当前位置: 首页 > 范文大全 > 办公范文

建立数学模型的方法(6篇)

时间:

建立数学模型的方法篇1

什么是数学模型?何为数学建模?这是我们首先要理解的概念。

“数学模型一般是实际事物的一种数学简化……使用数学语言描述的事物就称为数学模型。”更确切地说,“数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。”①课程标准中说:“方程、方程组、不等式、函数等都是基本的数学模型。”这是就“数与代数”这部分内容中列举的数学模型的外延。

“数学建模”在课程标准中解释得比较详细:“从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。”读了这段话老师们肯定会说:我们在教学学生解决实际问题的过程不就是这样吗?只不过数学问题是现成的,我们已经提供给学生了,关键是引导学生分析题中的数量关系,理清解决问题的思路与步骤,准确列出分步算式、综合算式或方程,再算出结果,检验后写上答语。是的,这是数学建模与解模过程的一部分,但这里的数学模型已经预设了,一般不需要学生“从现实生活或者具体情境中抽象出数学问题”,我们没有了数学建模的出发点,所以这样的教学便称不上是数学建模的教学。

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象,如自由落体现象,也包涵抽象的现象,如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。具体地说:建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,“数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并‘解决’实际问题的一种强有力的数学手段。”②由此可见数学建模一般有这样几个过程:1、模型准备;2、模型假设;3、模型建立;4、模型求解;5、模型分析;6、模型检验;7、模型应用。③

那么,教师如何帮助学生体会建模过程,树立模型思想呢?

一、教师主导,学生主体。小学生的生活经验比较少,数学知识、技能水平都比较低。所以,在小学阶段引导学生体会建模过程、树立模型思想势必要在教师的指导帮助下进行。教师要根据学生的年龄特征与认知水平,选择学生感兴趣的、通过合作与努力能够成功建模的生活问题,让学生来体会、研究。

二、夯实“四基”,提升素养。小学阶段是学生打基础的阶段,所以新课程标准提出“通过义务教育阶段的数学学习,使学生获得适应社会生活和进一步发展所必须的数学的基本知识、基本技能、基本思想、基本活动经验。”在组织引导学生开展有效的数学学习活动与训练过程中,使学生掌握扎实的基本知识和技能,渗透基本的数学思想方法,积累基本的活动经验。夯实了这些基础,学生对进一步学习数学才有信心与兴趣,其数学素养的发展与提升才成为可能。

三、课中渗透,感悟模型。在平时的数学课堂教学过程中,教师要有意识地让学生在许多直观或贴近生活的实例中进行有效地综合比较,抽象出它们所具有的共性,再用数学的语言或符号等进行概括,从而让学生体会到学习新知的过程就是数学建模的过程。例如教学分数与除法之间的关系时,通过大量的实例使学生从中抽象出它们的共性是:被除数÷除数=被除数/除数,最终用数学符号概括出:a÷b=a/b(b≠0)的结论。

四、重点训练,体会建模。数学建模的过程是一个综合运用的过程,所以我们重点训练的基础内容很多。如计算,包括估算与口算;分析数量间的关系等等。如果学生相关的能力没有训练到位,将影响学生体会数学建模的过程。纵观小学阶段的数学内容,比较容易组织帮助学生建立的数学模型是简易方程。因此,在学习了这部分内容以后,我们便可以帮助学生体会数学建模,树立模型思想了。可以创设学生熟悉的生活情境,如家中的收支结余问题、找规律填数问题等等。教师要引导帮助学生经历完整的数学建模的过程,要用学生喜欢的方式表达解模过程,可以是列式解答,也可以是小论文。在学生完成学习任务以后,一定要进行激励性评价,让学生感受到建模的成功及数学模型思想的生活价值,从而提高学习数学的信心与兴趣

[参考文献]

建立数学模型的方法篇2

算法改进数学建模改进意见一、数学建模发展现状分析

1.数学建模概述

数学模型是反应客观世界的一个假设对象,通过系统分析客观事物的发生规律、变化规律,测算出客观事物的变化范围和发展方向,找出客观事物发生演变的内在规律。因为任何事物都可以通过数学建模进行研究,所以数学建模在人们生产和生活的各个领域应用非常广泛。通常情况下,在对事物进行数学建模之前,应提出一个建模假设,这个假设构想是建立数学模型的重要依据,研究人员应深入研究建模对象的分析、测算、控制、选择的各参数变量,将参数变量引入数学模型中,可以通过测算精准的计算出客观事物发展的规律性参数,翻译这些参数,可以让研究者知道客观事物发生变化的具体规律。

2.在教学中应用数学建模的重要性

随着计算机网络技术的发展和改革,数学建模技术的发展速度飞快,在教学中引入数学建模思想,不仅可以提升学生的解题思维能力,还能有效地增加学生的辩证思维能力。据相关数据统计,2012年我国各高校开展的数学建模研讨会多达135场,学生通过数学建模思想的学习,将数学建模思想和所学的专业知识有机的结合在一起,深化数学建模理论在实际应用中的能力。由此可见,数学建模理论不仅对教学具有重要发展意义,还能够提升我国各领域产业的发展效果。因为数学建模理论涉及到辩证思维和数学计算,所以要想让数学建模理论在实际应用中更好的实施,必须完善其数学建模理论,制定合理的数学建模步骤,改善数学建模算法,这种才能充分体现出数学建模理论的综合应用性能。

二、数学建模方法

通过对数学建模理论进行系统分析可知,常用的数学建模种类有很多,其应用性能也存在很大的差异性,具体分类情况如下。

1.初等教学法

初等教学法是最基础的数学建模方法,这种建模方法构建出的数学模型的等级结构很简单,一般为静态、线性、确定性的数学模型结构,这种数学模型的测算方法相对简单,其测量值的范围也很小,一般应用在学生成绩比较、材料质量对比等单一比较的模型中。

2.数据分析法

对数据信息庞大的数据进行测算时,经常会应用到数据分析法,这种数学模型建立在统计学的基础上,通过对数据进行测算分析和对比,可以精准地计算出数据的变化规律和变化特征,常用的测算方法有时序和回归分析法。

3.仿真模拟法

在数学建模中引用计算机网络技术,不仅可以提高数学模型的准确度和合理性,还能通过计算机模拟技术更直观、更客观地体现出数学模型的实验方法。统计估计法和等效抽样法是仿真模拟数学模型最常应用的测算方法,通过连续和离散系统的虚拟模型,制定出合理的试验步骤,并测算出试验结果。

4.层次分析法

层次分析法可以对整体事物进行层级分离,并逐一层级的对数学模型结构进行测算,这种分析方法可以体现数学模型的公平性、理论性和分级性,所以被广泛地应用在经济计划和企业管理、能源分配领域。

三、数学建模算法的改进意见

1.数学建模算法

目前常用的数学建模算法主要有6类,其具体算法如下:①模拟算法,通过计算机仿真模拟技术,将数据引入模型构架,并通过虚拟模型的测算结果来验证数学模型的准确性和合理性;②数据处理算法,数据是数学建模算法的重要测算依据,通过数据拟合、参数变量测算、参数插值计算等,可以增强数据的规律性和规范性,Matlab工具是进行数据处理的主要应用软件;③规划算法,规划不仅可以优化数学模型结构,还能增加数学建模结构的规范性,常用的规划方法有线性、整数、多元、二次规划,通过数学规划测算方法可以精准的描述出数学模型的结构变化特征;⑤图论算法,图论可以直观的反映出数学模型的结构构架,包括短路算法、网络工程算法、二分图算法;⑥分治算法,分治算法应用在层级分析数学模型中,通过数据分析对模型的动态变化进行系统的规划,对模型的原始状态进行还原处理,对模型各层级数据进行分治处理。

2.数学建模算法的改进意见

通过上文对数学模型算法进行系统分析可知,数学建模算法的计算准确度虽然很高,但其算法对工作人员的专业计算要求很高,同时由于不同类型的模型算法不同,在对数学模型进行测算时经常会出现“混合测算”现象,这种测算方法在一定程度上会大大降低数学模型测算结果的准确度,本文针对数学建模算法出现的问题,提出以下几点合理性改进意见:①建立“共通性”的测算方法,使不同类型的数学模型的测算方法大同小异;②深化数学建模的系统化、规范化、统一化,在数学建模之初,严格按照建模规范设计数学模型,这样不仅可以提高数学模型的规范性,还能提高数学模型的测算效率;③大力推进计算机网络工程技术在数学建模中的应用,因为计算机网络应用程度具有很好的测算性能,计算机软件工程人员可以针对固定数学模型,建立测算系统,通过计算机应用软件,就可以精准的计算出数学模型的测算值。

四、结论

通过上文对数学模型的算法改进和分类进行深入研究分析可知,数学建模理论虽然可以在一定程度上优化客观事物的模型系统,但是其测算理论依据和测算方法仍存在很多问题没有解决,要想实现数学模型的综合应用性能,提高测算效率,必须建立完善的数学建模算法理论,合理应用相关测算方法。

参考文献:

\[1\]韦程东,钟兴智,陈志强.改进数学建模教学方法促进大学生创新能力形成\[J\].教育与职业,2010,14(12):101-113.

\[2\]袁媛.独立学院数学建模类课程教学的探索与研究\[J\].中国现代药物应用,2013,15(04):101-142.

\[3\]王春.专家呼吁:将数学建模思想融入数学类主干课程\[R\].科技日报,2011,15(09):108-113.

建立数学模型的方法篇3

关键词:新课标初中数学建模教学

全日制义务教育数学课程标准对数学建模提出了明确要求,其中强调:从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用。在使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面也得到发展。这给初中数学教学提供了一个很大的空间。同时建模对初中生来说是难点,强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,而且能使“数学生活化”,充分提高了学生的应用数学意识能力和创新意识能力。近几年,每年高考试题都有几道应用题,中考也加强了应用题的考查,这些应用题以数学建模为中心,考查学生应用数学的能力,而学生在应用题中的得分率远远低于其他题,原因就是学生缺乏数学建模和应用数学意识。因此初中数学教师应加强数学建模的教学,以提高学生数学建模能力,从而培养学生应用数学的创新意识。

一、数学建模的重要性

过去,不少学生对数学的认识是繁、难,在生活中应用太少,这是由于走入了纯数学误区,未能真正把数学学活。其实,数学发展本来就是与生产、生活发展同步的。随着数学教育界中“数学应用意识”教育的不断深入,提高数学应用性的教育迫在眉睫。数学应用性包括两个层次:一是数学的精神、思想和方法;二是数学建模。而通过数学建模能力的培养,学生可以从熟悉的环境中引入数学问题,增加与生活、生产的联系,培养数学应用意识,巩固数学方法,培养创新意识,以及分析和解决实际问题的能力,这正是素质教育和数学教育的目的。从初中开始,学生已经能够很好地掌握他们所理解的一些抽象概念的本质属性,并能逐步地分出主次特征,只是对高度概括与抽象缺乏经验。因此,在这个阶段对学生有意识地进行数学建模能力的培养,对提高他们对数学的兴趣,以及能力的开发都有深远的影响。

二、建立数学模型的过程

1.审题建立数学模型,首先要认真审题。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深入分析实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。

2.简化根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。

3.抽象将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。按上述方法建立起来的数学模型,还要看是不是符合实际,理论上、方法上是否达到了优化,因此在对模型求解、分析之后通常还要用实际现象、数据等检验模型的合理性。

三、初中阶段的几种常见数学模型

1.构建不等式(组)求解。

现实生活中同样也广泛存在着数量之间的不等关系。诸如市场营销、生产决策、统筹安排、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式(组)问题,利用不等式的有关性质加以解决。

2.构建方程(组)求解。

现实生活中广泛存在着数量之间的相等关系。“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。如打折销售、分期付款、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成方程(组)模型,通过列方程(组)得以解决。

3.构建函数关系求解。

函数的产生是人类对现实世界认知的一次重大飞跃,它反映着量与量之间的依赖关系,是辩证法思想在数学上的体现。函数反映了事物之间的广泛联系,它揭示了现实世界众多的数量关系及运动规律。现实生活中的许多问题,诸如计划决策、用料造价、最佳投资、最小成本、方案最优化等问题,常可通过建立函数模型求解。

4.建立几何模型求解。

几何与人类生活紧密相关,它以现实世界的空间形式作为主要的研究对象。如航海、建筑、测量、工程定位、裁剪方案、道路桥梁设计等,涉及一定图形的性质时,常常建立几何模型,把现实问题转化为几何模型加以解决。

四、数学建模教学活动的体会

1.对初中数学建模优秀课例的开发有待加强。

高中研究型学习课上的课例较多,相比较而言,初中关于数学建模思想的经典课例不足,课例设置要有趣味性、操作性、可研究价值,要体现建模的一般性过程,突出初中数学的思想方法。一节好的模型课例,能激发学生对数学建模的兴趣,易于学生感受建模的思想,让学生学会用数学的眼光看待身边的事物。

2.重视知识产生和发展过程的教学。

由于知识产生和发展过程本身就蕴含着丰富的数学建模思想。因此,老师既要重视实际问题背景的分析、参数的简化、假设的约定,又要重视分析数学模型建立的原理、过程。数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,而忽略数学建模的建立过程。

3.注意结合学生的实际水平,分层次逐步地推进数学建模。

教师在设计数学建模活动时,应考虑学生的实际能力和水平。首先,结合教材,以应用题为突破口,先培养学生运用数学建模方法的意识,用简单问题作为建模基础。其次,以稍有难度的问题为目标,用从易到难的方式来推进教学。

4.鼓励学生积极主动地参与,把教学过程更自觉地变成学生活动的过程。

数学应用与数学建模的目的并不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。

数学建模能力的培养不在于某堂课或某几堂课,而应贯穿于学生的整个学习过程,并激发学生的潜能,使他们能在学习数学的过程中自觉地去寻找解决问题的一般方法,真正提高数学能力与学习数学的能力。数学应用与数学建模,其目的不是为了扩充学的课外知识,也不是为解决几个具体问题进行操作,而是要通过培养学生的意识,教会学生方法,让学生自己去探索、研究、创新,从而提高学生解决实际问题的能力。

参考文献:

[1]王丽群.加强初中数学建模教学培养学生应用数学意识.科技信息,2007.32.

[2]孙维.浅谈初中数学建模的教学及应用.数学学习与研究,2007.2.

建立数学模型的方法篇4

【关键词】数学模型数学建模创新意识

小而言之,数学中的各种基本概念,都是以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理等等都是一些具体的数学模型。大而言之,作为用数学方法解决实际问题的第一步,数学建模有着与数学同样悠久的历史。两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。

一、数学建模的内涵

数学的实践性、社会性意义体现为:从事实际工作的人,能够善于运用数学知识及数学的思维方法来分析他们每天面临的大量实际问题,并发现其中可以用数学语言来描述的关系或规律,并以此作为指导与解决问题的基础与手段。用数学语言来描述的“关系或规律”可称之为数学模型,建立这个“关系或规律”的过程即数学建模。

从定义的层面上来说,所谓数学建模就是分析和研究一个实际问题时,从定量的角度出发,基于深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学符号和语言,把实际问题表述为数学式子,即数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验,这个建立数学模型的全过程就称为数学建模。

二、数学建模的操作过程

数学建模的操作过程包括七个渐进及循环的步骤,即模型准备模型假设模型建立模型求解模型分析模型检验模型应用。

其中步骤一、模型准备,即了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。步骤二、模型假设,即根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。步骤三、模型建立,即在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。步骤四、模型求解,即利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。步骤五、模型分析,即对所得的结果进行数学上的分析。步骤六、模型检验,即将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。步骤七、模型应用,即应用方式因问题的性质和建模的目的而异。

三、数学建模对中学数学教学的现实意义

1.有利于培养学生数学应用意识

从小学到高中,学生经过十年来的数学教育,一定程度上具备了基本数学理论知识,但是接触到实际问题却常常表现为束手无策,灵活地、创造地运用数学知识解决实际问题的能力较低,而数学建模的过程,正是实践-----理论-----实践的过程,是理论与实践的有机结合,强化数学建模的教学,不仅能使学生更好的掌握数学基础知识,学会数学的思想、方法、语言,也是让学生树立正确的数学观,增强应用数学的意识,全面认识数学及其与科学、技术、社会的关系,提高分析问题和解决问题的能力。

2.有利于培养学生主体性意识

传统教学法一般表现为以教师为主体的满堂灌输式的教学,强化数学建模的教学,可极大地改变教学组织形式,教师扮演的是教学的设计者和指导者,学生是学习过程中的主体。由于要求学生对学习的内容进行报告、答辩或争辩,因此极大地调动了学生自觉学习的积极性,根据现代建构主义学习观,知识不能简单的地由教师或其他人传授给学生,而只能由学生依据自身已有的知识和经验主动地加以建构,知识建构过程中有利于学生主体性意识的提升。

3.有利于培养学生创新意识

从问题的提出到问题的解决,建模没有现成的答案和模式。学生必须通过自己的判断和分析,小组队员的讨论,创造性地解决问题。数学建模本身就是给学生一个自我学习、独立思考、深入探讨的一个实践过程,同时也给了那些只重视定理证明和抽象逻辑思维、只会套用公式的学生一个全新的数学观念,学生在建模活动中有更大的自主性和想象空间,数学建模的教学可以培养学生分析问题和解决问题的能力以及独立工作能力和创新能力。

建立数学模型的方法篇5

关键词:新时期;经济数学;模型;构建

中图分类号:F0文献标志码:A文章编号:1673-291X(2014)19-0007-02

前言

数学模型是数学思想精华的具体体现,是对客观实际对象的数学表述,它是在一定的合理假设前提下,对实际问题进行抽象和简化,基于数学理论和方法,用数学符号、数学命

题、图形、图表等来刻画客观事物的本质属性及其内在联系。当数学模型与经济问题有机地结合在一起时,经济数学模型也就产生了。所谓经济数学模型,就是把实际经济现象内部各因素之间的关系以及人们的实践经验,归结成一套反映数量关系的数学公式和一系列的具体算法,用来描述经济对象的运行规律。所以,经济数学模型是对客观经济数量关系的简化反映,是经济现象和经济过程中客观存在的量的依从关系的数学描述,是经济分析中科学抽象和高度综合的一种重要形式。

一、建立经济数学模型的步骤

建立经济数学模型需按照一定的方法、步骤进行,以使所建的模型具有可行性、实用性,建立经济数学模型的步骤一般为:第一,深人了解实际经济问题,以及与经济问题有关的背景知识,搜集相关的数据,并对数据进行归纳、分组整理。第二,建立实用的模型需通过合理的假设把所要研究的实际经济问题简化、抽象,运用数学方法描述变量之间的关系,建立变量关系的数学模型。模型不能过于简单,以致不能真实地反映客观经济现实,又不能过于复杂,以至于难以实施。一个模型抽象或现实到什么程度,取决于分析的需要、分析人员的能力以及取得资料的可能性和准确性。第三,根据所搜集的数据资料以及建立的模型,借助电子计算机等进行各种模拟试验,求出所建模型中各参数的估计值。第四,将模型测算的结果与经济问题的实际情况进行比较,做出判断,如果模型结果与实际情况相符,表明模型是符合实际的,如果模型与实际观测不一致,则不能将所得的模型应用于实际。这时就要返回去检查,看是假设不合理,还是模型有错误,找出问题的症结,不断地检查、校验,使所建立的模型符合实际。随着客观经济情况的变化,模型需要不断修改和更新。

二、经济数学模型的分类

第一,按经济数量关系,一般分为数理经济模型、计量经济模型、投入产出模型、数学规划经济模型四种。数理经济模型主要指用数学语言描述经济题的模型,其通过数学工具进行演绎推理从而得到某种经济意义的结果。在数理经济模型中,量的关系建立主要是按一定理论或规则的定义来进行,即形成的是定义式。而不是按统计经验或数据间的某种相关性来建立。如果模型的前提条件和依据的有关理论是成立的,那么经过严格数学推导出的结果也必然成立。计量经济模型就是依据计量经济学的有关理论与方法,在一定经济理论的指导下建立的经济模型。计量经济学是以数学、统计和经济这三种理论为基础发展起来的。此计量经济模型的一个重要特征是以统计数据为基础,即离开统计数据就无法建立计量经济模型。投入产出模型的理论基础是投入产出分析理论。投入产出分析以经济生产中的投入要素和产出结果为特定研究对象。投入产出分析基本是以核算恒等式为基础,以系统的部分与总体存在线性关系为假设,主要以线性代数为研究工具。投入产出模型反映部门、地区或产品之间的平衡关系,以协调经济活动。数学规划经济模型是以数学规划理论与方法建立的经济模型。数学规划是运筹学的一个重要分支,它的研究对象是数值最优化问题。数学规划模型反映经济活动中的条件极值问题,是一种特殊的均衡模型,用来选取最优方案。第二,按经济范围的大小,模型可分为企业的、部门的、地区的、国家的和世界的五种。企业模型一般称为微观模型,它反映企业的经济活动情况,对改善企业的经营管理有重大意义。部门模型与地区模型是连结企业模型和国家模型的中间环节。国家模型一般称为宏观模型,综合反映一国经济活动中总量指标之间的相互关系。世界模型反映国际经济关系的相互影响和作用。第三,按数学形式的不同,模型一般分为线性和非线性两种。线性模型是指模型中包含的方程都是一次方程。非线性模型是指模型中有两次以上的高次方程。有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。第四,按时间状态来分,模型有静态与动态两种:静态模型反映某一时点的经济数量关系;动态模型反映一个时期的经济发展过程。第五,按应用的目的,有理论模型与应用模型之分,是否利用具体的统计资料,是这两种模型的差别所在。第六,按模型的用途,还可分为结构分析模型、预测模型、政策模型、计划模型。此外,还有随机模型(含有随机误差的项目)与确定性模型等等分类。这些分类互有联系,有时还可结合起来进行考察,如动态非线性模型、随机动态模型等等。

三、构建和运用经济数学模型时应注意的问题

数学模型对现实的把握是相对的、有条件的。其运用前提是:有关的经济范畴和经济理论是否正确;假定是否合理;结论能否进行检验;对现实是否具有说服力等等。因此,在构建和运用经济数学模型时要注意到:(1)构建数学模型要对所研究的经济问题作细致周密的调研究,分析其运行规律,获取其影应因素的数据,明了其中的数量关系,然后才是选取数学方法,建立起数学表达式,最后还需求解、验证。(2)在经济实际中只能对可量化的事物进行数学分析和构建数学模型,而模型概念是无法进行数量分析的。尽管经济模型是反映事物的数量关系的,离开具体理论所界定的概念,就无从对事物的数量进行研究。经济上的量是在一定的界定下的量,不是数学中抽象的量。(3)构建数学模型时要考虑到约束条件。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这项条件满足,该数学模型才能成立。而几乎所有的经济理论是在一定的条件和假定的情况下才能成立,这就决定了每个经济模型都有受到若干个条件的约束。(4)根据所搜集的数据建造的数学模型,只能算作一个“经验公式”,其只能对现象做出粗略大致的描述,据此公式计算出来的数值只能是个估计值。(5)用所建造的数学模型去说明解释处于动态中的经济现象,必须注意时空条件的变化,必须考虑不可量化因素的影响作用以及在一定条件下次要因素转变为主要因素的可能性。

四、建立经济数学模型应遵从的主要原则

1.假设原则。假设是某一理论所适用的条件,任何理论都是有条件的、相对的。经济问题向来错综复杂,假设正是从复杂多变因素中寻求主要因素,把次要因素排除在外,提出接近实际情况的假设,从假设中推出初步结论,然后再逐步放宽假设条件,逐步加进复杂因素,使高度简化的模型更接近经济运行实际。作假设时,可以从以下几方面来考虑:关于是否包含某些因素的假设;关于条件相对强弱及各因素影响相对大小的假设;关于变量间关系的假设;关于模型适用范围的假设等等。

2.最优原则。最优原则可以从两方面来考虑:其一是各经济变量和体系上达到一种相对平衡,使之运行的效率最佳;其次是无约束条件极值存在而达到效率的最优、资源配置的最佳、消费效用或利润的最大化。由于经济运行机制是为了实现上述目标的最优可能性,我们在建立经济数学模型时必须紧紧围绕这一目标函数进行。

3.均衡原则。即经济体系中变动的各种力量处于相对稳定,基本上趋于某一种平衡态。在数学中所表述的观点是几个函数关系共同确定的变量值,它不单纯是一个函数的变动去向,而是整个模型所共有的特殊结合点,在该点上整个体系变动是一致的,即达到一种经济联系的平衡。如需求函数和供给函数形成的均衡价格和数量,使市场处于一种相对平衡状态,从而达到市场配置的最优。

4.数、形、式结合原则。数表示量的大小,形表示量的集合,式反映了经济变量的联系及规律,三者之间形成了逻辑的统一。数学中图形是点的轨迹,点是函数的特殊值,因而也是函数和曲线的统一。可以认为经济问题是复杂经济现象中的一个点,函数则是经济变量之间的相互依存、相互作用关系,图形就是经济运行的规律和机制。所以,数、形、式是建模的主要工具和手段,是解决客观经济问题的三个要素。

经济教学模型是研究分析经济数量关系的重要工具,它是经济理论和经济现实的中间环节。它在经济理论的指导下对经济现实进行简化,但在主要的本质方面又近似地反映了经济现实,所以是经济现实的抽象。经济数学模型能起明确思路、加工信息、验证理论、计算求解、分析和解决经济问题的作用,特别是对量大面广、相互联系、错综复杂的数量关系进行分析研究,更离不开经济数学模型的帮助。运用经济数学建模来分析经济问题,预测经济走向,提出经济对策已是大势所趋。

参考文献:

建立数学模型的方法篇6

一、生物数学模型在高中生物教学中的分类

(一)随机性生物数学模型。随机性生物数学模型是根据生物现象的随机性和偶然性特定进行建立的。随机性生物数学模型主要是指通过概率论、过程论、数理统计等方法描述和研究出的一些随机现象。但是,根据生物的规律,对于同一事件或者随机事件的多次出现也可以使生物有规律可循。因此,目前对生物学的主要研究方法是过程论、概率论、数学统计。这样的研究放大也使得高中生物教学有了理论依据和研究方法,使得生物教学中的生物数学模型建立有科学的指导方法。

又例如在《稳态与环境》的教学中时,可依根据本文由收集整理hiv浓度以及t细胞的数量关系对生物数学模型进行分解、建立、使用,显示出增长的颈雉种群数量,以及大草履虫种群的增长曲线、东亚飞蝗种群的数量波动。

(二)确定性生物数学模型。确定性的生物数学模型是指运用各种方程式、代数方程、关系式、微分方程、积分工程等对生物关系进行的表示。确定性生物数学模型也是目前运用最为普遍的一种数学模型。简单而言,生物数学模型即运用数学方法进行研究的对必然性现象的描述。这类数学模型主要是应用于解决复杂的生物学问题,借助确定性的生物数学模型对生物关系进行转换。在高中生物教学中的应用主要是利用数学模型的客观逻辑推理对生物关系进行求解运算,从而获得客观生物的规律和生命现象。例如,在《分子与细胞中》的教学中,可以利用确定的数学求解方式对细胞的无氧呼吸方程式进行解剖,得出其中的有氧呼吸和光合作用的方程式和生物规律。

二、生物数学模型在高中生物教学中的应用过程分析

(一)准备与假设阶段。准备阶段中明确生物教学的关键,并不失重心,从核心问题出发,明晰突出问题,了解相对应的背景知识,收集有质有量的资料以便在生物课堂上开展充分的教学组。一方面要弄清楚数学模型在生物教学的目的,另一方面努力地规划教学任务,从而确保教学尽可能地锻炼学生逻辑思维能力和快速解决相应问题的能力,从而整体提高课堂的整体教学水平和教学效率。

例如:在进行数学模型的建立之前需要确定生物数学模型的种类以及使用的建立方法。例如,目前dna分子的生物数学模型建立公式模型则为倒数公式和恒等公式两类。

在假设阶段,最容易进入假设不需要验证的误区。建立模型的重要环节就在于假设,要经过规范的确认之后才能够进行科学的数模定型。例如:在生物体产生种类为2n的模型中,由n对基因到n对杂合基因再到n对在染色体上的杂合基因,最终明确为当n对基因位于n对染色体上并且n为杂合基因的对数时”,才能够完善为科学的数学模型。

(二)建立与求解阶段。通过对概念的去繁琐化,并对其进行相应的表述确定和对应的生物知识点与面相融合而成的数学教学模型的建立。采用如何的数学模型,如何的教学方法,通过一个一个地比较,以寻找到最佳的处理方式和建立确定数学教学模型的方式,从而准确地形成以数学模型为核心教学体系,它的建立将进一步地促使生物教学步伐。不仅如此,而且还可以在教学时,不断地结合生物教育教学实际,灵活运用多种数学模型,以高效高质地促进高中生物教学的整体进程。

例如:对蛋白质分子结构的生物数学模型的构建,由m个氨基酸

转贴于

脱水缩合形成的某蛋白质分子含有n条肽链。在假设氨基酸的平均相对分子质量为a,则可以建立这样的生物数学模型。此蛋白质分子的分子质量为:ma—18*(m—n)。此蛋白质分子含有的氨基数和羧基数至少均为:n个。此蛋白质分子含有的肽键数和形成时脱去的水分子数均为(m—n)个;

(三)检验阶段。经过对数学模型的积极构建与求解,以充分地发挥它们对数学模型在优质优效的生物教学过程中的扎实建立贡献积极力量,并不断地融合比较分析与归纳总结。实现从生物知识点或面的现象积极转化为本文由收集整理数学的相关概念,并形成计算等系列十分简单的方式,再根据计算的结果推进归纳实现和抽象概念迅速转变到生物知识现象的本质阶段,结果就是,数学模型在生物教学现象与本质二者之间建立了易于理解和把握的纽带,从而切实提高高中生物的教学效率。

三、数学模型的生物教学作用

(一)在生物教学中能将抽象转为为直观,提升学生的创新力。当学生在对生物知识进行理解并感到困惑时,生物教学中的数学模型能为解决问题提供具有创新性的解决办法,对学生的创新能力进行检测的重要途径在于学生在进行生物学习的过程中,能否将生物学知识灵活转变成与数学模型相关的问题进行解决,以便更加灵活地理解所学知识。对数学模型进行构陷的过程,除了是是对模型本身的探索之外,还能够培养学生的创新能力,将数学与生物学进行有效连接的方法之一在于合理建立数学模型,对数学模型的灵活建立和灵活应用同时也有利于对生物现象等知识的研究。