种类、粒径大小、基础油的类型等。人们采用不同的研究手段对数百种纳米添加剂的机理进行了分析和试验研究,对纳米添加剂的机理做出了一些推测,认为纳米添加剂的减摩抗磨机理主要有:滚珠轴承效应、小尺寸效应、高活性效应、载体作用和沉积膜作用[7,13],如表3所示。
1.4分析方法与标准化
可用于纳米粒子分析检测的方法很多,最主要的有透射电镜法、扫描电镜法、X射线衍射法、激光粒度分析法、X射线小角散射法、沉降粒度分析法和扩散系数法等七种[14]。表4给出了几种分析方法的原理。
我国在纳米颗粒的测定方面也做了大量工作,已经颁布了两种检测方法国家标准:《纳米粉末粒度分布的测定――X射线小角散射法》(GB/T13221-2004)和《气体吸附BET法测定固态物质比表面积》(GB/T19587-2004)[15]。同时,也颁布了四种纳米产品的国家标准:《纳米镍粉》(GB/T19588-2004)、《纳米氧化锌》(GB/T19589-2004)、《纳米二氧化钛》(GB/T19591-2004)和《超微细碳酸钙》(GB/T19590-2004)[16]。
1.5纳米添加剂的复合作用
和传统添加剂一样,不同组成、不同结构的纳米添加剂其主要性能也不尽相同,有的抗磨损性能好,有的减摩性能好,有的极压性能(承载能力)好。因此,要获得减摩和抗磨极压性能都好的油配方或产品,就需要不同纳米添加剂的有机结合。
国内外在复合纳米添加剂方面的研究都有报道。例如将40nm的碳酸钙粒子与11nm的稀土粒子复合加入到500SN中,测定的试验结果见表5。其中纳米添加剂加入的总量相同,磨斑直径的试验条件为392N,60min。由表5可见,两种纳米添加剂的复合,其油品的最大无卡咬负荷提高,磨斑直径和摩擦系数都有所降低[16]。另外,有研究表明,采用纳米二硫化钼与纳米金属钛或纳米铅的复合多层膜可以提高设备使用寿命,纳米复合多层膜的滑动磨损寿命比纯纳米二硫化钼膜提高4~6倍[17]。
2纳米添加剂研究的趋势
纳米添加剂的研究已经到了非常活跃的阶段,我们认为选择来源广且价格合理的品种、稳定生产工艺、降低生产成本并使之产业化是将来研究的主要方向。同时,纳米添加剂复合作用的研究、纳米添加剂产品标准化研究以及环保型纳米添加剂的研究也是将来研究的重要内容。
2.1工艺与产业化研究
纳米添加剂的比表面能大,容易聚集成大颗粒,因此表现出制成的油品稳定性差,纳米添加剂容易从油中沉淀析出。要获得稳定的含纳米添加剂的油品,纳米添加剂的制备工艺就显的尤为重要。总的看来,纳米添加剂的制备工艺研究是将来研究的主要方向,并且将主要集中在两个方面,一是纳米添加剂制备新工艺的研究,二是表面改性(修饰)技术的研究。而工艺研究的主要目标是研究出生产工艺简单、成本低、设备要求不高的生产工艺技术,同时合成新的、效率高的分散剂和稳定剂,以解决油中纳米添加剂粒子在苛刻条件下工作的稳定性。
另外,虽然国内外市场上都有纳米添加剂产品销售,但生产工艺稳定以及产业化程度高、应用范围广、成本低且规模化了的产品还不多见。因此,纳米添加剂的产业化研究也将是未来研究的重要方面。
2.2纳米添加剂复合作用的研究
不同纳米添加剂的复合可以完善所获得的剂的性能,但一个剂配方是由基础油和多种功能添加剂组成的,如抗氧剂、防锈剂、抗腐蚀剂等等,这就需要纳米添加剂在剂配方中与其他添加剂有良好的协和作用。因此,不同纳米添加剂复合作用效果的研究以及纳米添加剂与其他功能添加剂的协和作用研究是研究者在未来研究中需要研究与解决的问题。
2.3标准化研究
目前已经有纳米添加剂产品投放市场,但是并没有统一的纳米添加剂标准。随着纳米添加剂和纳米油、纳米脂研究开发的不断深入,纳米添加剂以及相应剂产品的标准化研究工作已经显得愈来愈重要。我们认为应该开展相关产品的标准化工作,制定出产品标准,规范产品市场,使纳米材料在领域的应用能够健康发展。
2.4环保型纳米添加剂的研究
随着全球气候变暖,环保问题已经成为各国政府以及研究者关注的重要课题。为适用环保要求,环保型纳米添加剂的研究与应用也应运而生。目前环保型纳米添加剂研究的主要方向是采用环保型纳米材料,通过合适的工艺路线以及采用特殊的分散技术和稳定技术,制备环保型纳米剂[16,18]。
3结束语
纳米添加剂具有独特的结构表征和优异的性能,在油中加入纳米添加剂可以大大提高油的抗磨减摩性能,但纳米添加剂能象传统添加剂那样广泛用于剂配方中,还有很多工作要做。从发展的趋势来看,我们认为目前纳米添加剂研究者应开展的主要工作是:
(1)选择价格合理、性能优良的纳米材料,进行工艺研究,确定可行的生产工艺并使之产业化。降低成本,使纳米材料真正应用到普通剂配方中,发挥纳米添加剂的作用。
(2)制定纳米添加剂的产品标准,使纳米添加剂的研究、开发、生产有标可依,避免盲目性。同时开展纳米添加剂分析方法的研究,并标准化。
(3)研究纳米添加剂复合作用机理,探讨纳米添加剂与传统添加剂的协和作用效果,研究协和作用规律,为纳米材料的配方研究提供指导。
(4)研究与开发环保型纳米添加剂,走可持续发展道路。
参考文献:
[1]姚文新.美国国家纳米计划实施情况[J].新材料工业,2005(2):41-45.
[2]王宏业.日本纳米技术研究战略与措施[J].全球科技经济燎望,2002(10):39-41.
[3]孟强.德国发展纳米技术的战略新方向[J].球科技经济燎望,2002(10):43-45.
[4]乔红斌,郭强.油纳米抗磨添加剂研究现状[J].机械工程材料,2005,29(4):4-6.
[5]余翔,蒋文光.世界纳米专利比较分析和我国纳米专利战略研究[J].研究与发展管理,2004,16(4):85-90.
[6]DumdumJM.GradeCeriumFluoride-AnewSolidLubricantAdditiveforGrease,PasteandSuspensions[J].NLGISpokesman,1984,48:111-116.
[7]王淮英,朱红,康晓红.纳米粒子的制备技术与应用现状[J].河北理工学院学报,2005(2):44-47.
[8]喻建胜,李淼,蒋渝,等.油溶性n_Cu的制备及其油抗磨添加剂性能研究[J].四川化工,2006,9(1):7-10.
[9]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作油添加剂的摩擦学性能[J].摩擦学报,2000(4):292-295.
[10]DJason,Riley.ElectrochemistryinNanoparticleScience[J].CurrentOpinioninCcolloid&Interface,2002,7:186-192.
[11]陈莲英,章文贡.纳米材料及表面改性研究进展[J].与密封,2004(1):107-110.
[12]乔云林,徐滨士,李长青,等.表面修饰的硼酸盐油添加剂的制备与分析[J].材料保护,199730(6):11-13.
[13]LRapoport.FrictionandWearofPowderedCompositesImpregnatedwithWS2inorganicFullerent-LikeNanoparticles[J].Wear,2002,252:518-527.
[14]吴新明,范茂松,潘兮.纳米颗粒的粒径测定[J].电子测量与仪器学报,2004(增刊):69-77.
[15]舒予.我国首批纳米材料国家标准[J].牙膏工业,2005(3):64.
[16]顾彩香,顾卓明,陈志刚,等.环保型纳米材料的研究[J].机械设计与制造,2006(2):106-108.
[17]SavanA.UseofNanoscaledMutilayerandCompoundFilmstoRealizeaSoftLubricationPhasewithinaHard[J].Wear-ResistantMatrix.SurfaceandCoatingTechnology,2000,126:159-165.
[18]叶斌.环境友好的纳米剂及其制备方法[S].CN1919989A,2006.
RESEARCHSTATUSANDDEVELOPMENTTRENDOFNANOPARTICLESASLUBRICATINGADDITIVES
FENGKe-quan,ZHAOZhi-qiang
(HangzhouXin′gangPetrochemicalCo.,Ltd.Hangzhou311600,China)