土壤污染修复技术(6篇)
土壤污染修复技术篇1
关键词:土壤修复;表面活性剂;增溶作用;吸附;胶束
中图分类号:X131.3文献标识码:A文章编号:16749944(2013)05016305
1引言
土壤是各种污染物的源和汇。农业生产中的化肥、农药大量施用,城市垃圾的随意堆放,油井开采的措施不当等人为因素都造成土壤有机污染的加剧。土壤是一类特殊的环境体系,由固-液-气-生物等多相介质构成。土壤成分的复杂性决定了其污染状态的复杂性,有机物、重金属等以不同的结合态或游离态存在于土壤中[1],因此,土壤污染的修复难度很大,选择合适的修复方法对于防止污染物的迁移扩散及恢复土壤的生态功能有着重要意义。
2土壤有机污染及修复方法概述
选择合适的修复方法首先要了解有机污染物在土壤中的存在状态,通常认为污染物吸附于土壤有机质上,但来源不同的土壤或不同种类的污染物其吸附行为存在差异,还没有统一的理论。目前土壤有机污染的修复方法包括热修复、生物修复和化学修复,实践中需综合考虑被污染土壤的特点和所要达到的目的从而选择合适的修复方法。
2.1土壤有机污染的特点
有机污染物在土壤上的吸附行为决定着其在土壤环境中的迁移转化、归趋、生物生态效应及修复、缓解途径和机制。目前较为认可的吸附理论是分配理论,认为弱极性非离子有机物从水相吸附到土壤有机相是有机物在土壤中的分配过程,土壤吸附作用的强弱取决于有机质含量[2]。但分配理论无法解释土壤分配系数与土壤复杂的有机成分之间的关系及吸附等温线的非线性
Keywords:thecitiesofGuangzhou,FoshanandZhaoqing;API;SO2;NO2;PM10等问题,相应的,关于土壤分配系数变化、低浓度非线性吸附、复合污染吸附行为及效应的研究成为焦点。
2.1.1土壤分配系数随土壤成分而变化
同一种有机物在不同土壤上的分配系数相差数倍。土壤有机质(SOM)的组成影响土壤分配系数,研究者以不同方法证明,SOM极性越高,其吸附有机污染物的能力越低。综合研究表明,有机污染物在土壤上的分配系数变化受以下因素影响[3]:土壤的来源和有机质的腐殖化程度,特别是有机质的组成与结构(如极性、方向性、脂肪性);水中存在溶解性有机质(DissolvedOrganicMatter,DOM)。
这些影响因素表明,在选择土壤有机污染的修复方法时,要注意对土壤状况的调查,对方法的小规模试验,对于不同的土壤来源,其修复方法和操作过程应有所差异。
2.1.2污染物的低浓度影响吸附等温线
由于土壤中有机污染物的浓度通常较低,有机物的吸附行为更为复杂[4,5]。SOM可能存在不同的形态,如玻璃态对有机物的吸附速率大于橡胶态;焦炭类物质的存在与SOM形成竞争吸附,并且焦炭类物质的浓度较低时,非表面吸附现象较明显;另一方面,当SOM被水饱和后将增加极性有机物的表面吸附位。上述因素都会导致吸附等温线出现非线性的特征,由此引出的特殊吸附作用理论也成为研究的焦点。
2.1.3土壤有机污染属于复合型污染体系
土壤环境是由固-液-气-生物等多相介质构成的复杂体系,污染物来源众多,组成复杂,而污染造成的生态效应具有长期性综合性的特点[6,7]。因此,研究土壤有机污染的修复也应建立在多介质多过程的复合体系理论基础之上[8]。本文介绍的表面活性剂修复技术就是基于这一理论的修复方法之一。
土壤有机污染的特点是,污染物在土壤中的迁移变化属于多介质多过程的复合污染体系,污染物的低浓度吸附超出了线性理论的研究范畴,不同来源的土壤对污染过程和修复过程作用差别很大,因此,研究土壤有机污染现状需要针对实际土壤环境的特点做详细的分析和试验才能进一步寻找合适的修复方法。
2.2土壤有机污染的常见修复方法
土壤有机污染往往超出了土壤环境的自净能力,为了恢复土壤的生态和农业效用,已有多种用于土壤有机污染的修复方法。下面介绍其中应用较为广泛的几种,同时与表面活性剂修复方法加以比较。
2.2.1热修复方法
土壤有机污染的热修复方法原理是,利用有机物的热挥发性,采用加热的方法将污染物从土壤中解吸出来。热修复方法工艺简单,技术成熟,但该方法能耗过大,导致操作费用很高,而且从适用范围来讲,加热方法也只适用于易挥发的有机污染物[9]。
2.2.2生物修复方法
土壤有机污染的生物修复方法是利用土壤定的微生物将有机污染物降解,以恢复土壤的生态能力[10]。土壤中通常存在高效降解污染物的微生物,如能将其驯化成优势微生物,通过优化操作条件,可以加速微生物的降解作用,修复被污染土壤[11]。
生物修复方法效果较好,但所需修复时间较长。在各种污染介质的修复中,生物方法都因成本较低、副作用小而受到较多关注。但是在土壤污染的修复中,因为土壤成分和生物结构的复杂性,生物修复方法的修复效率还有待提高。
2.2.3化学修复方法
土壤有机污染的化学修复方法相对生物修复方法更为简单,在土壤中注入表面活性剂和有机溶剂,提高有机污染物的溶解性和流动性,使其从土壤中洗脱出来,即利用表面活性剂和有机溶剂实现强化的洗脱效果[12]。
由于污染物常常被土壤有机质强烈吸附,降低了其生物可利用性,因此,从解吸的角度修复土壤有机污染是可行的。化学方法正是利用了洗脱剂在有机物相互吸附过程中的影响,使有机污染物脱离土壤有机相。
以上3种方法是常见的土壤有机污染的修复方法,分别从不同角度解决土壤有机污染的问题,从修复效率和恢复土壤的生态功能来讲,化学修复是相对温和而有效的方法。其中,表面活性剂修复技术是一种应用广泛的化学洗脱方法,下面将就土壤有机污染的表面活性剂修复技术做详细的介绍。
3表面活性剂修复技术概述
土壤中的有机污染物往往以吸附态存在,而大多数修复技术针对溶解态污染物最有效,因此吸附影响了其修复效率。表面活性剂能够增加污染物的溶解性和迁移性,因此利用表面活性剂的化学洗脱技术收到重视。
3.1表面活性剂的特点及其增溶作用
表面活性剂分子的特点是具有两性基团,亲水基团和疏水基团(亲脂基团)。表面活性剂能够显著降低接触界面的表面张力,增加有机污染物特别是疏水有机污染物在水相的溶解性[13]。
当表面活性剂浓度很低时,表面活性剂的存在形式为:单体的疏水基团靠拢而亲水基团分散在溶液相;当表面活性剂达到一定浓度时,单体迅速聚集,形成球状、棒状或层状的“胶束”,该浓度称为临界胶束浓度(CriticalMicelleConcentration,CMC)[14]。胶束是由以疏水性基团为核心,亲水性基团包裹疏水核心构成的集合体,胶束外表面的亲水性使其可以在土壤水相中自由运动,摄取溶解态有机污染物而发挥增溶作用。表面活性剂单体也可以增加有机污染物的溶解性,但其效果相对于胶束态并不明显。胶束态是表面活性剂的高效作用状态,胶束态的表面活性剂可以显著增加有机污染物的溶解性。
根据“相似相溶”的原理,疏水性有机污染物有进入胶束内部的趋势,因此当表面活性剂浓度超过CMC时,污染物分配趋于进入胶束核心,大量胶束的形成增加了污染物的溶解性。
3.2用于土壤有机污染修复的表面活性剂类型
表面活性剂按亲水性离子分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性离子表面活性剂。目前常用于土壤有机污染修复的表面活性剂列于表1[14]。
2013年5月绿色科技第5期表1表面活性剂类型举例
类型名称目标污染物非离子型表面活性剂十二烷基聚氧乙烯醚十二烷、癸烷、苯、甲苯、氯苯、二氯苯、三氯乙烯、多环芳烃辛烷基聚氧乙烯醚多环芳烃壬烷基聚氧乙烯醚多环芳烃辛基苯基聚氧乙烯醚三氯乙烯、四氯乙烯、三氯苯、DDT、多氯联苯壬基苯基聚氧乙烯醚三氯乙烯、四氯乙烯、二氯苯、四氯苯、多环芳烃聚氧乙烯脱水山梨醇单油酸酯烷烃聚氧乙烯油酸酯十二烷、甲苯、三甲苯、菲十二烷基硫酸钠广泛用于去除各种有机污染物阴离子表面十二烷基苯磺酸钠活性剂十二烷基双苯磺酸钠其他皂角甘萘、六氯苯石油磷酸盐DDT、三氯乙烯、多环芳烃环糊精多环芳烃乙烯吡咯烷酮/苯乙烯多环芳烃
带有阳离子的表面活性剂不常使用,因为土壤颗粒带负电,会吸附表面活性剂的阳离子,使其难以发挥增溶作用。一般,非离子表面活性剂比阴离子表面活性剂洗脱效率更高,可能原因有两方面,一是阴离子表面活性剂的CMC较高,同等浓度下不容易形成胶束,二是因离子表面活性剂组分在含水层的沉积,沉积在介质表层的表面活性剂会增加土壤的有机碳含量,增加了土壤的疏水性,不利于有机污染物从土壤上解吸下来[14]。
3.3表面活性剂修复土壤的影响因素
表面活性剂用于土壤有机污染的修复效果受到各种因素影响,这些因素可能会影响表面活性剂的CMC,或影响土壤有机质的成分,或影响表面活性剂增溶有机物的过程,下面分别说明。
3.3.1表面活性剂的性质
表面活性剂的性质包括其类型、在土壤中的饱和浓度及水油平衡值(HLB)[15]。
表面活性剂分子的疏水基团一般是由烃基构成的,而亲水基团则由各种极性基团组成,种类繁多,因此,表面活性剂在性质上的差异,除与烷基的大小和形状有关外,主要与亲水基团的类型有关。前面已提到表面活性剂用于土壤有机污染修复常见的类型是非离子型和阴离子型,两种类型的作用效果不同,非离子型的表面活性剂CMC低,易形成胶束,修复效果好[16-18]。但部分污染物反而在因离子表面活性剂作用时效果好,在实际修复时,要做详细的分析和试验才能确定。
表面活性剂在土壤中存在饱和浓度,研究表明:表面活性剂接近饱和浓度时,才会有明显的洗脱作用,当表面活性剂用量远远低于土壤饱和量时,表面活性剂被土壤所吸附,反而不利于洗脱作用的发挥。
表面活性剂作为一种两性物质也有分配于水相和油脂相的动态平衡,水油平衡值(HLB)是描述表面活性剂在水相和油脂相达到动态平衡时其分配比例的参数。表面活性剂的HLB越低,修复作用越好。原因是表面活性剂在一定范围内越易溶于油脂相,与有机污染物的亲和力越强,越易将其从土壤中洗脱下来[19]。
3.3.2被污染土壤的成分
有机污染物在土壤上的吸附受到SOM含量的影响,实际环境中,表面活性剂也会被SOM吸附[20],影响其增溶或洗脱作用。若土壤有机质含量偏低,粘粒含量将成为影响洗脱效果的重要因素[3]。粘粒含量高的土壤洗脱过程较慢,且表面活性剂的有实际浓度低。原因是粘粒含量高时,土壤对有机污染物和表面活性剂的吸附同时加强,导致洗脱作用的滞后。如果仅考虑表面活性剂的洗脱修复作用,这也造成了表面活性剂的浪费,但有研究发现,表面活性剂吸附于土壤可以从土壤内部降低相界面表面张力,从而增加有机污染物的渗出。
3.3.3共溶剂的辅助作用
共溶剂指的是甲醇等小分子有机溶剂,在水相中加入适当浓度的有机溶剂可以大大提高有机物在水相的溶解度。共溶剂与表面活性剂共同使用时,由于共溶剂分子大小比表面活性剂胶束分子小得多,能有效地帮助疏水性有机污染物由土壤有机相向水相迁移。另外,共溶剂本身也能溶解于胶束核心,形成一个溶剂-表面活性剂大胶束,增大了核心的有效容积,提高了有机污染物的分配能力[14]。
4表面活性剂修复机理
表面活性剂对土壤的修复主要通过增加有机污染物的溶解性,使污染物从土壤上解吸下来,并随洗脱液迁移离开土壤。表面活性剂的修复机理可以从其增溶过程来理解[3,14,20]。表面活性剂对有机污染物的增溶过程分为直接增溶和间接增溶两种机制,下面分别详细说明,并引入公式对表面活性剂的增溶能力进行评价。
4.1表面活性剂的增溶机理
大部分有机污染物通过各种化学作用力吸附在土壤有机质(SOM)上,其中主要是疏水作用力,另有部分有机污染物溶解于土壤颗粒周围的水相中,溶于水相的污染物和吸附与SOM的污染物形成动态平衡。表面活性剂对有机污染物也靠疏水作用力而吸附,且表面活性剂对有机污染物的吸附能力强于土壤有机质,作用的结果即是有机污染物从SOM上解吸下来,进入水相。表面活性剂夺取有机污染物的过程尚不确定,根据表面活性剂是否直接接触污染物,分为直接增溶和间接增溶两种过程[21]。
4.1.1直接增溶过程
表面活性剂对有机物的直接增溶过程认为表面活性剂单体先接触污染物的分子,再形成胶束。
表面活性剂随洗脱液进入土壤颗粒周围的水相,接触溶解态的污染物并通过疏水作用吸附污染物,随着表面活性剂浓度的增加,直至超过CMC,吸附了污染物的单体将以污染物为核心形成胶束。胶束在洗脱液中扩散,携带污染物迁移离开被污染土壤。由于污染物的溶解态和吸附态存在动态平衡,吸附于SOM的污染物会进入水相,进而重复表面活性剂夺取污染物的过程。最终,大部分污染物都将被表面活性剂夺取,并洗脱出去。
4.1.2间接增溶过程
表面活性剂对有机物的间接增溶过程认为表面活性剂先形成胶束,再通过水相介质获取污染物,使其进入胶束核心。
表面活性剂也是先进入土壤颗粒周围的水相,由于浓度高于CMC,迅速形成胶束态,分散于水相。由于胶束表面是亲水的,与疏水的污染物相互排斥而无法接近。间接增溶机理认为有机物在水相的溶解态是以被水相包围的状态存在的,因此表面活性剂胶束可以通过接触水相而间接摄取污染物。接下来的扩散迁移过程与直接增溶相同,也造成动态平衡的移动,而增加污染物的溶解性。
4.2表面活性剂的增溶能力评价
为了选择合适的表面活性剂进行土壤修复,需要先确定其对污染物的增溶能力,可以通过理论对比或试验分析来确定。下面引入评价表面活性剂增溶能力的两个公式。
公式(1)[3]:
S*w/Sw=1+XmnKmn+XmcKmc(1)
其中各参数的含义如下:S*w-有机物的表观溶解度;Sw-有机物在纯水中的溶解度;Xmn-单体形式的表面活性剂浓度;Xmc-胶束形式的表面活性剂浓度;Kmn-有机物在表面活性剂单体和水之间的分配系数;Kmc-有机物在表面活性剂胶束和水之间的分配系数。
该公式考虑到表面活性剂单体和胶束两方面的增溶能力,是相对于没有任何增溶剂时污染物的溶解能力来表述的。当表面活性剂浓度低于CMC时,考虑Kmn大小,即表面活性剂单体相对对有机物的增溶能力,同理,高于CMC时,则主要考虑Kmc大小。Kmn和Kmc均与有机污染物的疏水性正相关,与表面活性剂的水油平衡值(HLB)负相关。
公式(2)[22]:
MSR=S-SCMCCS-CMC(2)
其中各参数的含义如下:MSR-摩尔增溶比;CMC-临界胶束浓度;CS-表面活性剂浓度大于CMC时的任一浓度;S-表面活性剂浓度为CS时有机物的表观溶解度;SCMC-表面活性剂浓度为时有机物的表观溶解度。
该公式只考虑表面活性剂胶束的增溶作用,以达到临界胶束浓度(CMC)前的溶解性参数作为对照。可以利用该公式通过试验来估计表面活性剂对某种污染物的增溶效果,如图1。
图1以试验方法估计表面活性剂增溶效果的示意图
评价表面活性剂增溶能力的公式还有多种,例如与表面活性剂的辛醇水分配系数相关的评价公式,以及考虑到表面活性剂在土壤上的吸附而对增溶产生的负作用的公式等[20]。不管哪种公式,在应用时都要考虑到土壤环境的复杂性以及表面活性剂与污染物的多种作用力综合增溶的效果。
5表面活性剂修复技术的展望与思考
5.1表面活性剂修复技术的展望和应用
土壤有机污染日益严重,寻找快速高效的修复土壤有机污染的方法十分重要。表面活性剂由于其特殊的结构、性质及性能,在土壤有机污染修复中的应用获得越来越多的关注。
表面活性剂属于化学洗脱法的一种,利用水头压力推动洗脱液通过被污染土壤,将污染物从土壤中洗脱出去,然后再用泵将洗脱液抽提出来,并对含有污染物的洗脱液进行处理。洗脱液中含有表面活性剂和共溶剂,也可以针对被污染土壤的特点加入络合剂[14]。表面活性剂在土壤有机污染修复中的作用主要是通过自身在多介质中的吸附和溶解行为,形成不同的吸附态和溶解态,从各方面对有机污染物产生增溶作用,来改变有机污染物在土壤上的吸附行为和生物可利用性,进而达到修复土壤有机污染的目的。
化学与生物相结合修复是当前土壤有机污染最具潜力的修复方式,基于表面活性剂和其他化学试剂的活化作用,洗脱土壤污染物,增大污染物在水中的溶解度,改善其生物可利用性,促进微生物对污染物的降解或植物对污染物的吸收,提高被污染土壤的修复效率[8]。
表面活性剂修复技术已广泛用于土壤有机污染的修复,但其推广应用仍存在一些问题。主要是表面活性剂的回收和存留于土壤中的毒性问题。
表面活性剂的回收是从修复成本和环境保护两个角度来考虑的。表面活性剂用于土壤有机污染修复中,使用的浓度一般较高,同时表面活性剂在洗脱中损失很大,这一部分损失多是在土壤中的吸附截留。表面活性剂的回收需将有机污染物与表面活性剂彻底分离,利用空气吹脱法、萃取法和沉淀法等方法可以将污染物从洗脱液中分离出去,再通过膜分离、泡沫分离等方法将表面活性剂浓缩提取。回收费用与损失造成的浪费相比,仅占一小部分,因此回收表面活性剂在经济上是可行的。同时,可以将环境影响减到更小。
表面活性剂的毒性问题是一直以来关注的焦点,虽然目前的研究表明表面活性剂对生物没有毒性作用,也无生物积累效应[23],但表面活性剂种类繁多、性质各异,长期存在于土壤中仍然存在环境隐患。在工程应用时,除了注入洗脱液进行修复外,还需在修复完成后,冲洗残留的表面活性剂,将其从土壤上解吸下来。另外,表面活性剂的降解主要靠生物降解,因此,在修复完成后应创造有利条件加快表面活性剂的生物降解。
近年来,“生物表面活性剂”开始受到关注。生物表面活性剂是由微生物、植物或动物产生的天然表面活性剂[15]。由于其临界胶束浓度(CMC)低,修复效果好,易被生物降解,可以减少二次污染,因而应用前景良好。
5.2关于表面活性剂修复技术的思考
表面活性剂因其特殊的化学结构和对良好的活化性能,已广泛应用于人类生活和生产的各个领域,在环境保护领域,表面活性剂既是环境治理的去除对象,又是环境修复的有效工具。表面活性剂进入地表水环境中,将改变水的感官性状,产生泡沫,如果造成水源污染,将难以彻底清理。同时,表面活性剂在废水当中大量存在还会造成有机物的乳化、分散,增加废水处理的难度。可见,表面活性剂大量使用会给环境带来不利影响,应适当控制表面活性剂的使用。
表面活性剂的修复机理尚不完全清楚,对实践的指导作用还要靠详细的试验和分析来确定修复方案。目前的研究多集中于利用表面活性剂修复被特定有机物污染的土壤,而对于多污染成分和非均质土壤的复杂情况还不能全面了解其作用机理和修复过程,研究力度有待加强,且对修复机理的深入研究不应被忽视。
随着人类生活范围的扩张和工业生产规模的扩大,有机污染迅速扩张到土壤环境中,土壤作为一种多相多成分的复杂介质,往往是污染物的最终去向,同时土壤还承担着生态修复的重要任务。土壤环境的保护应该受到更多的重视,不仅包括被污染土壤的修复和污染物的彻底隔离,还应对污染的产生和扩散加以控制,这样也将避免因修复导致的负作用使土壤失去生态功能。
综上所述,表面活性剂对土壤有机污染的修复主要靠其对污染物的增溶作用,将污染物从土壤有机质中解吸下来,进一步通过洗脱去除污染物,或由生物降解和富集作用缓解土壤受污染的程度。表面活性剂在土壤有机污染修复中具有很大的应用潜力,并已积累了一定的研究成果,但仍存在许多问题有待于进一步的研究和实践来阐明其修复机理。另一方面,从污染控制的角度,应着力减少有机污染物向环境中的排放,保持土壤的生态功能。
参考文献:
[1]周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境,2000,9(2):143~145.
[2]ChiouCT.Partitionandadsorptionoforganiccontaminantsinenvironmentalsystems[M].NewJersey:JohnWiley&Sons,Inc.,Hoboken,2002.
[3]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理[D].杭州:浙江大学,2004.
[4]YoungT,WeberW.Effectsofdiageneticprocessesonsorptionenergetics[J].EnvironmentalScienceandTechnology,1995(29):92~97.
[5]WeberW,HuangW.Intraparticleheterogeneityandphase-distributionrelationshipsundernonequilibriumconditions[J].EnvironmentalScienceandTechnology,1996(30):881~888.
[6]郭观林,周启星.土壤-植物系统复合污染研究进展应用[J].应用生态学报,2003,14(5):823~828.
[7]赵保卫,朱利中.表面活性剂增效修复土壤有机污染研究进展[J].环境污染治理技术与设备,2006,7(3):30~35.
[8]戴树桂,叶常明.多介质多界面环境体系中化学污染物的环境化学行为[M].北京:科学出版社,2000.
[9]钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2000(4):10~13.
[10]马淑敏,刘雅娜,金文标,等.有机污染土壤的生物修复研究进展[J].河北建筑科技学院学报,2006,23(3):39~42.
[11]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999(2):65~71.
[12]陈刚才,甘露,万国江.土壤有机物污染及治理技术[J].重庆环境科学,2000,22(2):45~49.
[13]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
[14]戴树桂.环境化学[M].北京:高等教育出版社,2006.
[15]邱罡,谢凝子,吴双桃等.表面活性剂在污染土壤修复中的应用[J].河北化工,2008(5):66~69.
[16]卢向阳,唐明远,黄彬,等.茶皂素表面活性性能及对丝毛织物的洗涤效果[J].湖南农业大学学报:自然科学版,2000,26(3):218~220.
[17]梁治齐,宗惠娟,李金华.功能性表面活性剂[M].北京:中国轻工业出版社,2002.
[18]张永,廖柏寒等.表面活性剂在污染土壤修复中的应用[J].湖南农业大学学报:自然科学版,2007,3:348~352.
[19]KarnsJ.,TorrentsA..InfluenceofrhamnolipidsandtritonX-100onthedesorptionofpesticidesformsoils[J].EnvironmentalScienceandTechnology,2002(36):4669~4675.
[20]ChuW.,So.W..Modelingthetwostagesofsurfactant-aidedsoilwashing[J].WaterResearch,2001(35):761~767.
[21]SailajaD.,SuhasinK.L.,KunarS.,andGandhiK.S.TheoryofrateofsolubilizationintoSurfaetantso1utions[J].Langmuir,2003(19):4014~4026.
土壤污染修复技术篇2
1.土壤重金属污染的现状
重金属一般指密度在4.5g/cm3以上的45种元素。常见的对土壤造成污染的重金属包括锌、铜、铬、镍、铅、镉、汞等元素,它们不仅导致土壤退化、农作物产量和品质下降,还会通过径流和淋洗作用污染地表水和地下水,并通过直接接触、食物链等途径危及人类的生命和健康。据不完全调查,目前全国受污染的耕地约0.1亿ha,占全国耕地的1/10以上;而在土壤污染中,受镉、砷、铬、铅等重金属污染的耕地面积近2000万ha,约占总耕地面积的1/5,其中工业“三废”污染耕地1000万ha,污水灌溉农田面积达330多万ha,据估算,全国每年因重金属污染而减产粮食1000多万吨,造成的直接经济损失超过200亿元。
2.土壤重金属污染的生物修复技术
2.1植物修复植物修复是一种利用自然生长植物或遗传培育植物修复重金属污染土壤的技术总称,采用植物对重金属的忍耐和超量积累能力并结合共生的微生物体系来实现对重金属污染环境的修复。植物修复技术主要是包括了植物萃取技术;根际过滤技术;植物稳定技术;植物挥发技术。植物萃取是利用重金属积累植物或超积累植物将土壤中的重金属萃取出来,富集并运送到植物根部的可收割部分或植物的地上枝条部位;根际过滤是利用重金属超积累植物或耐重金属植物从污水中吸收、沉淀和富集重金属;植物稳定是利用耐重金属植物或重金属超积累植物降低重金属的活性,从而减少重金属被浸淋到地下水或通过空气载体扩散进一步污染环境的可能性;植物挥发是指利用植物把土壤中的重金属转化为气体排出土壤,然后在集中起来处理。利用植物修复技术修复土壤重金属的焦点主要集中在对超富集植物的研究,超富集植物是指能超量吸收重金属并将其运移到地上部分的植物。
2.2微生物修复微生物可以降低土壤中重金属的毒性,吸附积累重金属,改变根际微环境,从而提高植物对重金属的吸收,挥发或固定效率。如硫酸还原菌、蓝细菌、动胶菌及一些藻类,它们能够产生胞外聚合物,这些胞外聚合物能与重金属离子形成络合物。微生物重金属修复的机理包括表面生物大分子吸收转运、细胞代谢、空泡吞饮、生物吸附和氧化还原反应等。利用微生物(包括细菌、藻类和酵母等)来减轻或消除重金属污染,国内外已有许多报道。相关研究表明微生物可使还原态重金属氧化,如无色杆菌、假单胞菌能使亚砷酸盐氧化为砷酸盐,从而降低砷的转移和毒性。菌根真菌能极大地提高铜在玉米根系中的浓度和吸收量,而玉米地上部分的铜浓度和吸收量变化不显著,这表明丛枝菌根有助于消减铜由玉米根系向地上部分的运输。许友泽等研究表明未灭菌土壤中土著微生物对Cr(Ⅵ)进行了修复,使溶出的Cr(Ⅵ)明显减少。通过7天的淋溶,培养基中未检测到Cr(Ⅵ)的存在,即铬污染土壤中Cr(Ⅵ)在7天内基本得到完全修复。但目前,大部分微生物修复技术还局限在科研和实验室水平,实例研究还不多,无法大面积推广,对于微修复技术还需做更深入探索。
3.展望
土壤污染修复技术篇3
【关键词】农业土壤污染防治
1前言
土壤是人类赖以生存的物质基础,是人类不可缺少、不可再生的自然资源。近年来,由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤渗透,大气中的有害气体及飘尘也不断随雨水降落在土壤中,所有这些都导致了土壤的污染不断加剧。土壤污染对人类的危害性极大,不仅直接导致粮食减产,而且通过食用生长于污染土地上的植物及其产品影响人体健康,还通过对地下水的污染以及污染物的转移构成对人类生存环境多个层面上的不良胁迫和危害,因此污染土壤迫切需要修复、治理。
2土壤污染的来源及特征
2.1污染物质进入土壤的主要途径
(1)大气沉降。工业排放的气体以及粉尘、烟尘等固体粒子和烟雾、雾气等液体粒子等,通过沉降或降水进入土壤,造成污染。污染常呈现以污染源为中心的椭圆形或带状分布。(2)污水灌溉。污水中含有重金属、酚、氰化物等许多有毒有害的物质,如果污水没有经过必要的处理而直接用于农田灌溉,会将污水中的有毒有害的物质带至农田,污染土壤。(3)化肥污染。不合理使用化肥,也会引起土壤的污染。长期大量使用氮肥,会破坏土壤结构,造成土壤板结,生物学性质恶化,影响农作物的产量和质量。过量地使用硝态氮肥,会使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧的输送,使其患病,严重的导致死亡。(4)农药污染。农药施用不当,会引起土壤污染。农作物从土壤中吸收农药,在根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。(5)固体废物的污染。固体废弃物在堆放和处理过程中,由于日晒、雨淋、水洗,污染物极易移动,以辐射状、漏斗状向周围土壤、水体扩散。另一方面,部分固体废弃物以垃圾堆肥的形式施入土壤,造成土壤重金属污染。(6)放射性的污染。随着核技术各领域的广泛应用,越来越多的放射性污染物进入土壤中,这些放射性污染物除可直接危害人体外,还可以通过生物链和食物链进入人体,在人体内产生内照射,损害人体组织细胞,引起肿瘤、白血病和遗传障碍等疾病。
2.2土壤污染的特点
(1)隐蔽性和滞后性:土壤污染与大气污染、水污染等问题不同,它往往不很直观,需要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。(2)累积性和地域性:污染物质在土壤中不像在大气和水体中容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。(3)具有不可逆转性:重金属对土壤的污染基本是一个不可逆转的过程,被某些重金属污染的土壤可能要100到200年时间才能够恢复;许多有机化学物质的污染也需要较长的时间才能降解。(4)土壤污染很难治理:土壤仅仅依靠切断污染源的方法则往往很难恢复,治理成本往往很高、治理周期也较长。鉴于土壤污染难于治理,而且土壤污染问题的产生有具有明显的隐蔽性和滞后性,土壤污染问题往往不容易受到重视。
3土壤污染的防治措施与修复技术
3.1土壤污染的预防措施
(1)加强宣传、监督和管理。建立和完善土壤污染防止、控制和治理的有关法规和政策措施,严格执行国家有关污染物排放标准。(2)加强土壤污染的调查和监测,建立土壤污染监测、预报和评价系统。在研究土壤背景值、通过调查摸清我国土壤污染总体状况的基础上,研究和建立适合我国国情的土壤质量监测、评价标准和预报系统。(3)发展清洁生产,消除污染源。在工业方面应认真研究和大力推广闭路循环、无毒工艺,控制“三废”的排放。在生活污染方面加强分类回收和净化处理。在农业生产中,加强污灌管理,严格执行农田灌溉水质标准;控制化肥农药的使用。(4)植树造林,保护生态环境。土壤污染是以大气污染和水污染为媒介的二次污染为主,植树造林一方面可净化空气,降低大气污染而引起的土壤污染,另一方面还可以涵养水分、调节气候、防止水土流失和保护土壤的自净能力。
3.2污染土壤的修复技术
土壤的污染已成为急需解决的重要环境问题之一。目前,国内外针对已污染的土壤已经发展了一系列的修复工作。
(1)污染土壤的生物修复技术。生物修复是指人为控制条件下利用生物的生命代谢活动,使污染环境中有毒有害物减量化或使其完全无害化,实现环境净化、生态效应恢复的新兴生物技术。(2)污染土壤的植物修复。植物治理重金属污染土壤是指将某种特定的植物种植在重金属污染的土壤上,而该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(食用植物可灰化回收,非食用植物可按原用途加以利用)后即可将该种重金属移出土体,达到改良土壤的目的。最常见和研究较多的就是对重金属和有机污染物污染土壤的植物修复技术。(3)污染土壤的化学修复技术。化学修复技术是一项发展相对成熟的修复技术,化学修复方法包括各种中和或去除有毒物质的技术,涉及土壤淋洗修复、溶剂浸提修复、化学氧化修复、化学还原修复、化学脱氯修复、电化学修复、真空浸提修复、沉淀修复和活性碳吸附修复。
参考文献:
[1]王利英.土壤污染的生物修复技术研究现状及展望.河北农业科学,2003,7(增刊):76-79.
[2]青年科学家论坛.污染环境的植物修复[J].科技与产业,2002,2(3):33-391.
土壤污染修复技术篇4
关键词:稳定剂;重金属污染;TCLP;土壤修复
中图分类号:X53文献标识码:A文章编号:0439-8114(2016)12-3042-05
DOI:10.14088/ki.issn0439-8114.2016.12.013
Abstract:TwodifferenttypesofsoilwerechosenasmatrixandsolubleCd,Zn,PbandCusaltwereaddedtoformsoilheavymetalcontamination.USEPATCLPtest(ToxicityCharacteristicLeachingProcedure,TCLP)wereusedtostudytheeffectofremediationagentwhichiscomposedofcalciumsulfide,calciumphosphateandcalciumhydroxide.Theresultsshowedthat:(1)AdditionofsolublesaltstothesoilmadethesoilpHdecrease.Themoresolubleheavymetalsaltwasadded,pHdecreasedmore.(2)Theaveragepercentageofwatersolubleview,Cd(12.9%)>Zn(7.1%)>Cu(3.4%)>Pb(0.7%).(3)experimentalprogram1:0.5%calciumsulfide+1%calciumsuperphosphate+0.1%calciumhydroxide+20%water,experimentalprogram2is:2%calciumsulfide+calciumphosphateorsuperphosphate1%+0.5%calciumhydroxide+20%water.(4)ForCdandZn,program2issuperiorinheavymetalreductionthanproject2.Heavymetalreductionrateofis89.7%forCdand99.7%forZninproject2,higherthanproject1withreductionrateof88.9%forCdand95.7%forZn.ForCuandPb,program1isbetterthanprogram2,withreductionrateof67.2%and53.9%forCuandPb,respectively.
Keywords:stabilizer;heavymetalpollution;TCLP;soilremediation
中国由铅酸电池、电镀、矿物开采以及冶炼等导致的土壤重金属污染往往引发环境[1]。如在2009年发生的陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染以及在广西环江、云南会泽、湖南湘江等地土壤重金属污染引起了社会广泛关注,成为公共环境事件。作为“化学定时炸弹”,土壤重金属污染呈现出污染持续时间长、污染隐蔽性强、不能被微生物降解、随食物链富集,最终危害人类健康[2]。中国受重金属污染土壤面积约2000万hm2,占全部耕地面积的1/5,每年被污染的粮食多达1200万t,土壤重金属污染亟需得到修复治理[3]。
目前常用的污染场地修复技术主要包括客土法/换土法、热脱附、稳定/固化(solidification/stabilization,S/S)、电动修复、化学淋洗、气提、生物修复、农业生态修复技术等[4]。与其他修复技术相比,固化/稳定化技术具有处理时间短、高效、经济等优势,美国环保局将固化/稳定化技术称为处理有害有毒废物的最佳技术[5]。根据场地修复技术年度报告(ASR),1982-2005年间美国超级基金有22.2%场地修复使用S/S技术[6]。
与固化技术的物理隔离污染物不同,稳定化技术通过稳定剂发生化学反应,改变重金属的形态,转化为不易溶解、迁移能力或毒性更小的形式,从而降低土壤重金属的生物有效性[7]。现有研究表明,通过固化作用形成的固化体会导致污染物从固化体中二次释放,而稳定化则不会涉及到这个问题[8]。
目前土壤重金属稳定化药剂有石膏、磷酸盐、氢氧化钠、硫化钠、硫酸亚铁、氯化铁[9]。此外,黏土矿物、高分子聚合材料、生物质基重金属吸附材料也作为稳定剂。在土壤重金属污染修复实践中所用的磷化合物种类较多。包括水溶性物质如磷酸二氢钾、磷酸二氢钙及磷酸氢二铵、磷酸氢二钠等,也有水难溶性物质如羟基磷灰石、磷矿石等[10]。磷酸盐加入污染土壤后,显著降低重金属有效态浓度,促使重金属(尤其是铅)向残渣态转化。磷酸盐稳定重金属的反应机理十分复杂,目前的研究将其大体分为3类:磷酸盐表面直接吸附重金属;土壤中重金属与磷酸盐反应生成沉淀或矿物;磷酸盐诱导重金属吸附[11]。
批处理是评估土壤中金属元素危害性的通用方法。为了评估固体废物遇水浸沥浸出的有害物质的危害性,中国颁布了《固体废物浸出毒性浸出方法-水平振荡法》(HJ557-2009)、《固体废物浸出毒性浸出方法-硫酸硝酸法》(HJ/T299-2007)及《固体废物浸出毒性浸出方法-醋酸缓冲溶液法》(HJ/T300-2007)。TCLP方法是EPA指定的重金属释放效应评价方法,用来检测在批处理试验中固体废弃物中重金属元素迁移性和溶出性[12]。该方法采用乙酸作为浸提剂,土水比(g∶mL)为1∶20,浸提时间为18h。多重提取试验MEP(MultipleExtractionProcedure)方法可模拟设计不合理的卫生填埋场,经多次酸雨冲蚀后废物的浸出状况,通过重复提取得出实际填埋场废物可浸出组分的最高浓度。MEP试验也可用于废物的长期浸出性测试,其提取过程长达7d。
本研究采用硫化物、无机磷化合物、碱等物质混合添加至土壤中,结合TCLP浸出毒性鉴别标准评价方法,分析土壤重金属在不同配比修复剂情况下重金属浸出程度和土壤重金属有效性改变程度。
1材料与方法
1.1试验材料
采集两种不同的土壤,分别为校内菜园土(用X代表),潜山黄红壤(用Q代表)。硝酸铅、硫酸铜、四水合硝酸镉、七水合硫酸锌均为国药试剂。硫化钙、磷酸钙、氢氧化钙均为阿拉丁试剂。
1.2试验方法
将校园菜园土与潜山土壤各1kg风干过0.25mm土筛。在潜山土壤(Q)、校园菜园土(X)中分别加入硝酸铅、硫酸铜、四水合硝酸镉、七水合硫酸锌,使其待测重金属含量至少超过国家3级标准(记为QA、XA)。在潜山土壤(Q)、校园菜园土(X)中加入上述药剂,使其待测重金属含量至少超过2倍国家3级标准(记为QB、XB)。6份土样分别加入330mL去离子水,充分搅拌混合。置于阴凉处反应3d,然后将6份土样分别平铺于干净纸上,置于室内阴凉通风处风干。
准确称取上述风干后的QA、QB、XA、XB土壤各200g,采用两种稳定剂方案处理。方案1:加硫化钙0.5%+过磷酸钙1%+氢氧化钙0.1%+去离子水20%。方案2:加硫化钙2%+过磷酸钙1%+氢氧化钙0.5%+去离子水20%。潜山三级污染土壤经过两种稳定剂方案处理后的土壤样品记为QAF1,QAF2,其他类推。
潜山土壤(Q)和校园菜园土(X)土壤pH测定:土水比(g∶mL,下同)为1∶2.5,即10g土加入25mL去离子水,于恒温振荡器中,25℃条件下以150r/min振荡30min。
QA、QB、XA、XB土壤重金属测定:土壤重金属含量采用HC1-HNO3-HF消解,用原子吸收分光光度计进行测定。
QA、QB、XA、XB土壤重金属水溶态测定:在三角烧瓶中加入2.5g风干土壤及25mL去离子水,在(25±2)℃条件下振荡2h,过滤[13]。
TCLP浸提试验:将质量比为2∶1的浓硫酸和浓硝酸混合液加入到去离子水(1L去离子水约加入2滴混合液)中,配制为pH3.2的浸提液。按液固比为10∶1(L/kg)计算出所需浸提剂的体积,加入浸提剂,盖紧瓶盖后固定在翻转式振荡装置上,调节转速为30r/min,于25℃下振荡18h。过滤,原子吸收分光光度计测定浸提液重金属浓度[4]。
1.3统计分析
本研究所列结果为3次重复的测定值。标准物质铜、锌、镉、铅溶液来自国家标准物质中心。4种重金属元素测定的变异系数(CV)均小于10%。
2结果与分析
2.1土壤重金属含量及土壤pH
土壤重金属含量及pH见表1。潜山土壤pH6.38,大于校园菜园土壤pH5.92。校园菜园土壤酸性较强。潜山土壤属于黄红壤,据咸宁市土壤普查其土壤pH在5.30~6.80之间[14],此次测定的土壤pH在此范围内。从pH来看,X>XA>XB,Q>QA>QB。水溶性重金属盐的加入,土壤在吸附金属阳离子的同时释放出H+,使得各土壤pH均降低,并且随水溶性重金属盐加入量的增加,pH降低越多,缪德仁[15]的研究中也有类似报道。
从氧化还原电位值来看,校园土壤氧化还原电位值校园土壤(X)小于潜山土壤(Q),显示校园土壤还原性比潜山土壤强。随着水溶性盐的加入,土壤氧化还原电位值下降,还原性加强,并且随着水溶性重金属盐的加入增加,氧化还原电位值降低越多。
2.2土壤重金属水溶态含量
土壤重金属水溶态含量代表了生物可利用性[16]。对于潜山土壤Q和校园土壤X,从水溶态的平均百分比来看,Cd(12.85%)>Zn(6.59%)>Cu(3.35%)>Pb(0.69%)。4种重金属中,除Cd的水溶态比例高于10%外,其他3种重金属的水溶态比例均低于10%。结果显示土壤Cd生物有效性最强,Pb的生物有效性最差。
对Cu和Pb来讲,土壤水溶性重金属盐添加量增加,水溶态的比例也增加(校园菜园土Cu从1.36%增加到5.01%,Pb从0.31%增加到0.40%,潜山土壤也是类似)。但是对于Cd和Zn来讲,在校园菜园土壤中,土壤水溶性重金属盐添加量增加,水溶态的比例反而降低(表2)。
2.3TCLP浸提
表3是在两种土壤重金属修复剂处理下,经过TCLP浸提的结果。从表3可以看出,方案1和方案2均使校园菜园土壤和潜山土壤pH增加,如原土壤XA的pH为5.39,现在变为6.87和8.53。方案1和方案2均使两种土壤电位值增加,并且方案2比方案1更能显著增加土壤的氧化还原电位值(增加值在50mV以上)。
表4列出了两种不同方案对土壤重金属溶液浓度的消减率。消减率计算公式为:
D=×100%
式中,D为土壤重金属溶液浓度的消减率(%),C0为土壤在没有加修复剂前的重金属水溶态浓度(mg/L);C为经过不同稳定剂处理后再经过TCLP浸出液中重金属离子的浓度(mg/L)。
由表4可知,对Cd和Zn,方案2优于方案1。方案2中,Cd(89.7%)和Zn(99.7%)的消减率大于方案1中Cd(88.9%)和Zn(95.7%)的消减率。对于Cu和Pb,方案1优于方案2,方案1消减率Cu为67.2%、Pb为53.9%。
2.4土壤重金属TCLP浸出率
污染土壤中各目标元素的TCLP浸出率采用下式进行计算:
L=×100%
式中,L为TCLP浸出率(%),C为TCLP浸出液中金属离子浓度(mg/L),V为浸提体积(L),CT为土壤重金属全量(mg/kg),m为TCLP浸提土壤质量(kg)。
供试土壤中重金属元素的TCLP浸出率其平均值按照大小顺序为Cd(12.8%)>Zn(7.1%)>Cu(3.3%)>Pb(0.7%),其比例与4种重金属的水溶态比例及大小相当,Cd最高,而Pb最低。
中国环保部制定了“危险废物鉴别标准-浸出毒性鉴别”(GB5085.3-2007),采用规定的浸提方法超过GB5085.3-2007所规定的阈值,则判定该物质为具有浸出毒性的危害物质。TCLP是美国资源保护和再生法(ResourceConservationandRecoveryAct,RCRA)法规指定的针对条款40CFR261.24的试验方法[17]。表5列出了国内外常见的4种设计重金属的质量限制标准。
在土壤4种重金属含量接近土壤质量标准3级及2倍3级标准值情况下,经过2种土壤修复剂的处理,TCLP浸提后,Cd和Zn符合表的所有要求。在方案1处理下,土壤Cu浸提符合表5的所有要求,土壤铅浸提除地表水环境质量标准(三类值)不符合外,其他标准均符合。
3小结与讨论
环境定元素的生物有效性或在生物体中的积累能力或对生物的毒性与该元素在环境中存在的物理形态及化学形态密切相关。目前,应用较广泛的连续提取方法主要有两种,即欧共体标准物质局提出的三步提取法(BCR法)[18]和Tessier等[19]提出的五级提取法。中国地质调查局地质调查技术标准一生态地球化学评价(DD2005-3)将土壤重金属的形态分为水溶态(WS)、离子交换态(EXC)、碳酸盐态(Carb)、弱有机态(WOM)、铁锰氧化物结合态(CBD)、强有机态(SOM)、残渣态(RES)[20]。
在本试验中采用类似于DD2005-03的方法,水溶态采用去离子水在土水比为10∶1情况下振荡2h。相比于作者在河南碱性土壤的形态分析,本研究中的各种重金属水溶态含量平均百分比[Cd(12.85%)、Zn(6.59%)、Cu(3.35%)]均大于河南碱性土壤[Cd(2.0%)、Zn(1.6%)、Cu(0.9%)](无Pb的数据)[20]。结果均表示土壤重金属的生物有效性为Cd>Zn>Cu。
国外学者研究表明,重金属的形态与其生物可利用性存在一定的相关关系,其中植物中重金属浓度与土壤中交换态和碳酸盐结合态重金属有着显著的相关关系,土壤中重金属可交换态和碳酸盐结合态含量的升高会增加重金属的生物有效性[21-23],在此基础上提出了RAC(RiskAssessmentCode)风险评价方法。该评价方法分为4个风险等级:低(50%)。在本研究中土壤镉含量不到国家土壤质量标准值3级标准,其水溶态的比例大于10%,显示土壤镉有较高的风险等级。
pH6时,含Zn2+溶液即析出白色氢氧化锌。Zn2+是两性物质存在下列平衡:
Zn2++2OH-=Zn(OH)2,Zn(OH)2+2NaOH=Na2[Zn(OH)4]
pH8~10时,溶液中主要以Zn(OH)2为主,pH11时生成可溶的锌的羟基络合物。在方案2中pH在8~10范围内。
当pH>7.5时,土壤中的Cd主要以铁锰氧化物结合态和残渣态等形态存在是导致土壤Cd生物有效性(Bioavailability)降低的主要原因[24]。Hoods等[25]研究表明,土壤添加石灰至pH7时,胡萝卜和菠菜对重金属的吸收显著降低,与Cu和Pb相比,Cd和Zn的降幅更大。推测对于Cu和Pb,在较低的pH下形成磷酸盐沉淀。对Cd和Zn,是硫化物及磷酸盐和pH共同作用的结果。
土壤还原状态下,硫酸盐还原菌将硫酸盐变成硫化氢,Zn2+与S2-有很强的亲合力,土壤中的Zn2+转变成溶度积小的ZnS。在本试验中,添加的磷酸盐与土壤中Fe3+形成沉淀,土壤电位值应该降低,但是在TCLP试验强酸浸提下,电位值出现了升高。
本试验以两种不同性质的土壤为基质土壤,通过添加可溶性重金属盐的方法,得到不同污染程度的土壤,两种不同的快速土壤修复剂经过TCLP试验,得到以下结论:
1)土壤在添加可溶性盐后pH降低。可溶性重金属盐加入越多,pH下降越多。
2)水溶态的平均百分比来看,Cd(12.9%)>Zn(7.1%)>Cu(3.4%)>Pb(0.7%)。4种重金属中,除Cd的水溶态比例高于10%外,其他3种重金属的水溶态比例均低于10%。
3)Cd和Zn,TCLP浸提液浓度与pH呈负相关;Cu和Pb,TCLP浸提液浓度与pH呈正相关。
4)方案2消减率Cd(89.7%)、Zn(99.7%)大于方案1消减率Cd(88.9%)、Zn(95.7%)。对于Cu和Pb,方案1优于方案2。方案1消减率Cu为67.2%、Pb为53.9%。
参考文献:
[1]戴彬,吕建树,战金成,等.山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J].环境科学,2015,36(2):507-515.
[2]刘强.吉林省典型城市郊区菜地重金属污染与累积效应研究[D].长春:中国科学院研究生院(东北地理与农业生态研究所),2014.
[3]罗倩.辽宁太子河流域非点源污染模拟研究[D].北京:中国农业大学,2013.
[4]郝汉舟,陈同斌,靳孟贵,等.重金属污染土壤稳定/固化修复技术研究进展[J].应用生态学报,2011,22(3):816-824.
[5]GOUGARMLD,SCHEETZBE,ROYDM.EttringiteandC-S-HPortlandcementphasesforwasteionimmobilization:Areview[J].WasteManagement,1996,16(4):295-303.
[6]AGENCYUEP.TreatmentTechnologiesforSiteCleanup:AnnualStatusReport(ASR,12thEdition)(EPA-542-R-07-012)[M].WashingtonDC:OfficeofSolidWasteandEmergencyResponse,2007.
[7]L?dPEZ-DELGADO,L?dPEZ,FA,etal.Amicroencapsulationprocessofliquidmercurybysulfurpolymerstabilization/solidificationtechnology.PartI:Characterizationofmaterials[J].RevistaDeMetalurgia,2012,48(1):45-57.
[8]刘晶晶.化学物质渗入作用下固化重金属污染土的稳定性研究[D].合肥:合肥工业大学,2014.
[9]王浩,潘利祥,张翔宇,等.复合稳定剂对砷污染土壤的稳定研究[J].环境科学,2013,34(9):3587-3594.
[10]何茂.磷酸盐固定重金属污染土壤中Pb和Cd的研究[D].西安:西安建筑科技大学,2013.
[11]张莹,黄占斌,孙朋成,等.土壤重金属的固化材料研究进展[A]农业环境与生态安全――第五届全国农业环境科学学术研讨会论文集[C].天津:中国农业生态环境保护协会,2013.
[12]胡恭任,于瑞莲,林燕萍,等.TCLP法评价泉州市大气降尘重金属的生态环境风险[J].矿物学报,2013,33(1):1-9.
[13]郝汉舟.土壤地理学与生物地理学实习实践教程[M].成都:西南交通大学出版社,2013.
[14]柳琪.咸宁市部分土系的认证及其质量评价研究[D].武汉:华中农业大学,2014.
[15]缪德仁.重金属复合污染土壤原位化学稳定化试验研究[D].北京:中国地质大学(北京),2010.
[16]线郁.土壤重金属生物有效性生物表征与预测研究[D].北京:中国科学院大学,2013.
[17]MUSSONSE,VANNKN,JANGYC,etal.RCRAtoxicitycharacterizationofdiscardedelectronicdevices[J].EnvironScitechnol,2006,40(8):2721-2726.
[18]DABEK-ZLOTORZYNSKAE,KELLYM,CHENH,etal.EvaluationofcapillaryelectrophoresiscombinedwithaBCRsequentialextractionfordeterminingdistributionofFe,Zn,Cu,Mn,andCdinairborneparticulatematter[J].AnalyticaChimicaActa,2003,498:175-187.
[19]TESSIERA,CAMPBELLPG,BISSONM.Sequentialextractionprocedureforthespeciationofparticulatetracemetals,Anal.Chem[J].AnalyticalChemistry,1979,51(7):844-851.
[20]郝汉舟,靳孟贵,李瑞敏,等.耕地土壤铜、镉、锌形态及生物有效性研究[J].生态环境学报,2010,19(1):92-96.
[21]KONGIC,BITTONG.CorrelationbetweenheavymetaltoxicityandmetalfractionsofcontaminatedsoilsinKorea[J].BullEnvironContamToxicol,2003,70(3):557-565.
[22]LIUJ,ZHANGH,TRANH,etal.Heavymetalcontaminationandriskassessmentinwater,paddysoil,andricearoundanelectroplatingplant[J].EnvironSciPollutResInt,2011,18(9):1623-1632.
[23]FOLIG,GAWUSKY,NUDEPM.Arseniccontaminationandsecondarymineralevaluationinminedrainageusingintegratedacid-baseaccountingandtoxicitycharacterisationleachingprocedure:ThecaseofObuasiMine,Ghana[J].EnvironmentalEarthSciences,2015,73(12):8471-8486.
土壤污染修复技术篇5
关键词:重金属污染;主要原因;修复技术
Abstract:Sincetheimplementationofthepolicyofreformandopeningup,inamarketeconomyenvironmentandconditions,China'ssocialistmodernizationconstructionhasmaderapiddevelopmentandprogress,increasinginternationalstatus,people'slivingstandardandqualityoflifehasbeengreatlyimproved,Chinahasenteredaneweraofall-rounddevelopment.Butwiththerapiddevelopmentofeconomy,theenvironmentalpollutionproblemshavebecomeincreasinglyprominent,decreasethequalityoflivingenvironment,notonlydoesharmtopeople'shealth,butalsobringssomeseriousconsequencesfortheother,graduallybecomeaglobalhottopic.Thispapermainlyfromthetwoaspectsofthemainreasonscausingsoilheavymetalpollutionandsoilheavymetalpollutionremediationtechnologywerediscussed.
Keywords:heavymetalpollution;mainreason;repairtechnology
中图分类号:[TU984.11+5]
引言:土壤重金属污染给人们所带来的危害具有长期性、潜在性的特点,近年来随着城镇化进程的不断加快和工业生产的发展,越来越多的有害物质进入到了土壤中,因此我们必须要充分了解土壤中重金属的来源,并积极应用各种各样的土壤重金属污染修复技术,最大限度地缓解土壤重金属污染,给人们创造一个更加健康舒适的生活环境,从根本上提高人们的生活质量。土壤重金属污染作为环境污染的一个重要方面,不仅破坏了生态环境,同时也给人们的正常生产和生活带来了极大的威胁,因此对于这一问题,相关部门和人员必须要给予足够的重视,积极采取有效措施加以解决。
一、造成土壤重金属污染的主要原因
1.工业三废的排放
在我国,矿产冶炼加工、化工、电镀、电池、以及塑料等行业所排放的重金属是造成土壤重金属污染的主要工业源,由于大多数工业企业污染物处理意识淡薄,并没有配备足够的处理设备,就使得工业废水、废气、废渣等不断排放到土壤或者是水体中,造成严重的环境污染,危害人们的身体健康。
2.燃煤释放
当前我国使用范围最广的能源依然是煤炭,不仅是因为我国的煤炭资源储量丰富,同时也是由于其价格相对较低,这就造成煤炭燃烧时向空气中排放大量的有害气体,这些气体经过沉降就会进入到土壤中,对土壤造成污染,进而对人体健康和整个生态系统产生长期效应。
3.垃圾的堆放
如果垃圾堆放的时间较长,就会使其中的重金属进入到土壤中,导致区域土壤的重金属含量大量增加。特别是城市垃圾中含有较多的重金属,在雨水的冲刷之下会将其中的有毒元素释放到土壤中,由于这些有毒元素大多以有效态的形式存在,难以结合成残渣状态,就使得其在土壤中具有较大的迁移能力,进而对地下水造成污染。
4.化肥和农药的使用
化肥和农药是农业生产中必不可少的物资,对于促进农业生产发展具有非常重要的意义,但是如果使用不合理就会使土壤遭受重金属污染。这是因为在化肥和农药中含有较多的重金属元素,而土壤自身的环境容量又相对较低,长期使用会积累超标含量的重金属,进而使农产品受到污染,一旦食用就会对人体造成伤害。
二、土壤重金属污染修复技术
1.工程修复
工程修复主要指的是采用换土、客土、以及深耕翻土等一些措施,有效降低土壤中的重金属含量,从而减少对植物系统的毒害,保障农产品安全。一般,换土法和客土法主要用来治理重污染区,而深耕翻土法则主要用于重金属污染程度较轻的区域。总的来讲,工程修复比较稳定、彻底,但是由于工程量比较大,成本费用较高,还容易对土体机构造成破坏。
2.物理修复技术
主要分为电热修复、土壤淋洗、电动修复等。针对面积小且污染重的土壤进行修复,适应性广,也是一种治本的措施,但在操作中可能发生二次污染破坏土壤结构并导致肥力下降。
(1)电热修复。电热修复是指通过高频电压产生热能和电磁波,加热土壤,将土壤颗粒中的污染物解吸出来,并从土壤内分离出易挥发的重金属,达到修复的效果。主要针对修复土壤被Se或Hg等重金属污染的情况。此外,也可以将土壤置于高温高压中,使之变成玻璃态物质,最终从根本上修复了土壤中重金属的污染。
(2)土壤淋洗。淋洗法是指用淋洗液冲洗受到污染的土壤,将吸附在土壤颗粒中的重金属变成金属试剂络合物或溶解性离子,再收集淋洗液并回收重金属。此法适用于轻质土壤,修复效果相对较好,但其花费也相对较高。
3.化学修复
化学修复即向土壤中施加改良剂,利用改良剂的吸附、拮抗、氧化还原、以及沉淀等作用,有效降低重金属自身的生物有效性。由于不同的改良剂对土壤中的重金属会产生不同的作用,因此这项技术的重点在于要选择最为合适的改良剂,比较常用的改良剂主要有石灰、硅酸盐、磷酸盐、以及碳酸钙等。但是化学修复是在土壤原位上进行的,并不具有永久性,它只是改变了土壤中的重金属形态,而重金属元素依然存留在土壤中,很容易活化再次危害植物。
4.生物修复
生物修复是一种通过生物技术来修复土壤的新方法。主要利用生物去削减、净化重金属或降低其毒性。此法效果好又易于操作,因而越来越受到人们的青睐,成为几年来污染土壤修复研究中的热点。
(1)植物修复技术。这是一种通过自然生长和遗传作用来培育植物对受重金属污染的土壤进行修复的技术。根据机理和作用过程的不同,此修复技术又可分为植物提取、植物稳定和植物挥发三种类型。
①植物提取。用重金属超积累植物把从土壤中吸收到的重金属污染物转移到地上的部分,再收割地上部分并对其进行集中处理,从而降低土壤中的重金属含量,并达到可以接受的水平。
②植物稳定。用超累积植物或耐重金属植物使重金属的活性降低,减少了重金属通过空气扩散而污染环境或是被淋洗入地下水中的可能性。
(2)微生物修复技术。通过土壤中存在的某些微生物能氧化、沉淀、吸收或还原金属物质,从而降低了土壤中金属的毒性。此外,存在于微生物细胞中的金属硫蛋白对Cu、Hg、Cd、Zn等重金属有强烈的亲和性,而且它对重金属也有富集作用最终能抑制毒性的扩散。但微生物只能对小范围污染的土壤进行修复,因此其能力有限。
三、结束语
科学技术的发展在很大程度上促进了经济的发展和社会的进步,深刻改变了人们的生产和生活方式,具有非常重要的作用。因此,在当前土壤重金属污染日益严重的情况下,我们必须要积极利用各种形式的土壤修复技术来缓解重金属污染、改善土壤质量,为人们创造一个健康安全的生活环境,更好地促进社会主义现代化建设的发展。
参考文献:
[1]王海峰,赵保卫,徐瑾,车海丽.重金属污染土壤修复技术及其研究进展[J].环境科学与管理.2009(11).
[2]袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用[J].中南林学院学报.2007(01).
土壤污染修复技术篇6
随着污染物种类的增加,土壤污染表现出机理上的复杂性、形式的多样性和范围上的扩大化,土壤通过与大气、水的交换以及通过农作物等与人直接或间接的接触对人类的健康产生了极大的威胁。国内外环境工作者对此进行了大量的研究,逐渐认识到土壤中的污染物之间具有伴生性和综合性,即不同污染物之间产生联合作用,如:协同、相加、拮抗等,形成了复合污染。目前,无机-有机复合污染是我国污染土壤的基本特征之一,且土壤中重金属污染一般浓度相对较高,而有机污染物的浓度则比较低。
土壤复合污染研究已成为环境科学发展的重要方向之一,随着研究方法和技术手段的进步,以前研究中探讨不深的污染治理和修复研究也有了较大的进展。近年来,美国、德国、英国、荷兰等国家先后投入巨大的人力和财力,深入开展研究污染土壤修复,在物理、化学、化学和联合修复等方面均取得了相当显著的成果。
重金属污染的主要来源为冶炼业、电镀业,主要重金属污染物为:Pb、Cd、Cu、Cr、Zn,Ni和As。土壤重金属复合污染具有几个特点:①大多数金属的课移动性较差或迁移距离短;②重金属在土壤及生物体内蓄积;③重金属对植物造成的伤害具有潜伏性特征。从污染物的种类出发,土壤中重金属复合污染发生的主要类型有两种,分别是重金属元素之间构成的复合污染和重金属与有机污染物所构成的复合污染。
污染土壤修复是指利用物理、化学和生物手段,转移、吸收、降解和转化土壤中的危险污染物,使其浓度降低到可以接受的标准,或将有毒有害的污染物转化为无毒无害的物质。通过现有重金属污染土壤修复资料表明,对于重金属污染土壤的修复技术有物理修复、化学修复和生物修复、联合修复以及农业生态修复等。
物理修复方法主要有溶液淋洗法、物理工程措施、冻融法、固化稳定法和电动力法。溶液淋洗法是把土壤固相的重金属转移到土壤溶液中,在运用当中,常配合使用表面活性剂以提高淋洗效果。物理工程措施可以用于土壤重金属污染严重的地区,一些发达国家试行了固化技术和挖土深埋包装技术,但这种方法工程量大,并伴有污土的处理问题。电动力法主要是用于重金属污染土壤,在欧美一些国家发展很快,已经进入商业化阶段。其基本方法是将电极插入受污染的土壤场地或地下水区域,通过施加微弱电流,从而形成电场,利用电场产生的各种电动力学效应(包括电渗析、电迁移和电泳等)驱动土壤污染物沿电场方向定向迁移,从而将污染物富集到电极区,然后再进行集中处理或分离。作为一种新兴的原位修复技术,在污染土壤尤其是重金属污染土壤的修复中,电动力学已经显示了其高效性,尤其在传统方法难以治理的细粒致密的低渗性异质土壤以及不能改变地上环境的区域(如受污染区域上部有重要建筑物)修复中有独特的优势,且成本低于传统方法,适和无机/有机污染的饱和或非饱和土壤。
化学修复的原理与物理修复相比,利用了污染物的化学性质达到去除的目的。化学方法主要包括氧化法、还原法、溶剂萃取法和土壤改良剂投加技术等。表面活性剂增效修复(SER)是利用其的增溶-洗脱作用,提高土壤中污染物的溶液浓度,改善其生物可利用性,以达到修复的目的,在修复土壤有机物方面已经有所研究并取得了一定的效果,但是表面活性剂的二次污染和生态安全问题限制了它的广泛使用。
生物修复是指利用土壤中的植物、动物、微生物以及植物与微生物的综合体,吸收、富集或转化土壤中的污染物质,从而最终达到清除土壤中污染物的一类技术总称。生物修复是污染土壤修复方法的主体,其中应用最为广泛的是微生物和植物修复。同物理、化学方法相比,生物修复具有土壤理化特性破坏小、污染物降解高、二次污染小、处理成本低、应用广泛等特点,随着土壤修复要求的逐步提高,生物修复技术的推广得到了迅猛发展。
生物修复技术分为植物修复、动物修复和微生物修复。目前,用于修复的生物主要是植物和微生物,另外还有少量的原生动物。植物修复方法主要是利用了植物对污染物的吸收、降解、转化和挥发等。微生物修复机理包括生物吸附、细胞代谢、表面生物大分子吸收转运、生物吞饮、沉淀和氧化还原等。现在在实际应用中,最常见的是根际修复。根际修复是利用土壤中的微生物、植物、菌根真菌及其相互作用的根际和菌(丝)际环境,有效地降解土壤中的污染物。它克服了微生物修复和植物修复污染土壤的不足,是污染物植物修复的纵深研究,是一种复合的生物修复技术。根际修复具有经济、有效、实用、美观、原位非破坏型、无二次污染、可大面积应用等独特优点而越来越受到人们的重视,是目前最具潜力的土壤生物修复技术之一。
菌根修复是根际修复中的一种,与其它生物修复方法相比,菌根修复的优点有,通过外延菌丝显著增加了菌根与土体的接触面积。据报道外延菌丝与土体的接触面积可超过300m2;菌根和菌丝周围特殊的土体条件,为微生物生长和繁殖提供了良好环境,树木每克外生菌根可分别支持106个好氧细菌和102个酵母;在生物数量方面,菌根际微比周围土体高1000倍。菌根条件下,菌根与土体接触面积的扩大和微生物数量的增多为其修复污染土壤提供了良好基础。丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,在自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生。
联合修复就是共用多种修复技术或以一种修复技术为主,辅以其他方法将土壤中的污染物去除。目前土壤污染大多属于复合污染,单一修复方法难以解决复合污染土壤修复问题,所以通过不同修复方法的组合可以满足污染土壤修复的实际需求。物理和化学联合修复弥补了某些修复方法存在的不足,提高了污染物降解速率,降低了修复费用;生物修复与物理化学修复联合的方法主要是以一种修复技术为主,其他的为辅来完善修复技术,如微生物进一步降解物理修复中的污染物使其去除效率更高;化学和生物联合修复也是为克服其不足而创造的,它常常利用某些化学物质加快生物降解过程或强化植物对污染物的吸收降解能力等。